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ABSTRACT

The authors introduce a nearly sub-Weyl and a nearly sub-Lyra manifold by virtue of a SNS-non-
metric connection(defined below) in nearly sub-Riemannian manifolds. In particular, we show a
SR-parallel curve associated with the nearly sub-Lyra connection is actually a minimizer of the
horizontal length functional. A geometric characteristic of a SNS-non-metric connection is given
in the last section.
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1. Introduction

H.Weyl [12] introduced a generalization of Riemannian geometry in order to formulate a unified field theory.
Weyl’s theory provides an instructive example of non-Riemannian connection. It is well known that a Weyl
connection is actually a torsion-free but non-metric connection, namely the so-called symmetric non-metric
connection in transformation’s theory. In 1951 G.Lyra [7] suggested a semi-symmetric metric connection and
introduced the notion of "gauge", which made it possible to construct a geometrized theory of gravitation and
electromagnetism along the lines of Weyl theory.

The study of various connections on Riemannian or non-Riemannian manifolds has been an active field over
the past seven decades. In particular, since the formidable papers [1, 3, 4, 11, 13] were published in succession,
these works stimulate such research fields to present a scene of prosperity, and demonstrate the abnormal
importance of this topic. We have made some attempts in this field and obtained some results, see [6, 14].

In order to study sub-Riemannian geometry from the point of theory of transformation, we need to define an
analogue of the Levi-Civita connection. Because of no metric defined on the entire tangent bundle, A.Bejauce
defined a new sub-Riemannian connection in [2] and discussed the corresponding geometry that is very similar
to Riemannian geometry, which motivate us to replace the non-holonomic connection in [6] by this new sub-
Riemannian connection.

In this paper, we, based on the work by A.Bejauce [2], following the ideas of D.K.Sen and ].R.Vanstone
in [10], consider the nearly sub-Lyra manifold and the nearly sub-Weyl manifold by virtue of a SNS-non-
metric connection(defined below) in nearly sub-Riemannian manifolds, in contrast to our former papers, a
non-holonomic connection(i.e. the projection of Riemannian connection on horizontal distribution) will be
replaced by a horizontal sub-Riemannian connection.

The organization of this paper is as follows. In section 2, we will recall and give some necessary notations and
terminologies about horizontal sub-Riemannian connection and nearly sub-Riemannian manifolds. Section 3
and Section 4 are concentrated on the sub-Weyl and sub-Lyra’s geometries. Section 5 is devoted to the SNS-
non-metric connection and its geometric characteristic. An example is given in the last section.
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2. Preliminaries

Let (M,Vy,g) be a n-dimensional sub-Riemannian manifold, in particular, when V, = TM, then M is
degenerated into a Riemanian manifold and hence there are no abnormal geodesics(see [8] for details). Without
loss of generality, we assume V; # T'M, if Vj is strongly bracket generating, then there does not exist non-trivial
abnormal geodesics (see [9]). In order to study the sub-Riemannian geometry, we suppose that there exists a
complementary distribution V; to V; in the tangent bundle T'M of M. We note that V; exists on any paracompact
sub- Riemannian manifold. Indeed, in this case, there exists a Riemannian metric g* on M and V; is taken as
the complementary orthogonal distribution to V; in 7'M, with respect to ¢*. If not stated otherwise, we suppose
that V7 is an integrable distribution on M.

Throughout the paper, we denote by F (M) the set of smooth functions on M, I'(Vy) the C>°(M) -module
of smooth sections on V; ,and X,Y, Z,--- the vector fields in I'(T'M), X, the projection of X on Vj, X; the
projection of X on V;. The repeated indices with one upper index and one lower index indicates summation
over their range. We use the following ranges for indices: ¢, j, k, h,--- € {1,--- £}, o, B,--- € {{+1,--- ,n}.

We define a 3-multilinear mapping by

Q:T (Vo) xT'(Vp) x T'(V1) = F(M)
(X0, Yo, Z1) = Z19(Xo, Yo) — 9([Z1, Xo]o, Yo) — 9([Z1, Yoo, Xo),

It is easy to check Q is a tensor field by a direct computation.

Definition 2.1. We say that a sub-Riemannian manifold (A, V4, g) is a nearly sub-Riemannian manifold if the
tensor field 2 vanishes identically on M.

Theorem 2.1. [2] Given a nearly sub-Riemannian manifold (M, Vy, g), then there exists a unique linear connection
V :I(TM) x T'(Vy) — I'(Vp) satisfying

(Vz9)(Xo,Yo) = Z(9(Xo, Yo)) — 9(VzXo, Yo) — 9(Xo, VzYo) =0, (2.1)

T(X,Yy) = VxYy — Vy, Xo — [X,Y)]o = 0. (2.2)

It is not hard to derive that the connection determined by Equation (2.1) and (2.2) is of the form

29(Vx,Y0,2Z0) = Xog(Yo,Zo) + Yog(Zo, Xo) — Zog(Xo, Yo)
+ g([XOa Yb]o: ZO) - g(D/Oa ZO]Oa XO) + g([Z07 X0]07 Yb)a
Vz.Xo = [Z1,X0o,

Its torsion is defined by

T :T(TM) x T'(Vy) — I['(Vy)
T(X,Ys) = Vx Yo — Vy, Xo — [X, Yoo

By Theorem 2.1, we know
T(X1,Y0) = Vx, Yo — [X1,Y0]o =0,
so (2.2) is equivalent to
T(Xo,Ys) = Vx,Yo — Vy, Xo — [Xo, Yo]o = 0. (2.3)

Definition 2.2. A linear connection satisfying (2.1) and (2.2)(or (2.3)) is called a horizontal sub-Riemannian
connection, in briefly, a HSR-connection.

Next we consider the curvature tensor R of V:

R:T(TM) x T(TM) x T(Vy) — T(V)
R(X,Y, Zy) = VxVyZy — VxVyZy — Vx,y) 20,

Hereafter we call R the horizontal curvature tensor because of R(X,Y, Zy) € T'(Vp).
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Now we consider the local coordinate (2%, 2%), such that (9/0x¢,--- ,8/02™) is a local basis for V; and V; is
locally given by the Pfaff system
Sz = da® + A¢dx’,

where AY are smooth functions locally defined on M. Thus

0
T Ot

o 0

L oz’

€;
form a local basis of Vy. We call (2%, 2) and (e;, d/0z*) an adapted coordinate system and an adapted frame

field on M induced by the foliation determined by V;. Then by a direct calculation, we obtain

i) _ 993
dre’  dxv’

Q(ei, €j7

where g;; = g(e;, ;) is the local component of the Riemannian metric g on Vp, so the sub-Riemannian manifold

(M, Vy, g) is a nearly sub-Riemannian manifold if and only if giﬂ{ = 0, namely, g;; is independent of z*. We

denote by

Vee;=Vie; = {fj}ek,val%ej =Vae; = {’;j}ek7R(ei,ej,ek) = R?jkeh,
o 0

0
A Do’ 3> )

_ ph
oz’ = Raﬁkehy

€j,e) = jokeh,R(

According to Theorem 2.1, we obtain

1 0g9in ~ O0gjn 0gij
kv _ L kh jh iy k1
{7]} - 29 ( OrJ + ort a.’L‘h )7 {O/]} 07
and
R?jk = 62({?k}) - @j({?k )+ {jk}{?e} - {zek}{?e}v Rij =0, RZﬁk =0. (24)

Denote by R;jrn = Rﬁjkgzh, Ry, = Rijkhgjh, we further have

Rijkn = —Rijnk = —Rjikn,
Rijin = Rinij,

Rijkn + Rjkin + Riijn = 0,
Rijrin + Rijing + Rijne,y = 0,

2.5)

where R;jin = (ViR)(ei, €5, ek, e;) is the covariant derivative of R with respect to ey, (see [2]).

3. A nearly sub-Weyl manifold

Weyl’s idea provides an instructive example of non-Riemannian connections, further G.B.Folland [5] had
given a global formulation of Weyl manifolds thereby clarifying considerably many of Weyl’s basic ideas.
Based on these facts, we, in this subsection, aim at the geometries of the nearly sub-Riemannian manifold
equipped with a Weyl structure.

Theorem 3.1. (Existence) Given a nearly sub-Riemannian manifold (M, Vy, g) and a 1-form o, then there exists a unique
connection V : T(TM) x T'(Vy) — (V) on M such that

(?Zg (XOaYE)) = _SD(AZ)Q(X()’YO): (3.1)
T(X,Yo) = VxYo — Vs Xo — [X, Yolo = 0. '

Proof. From the second equation of (3.1), one can derive the connection V is necessarily of the form,

Vx, Yo = [X1, Yolo.
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And (3.1) implies

9(V 2,Xo0,Y0) = Zo(9(Xo, Yo)) — 9(Xo, Vy, Zo) — 9(Xo, [Zo, Yolo) — ©(X0)9(Zo, Yo), (3.2)

By cyclic permutation of X, Y, Z, one obtains another two equations (3.2) and (3.2”), if we add (3.2") and (3.2”),
and subtract (3.2), one gets

29(Vx,Yo0,Z0) = Xol9(Yo,Z0)) + Yo(9(Zo, Xo)) — Zo(9(Xo, Vo))
+9([Xo, Yolo, Zo) — 9([Yo. Zolo, Xo) + 9([Zo, Xo]o, Yo)
+¢(X0)9(Zo, Yo) + ¢(Y0)9(Zo, Xo) — ¢(Zo)g(Xo, Yo),

Since g is non-degenerate on horizontal distribution 1}, it defines \v/ X, Yo uniquely as follows,

{@XUYO = Vx,Yo + 3(9(Xo0)Yo + ¢(Y0) Xo — 9(Xo, Yo) P) (33)

Vx, Yo = [X1, Yolo,

where P is a horizontal vector field defined by ¢(Xy, P) = ¢(Xo).

Conversely, the connection defined by (3.3) satisfies necessarily (3.1). Therefore, (3.3) define uniquely the
connection.

This completes the proof. O

Definition 3.1. A connection is said to be a nearly sub-Weyl connection, or a nearly sub-Weyl transformation
from the point of transformation’s theory, if it satisfies (3.3). A nearly sub-Riemannian manifold (M, Vs, g) is
said to be a nearly sub-Weyl manifold denoted by (M, V;, g, ¢), if M admits a nearly sub-Weyl connection.

According to Theorem 3.1, a nearly sub-Weyl connection is uniquely determined by the sub-Riemannian
metric g and a 1-form ¢. In our adapted coordinates, the coefficients of nearly sub-Weyl connection are given

by
~ 1 ~
Ll = {i} + 5(0i5 + 0307 = ¢*35), T = 0, (3.4)

where ¢; = ¢(e;) and ¢* = p;¢**. Such a connection is called a nearly Weyl transformation from the point of
transformation theory.

Definition 3.2. An absolutely continuous curve « : * = z%(t) is said to be a horizontal invariant curve if it
satisfies V+490 = «a(t)jo, where t is any parameter and «(t) is a function related to ~. In particular, v is called a
sub-Riemannian parallel curve(in short, a SR-parallel curve) if V4o = 0.

Remark 3.1. It is obvious that a SR-parallel curve is necessarily a horizontal invariant curve. In contrast to the
path that Jiao and Zhao defined in [14], the horizontal invariant curve is not necessarily a horizontal curve(i.e.
¥ € Vp). On the other hand, this kind of SR-parallel curve is exactly a Riemannian geodesic when the horizontal
bundle is the whole tangent bundle.
Remark 3.2. The image curve of a a horizontal invariant curve with respect to the HSR-connection is not a
horizontal invariant curve with respect to the nearly sub-Weyl connection any more under a nearly sub-Weyl
transformation.
In fact, for an absolutely continuous curve v : 2% = z(t) with tangent vector

. dat 9 dx™ 0 da’ o de®  dz® 9

= wor T o @ TN T o
If v : 2% = 2*(t) is a horizontal invariant curve with respect to the HSR-connection, then it satisfies the equation
V+d0 = at)yo , namely

Vi = Viedo + Vi, Y = a(t)o,
Next we compute the second term V., . According to the definition of HSR-connection, one has
Vido = [¥1,%0lo
S (TS R
—oNar T dt Yoxe at

odzt  dz™ 9 dit dz’ odzt  dz™. 0
= M e g e~ ar Wi g + i ) g
odat  dx® dxt D, 5 O
HAT G+ ) @ aee A ) g o
= 0.
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in the adapted frame system, we derive the equations of horizontal invariant curve with respect to the HSR-
connection

d2ak gy dat da? ; dz*
az i g =W
Now we substitute (3.4) into Equation (3.5), then one gets

(3.5)

d?a* Y dz® dx’ n 1 . ”dxi dx? —B(t)dmk

a? e e 2Y g e T dt

Then, v is not a horizontal invariant curve with respect to the nearly sub-Weyl connection. Hence the proof is
finished.

4. A nearly sub-Lyra manifold

G.Lyra [7] suggested a modification of Riemannian geometry which bears a remarkable resemblance to

Weyl’s geometry. According to Lyra’s ideas, the vector W between two neighbouring points P(z®) and
P'(z* + dz*) has the components £* = 2%dz“, where 2°(z?) is a gauge function. The adapted coordinate system
(z) together with the gauge z° form a local adapted reference system (z°; 2%) which induces a local natural
basis {&; = J 2 }. We apply this idea into our sub-Riemannian geometry. We assume g be a natural extension
of sub-Riemannian metric g such that V) = span{% 2i=1,2,--- ¢}, Vi = span{ 8;; ca={4+1,---,n}, where
x¢ is independent of z¢, then {¢; = I% 8‘;,;} form the local reference vector fields of V;, and the Lie bracket of
any two vector fields in local reference vector fields,

[i, &1 = 5 6% — 965 )ér,
where ¢? = 22 (% ). If we denote the components of the sub-Riemannian metric tensor g, in a local reference
system, by

gij = 9(&i, €j),
then the metric form is o
ds® = (2%)?g;;dx"da?
Theorem 4.1. (Existence) Given a nearly sub-Riemannian manifold (M, Vy, g) and a 1-form ¢ with ¢(X1) = 0, then
Then there exists a unique connection V : T'(T M) x I'(Vy) — I'(Vo) on M such that

{Nzg)(XmYo) —0,

. - - 4.1
T(X,Yy) = VxYy — Vy, Xo — [X, Yoo = 3(¢(Y0) X0 — ¢(X)Y0). *D

Proof. By the same method as Theorem 3.1, one can obtain an unique connection determined by Equations
(4.1),

VixoYo = Vx, Yo + 5(6(¥0) Xo — 9(X0,Y0)Q), 42)
Vx, Yo = [X1, Yoo
where @ is a horizontal vector field defined by g(Xy, Q) = ¢(Xo). O

Definition 4.1. A connection is called a nearly sub-Lyra connection if it satisfies (4.2), or a nearly sub-Lyra
transformation from the point of transformation’s theory. A nearly sub-Riemannian manifold (M, Vy, g) is said
to be a nearly sub-Lyra manifold denoted by (M, V4, g, ¢), if M admits a nearly sub-Lyra connection.

Theorem 4.1 implies, a nearly sub-Riemannian manifold is turned out to be a nearly sub-Lyra manifold under
a nearly sub-Lyra transformation.
For an absolutely continuous curve v : * = z%(t),t € [0, 1], we define the horizontal length of y by

1
LO(V)Z/O vV 9(50,F0)dt,

and
do(p, q) = inf{Lo(v) : v is an absolutely curve with v(0) = p,y(1) = ¢},

A horizontal length minimizer is a curve that realizes the distance dy(p, ¢).
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Theorem 4.2. Let (M, Vy, g, ¢) be a nearly sub-Lyra manifold, then a SR-parallel curve is actually a minimizer of the
horizontal length functional.

Proof. Now we take X = ¢&;, Y, = é;, Zy = €, in Equation (4.2) and denote the coefficients by @e;. € = f‘fj €r, We
then arrive at

fszl,o it 5l ¢z5k ®Fgij), Th =0, (4.3)

where ¢; = ¢(é;) + ¢7, ¢* = ¢ig™*.
Since a horizontal length minimizer is defined by the extremal curves of the problem in the calculus of
variations:

dxt dxj

ds _5/ Vou gy @t at

where s is the arc-length and ¢ is an arbltrary parameter, the Lagrangian

dxt dxd _ds
L2k i* 1) — as
(2%, 2%.1) @090 dt dt ~ at’
then
OL 1 0 dzt da?
ozk 28wk{( Vi g dt ds’
d oL, D ., oo dztdx’ one  d*ad ds
S = @] o T () S

and hence the Euler-Lagrange equations are equivalent to

d oL oL ., oo dztda’ one  d%ad dz® dx’
dt(aj:k) oxk =0 ozt [(=7) g ds ds @) 0k ds? 2833’“{( o 9} g ds ds
d?z7 0x” Ogr; . dx’ dx?
2 0 i . 0)2 ] hatadietedi
- ( )gkjd2+(malgkj+(x) 82)(18 dS
Oax oz dz? dx’ 1(x )2691j dz? dx’
ok ds ds oxk ds ds
d?z7 6x0 det dxd 1 Ogr;  Ogp; . dx’ dx?
0y2g, LT | 9, 00F o AT QT p0y2(Z9ks iy G ax”
< (x)ngdQ +ar ozt I%i"as “ds 2(3:) <8xl axﬂ)ds ds
Oax dz® dx’ l(w )2 5 0gij da’ da’
3xk 91 ds ds oxk ds ds
Iki™ 52 3:0 8xi gk] 028997 4s "ds
1.0gxj | Ogri  gij da’ da?

"3 00 Y 0w o0 s ds
N d?a! +i{267‘73() , ozY }dx dx Y da’ da?
ds? | 20V pgi IR T gk TS qs s Y s ds
d?a! 0 o 1. 4 o, 1. 4 0,1 dz’ dx’
& g T U (e~ g )+ g (o )9ud g gy
1 dxidij —
ds ds
d?z* padrtdrd 2 oo o 0 dz' dz?
& g Tl gy T R el = (00 )T = 0
In particular, if we choose the normal gauge 2° = 1, then we have
d*a* g dzt dx?
O G 4.4
ds? {5 ds ds 0 “4)
This completes the proof. O
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Remark 4.1. Let (M, Vy, g, ¢) be a nearly sub-Lyra manifold, if v(s) whose horizontal tangent vector field is

4o = 2° ‘fiiiéi is a SR-parallel curve with respect to the nearly sub-Lyra connection, then it satisfies Vo = 0, i.e.

S

22k dat dad

eyt det dxd 20 dz’ @
ds U ds ds

o T (b — A0
ds ds 2((ZSZ (bl)ds ds

0
x

+ ?(QZSZ(S;C + ¢J51k - ¢kgij) (45)

where s is arc-length parameter. By comparing Equation(4.4) with Equation(4.5), one obtains that a SR-parallel

curve with respect to the nearly sub-Lyra connection does not coincide with the horizontal length minimizer

associated with the metric.

5. A geometric characterization of a SNS-non-metric connection

In this subsection, we will considered a class of non-symmetric connection, in briefly, a SNS-non-metric
connection, and give a geometric property of a SNS-non-metric connection.

Definition 5.1. Let (M, Vp, g) be a nearly sub-Riemannian manifold, a linear connection D : I'(T'M) x I'(Vy) —
I'(Vp) is said to be a semi-symmetric non-metric connection, in briefly, a SNS-non-metric connection, if it
satisfies

(Dzg)(Xo,Yo) = —m(Xo0)g(Yo, Zo) — 7(¥0)g(Xo, Zo), (5.1)
TD(X7 Yo) = W(YO)XO - W(X)Y(L
where 7 is a 1-form.
One can derive that Equations (5.1) determined uniquely a SNS-non-metric connection,
29(Dx,Y0,20) = Xo(9(Yo, Zo)) + Yo(9(Zo, Xo)) — Zo(9(Xo,Y0)) + 9([Xo, Yolo, Zo)
= —9([¥o, Zolo, Xo0) + 9([Zo, Xolo, Yo) + 27(Y0)9(Xo, Zo),
Dx,Yo = [X1,Y0o,
namely,
Dx,Yo = Vx, Yy + 7(Yy)Xo, Dx, Yo = [X1, Yolo. (5.2)
in our adapted frame system, it can be rewritten by
DY = {§} + m;6;, D, = 0. (5.3)

Definition 5.2. For two classes of SNS-non-metric connection D; and Dy, let T'; and I's be their symmetrization
of connection coefficients, if the horizontal invariant curve associated with D; corresponds always to that
associated with D,, then we say D; is a SR-projective transformation of Dy(or, D, is a SR-projective
transformation of D).

Theorem 5.1. The SNS-non-metric connection (5.2) is essentially a SR-projective transformation.

Proof. We denote the symmetrization of connection coefficients of (5.2) by Dj;, then
DF, + D¥

_ 1
5= == {5+ 5 (mdy + ), (54)

If v : 2 = 2%(t) is a horizontal invariant curve associated with the HSR-connection, then it satisfies Equations
(5.2), one can obtain by substituting Equations (5.4) into Equations (5.2),

A2z _ . dzt dz? dxF
prddrl g dat
dt? 2 dt dt B(t) dt

(5.5)

where 5(t) = a(t) + mdd—f.

The converse statement is also true by simple computation, which means a horizontal invariant curve
associated with the SR-connection corresponds that with respect to the SNS-non-metric connection, and hence
the proof is finished. O
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Theorem 5.2. A connection transformation between a nearly sub-Weyl manifold and a nearly sub-Lyra manifold keeps
the horizontal invariant curves unchanged.

Proof. In alocal reference system with the normal gauge z° = 1, by comparing the nearly sub-Weyl connection
(3.4) with the nearly sub-Lyra connection (4.3), one has

~ A 1
k _ 1k k

if we choose the 1-form ¢ in the nearly sub-Lyra connection (4.3) is exactly the 1-form ¢ in the nearly sub-Weyl
connection (3.4). Therefore the proof follows from Theorem 5.1. O

At the end of this paper, we give a decomposition of a SNS-non-metric connection.

Theorem 5.3. A SNS-non-metric connection always decompose into a nearly sub-Weyl connection and a nearly sub-Lyra
connection.

Proof. In alocal reference system with the normal gauge z° = 1, by comparing the nearly sub-Weyl connection
(3.4) and the nearly sub-Lyra connection (4.3) with the SNS-non-metric connection (5.3), one has

1 1
= [i{fj} + (m6F + mok — 7)) + [i{fj} + (=mi8) + 7 gi;)]

1 1 1
{1+ 5(479—5{“ + 4m;6F — Amh i) + 5[{%} + 5((*2%‘)5;? — (—27%)gi;)]

This finishes the proof. O

6. Examples

Example 6.1. (Almost contact metric manifold)

Let M be a (2n + 1)-dimensional almost contact manifold endowed with an almost contact strucuture
(p,&,m), where pis a (1, 1)-tensor field, £ is a vector field and 7 is a 1-form such that

' =—T+n@&nE) =1
If the Riemannian metric g satisfies
9(X,9Y) = —g(¢X,Y), 9(X, &) = n(§).

then (¢, £, n, g) is called an almost contact metric structure and M is called an almost contact metric manifold.
Now we define a linear connection on such manifold

VxY =VxY +75(Y)X,
where V is the levi-Civita connection associated with Riemannian metric g, then we obtain
T(X,Y)=n(Y)X —nX)Y,a = —n&1.

which shows that V is a semi-symmetric non-metric connection.
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