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ABSTRACT

The authors introduce a nearly sub-Weyl and a nearly sub-Lyra manifold by virtue of a SNS-non-
metric connection(defined below) in nearly sub-Riemannian manifolds. In particular, we show a
SR-parallel curve associated with the nearly sub-Lyra connection is actually a minimizer of the
horizontal length functional. A geometric characteristic of a SNS-non-metric connection is given
in the last section.
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1. Introduction

H.Weyl [12] introduced a generalization of Riemannian geometry in order to formulate a unified field theory.
Weyl’s theory provides an instructive example of non-Riemannian connection. It is well known that a Weyl
connection is actually a torsion-free but non-metric connection, namely the so-called symmetric non-metric
connection in transformation’s theory. In 1951 G.Lyra [7] suggested a semi-symmetric metric connection and
introduced the notion of "gauge", which made it possible to construct a geometrized theory of gravitation and
electromagnetism along the lines of Weyl theory.

The study of various connections on Riemannian or non-Riemannian manifolds has been an active field over
the past seven decades. In particular, since the formidable papers [1, 3, 4, 11, 13] were published in succession,
these works stimulate such research fields to present a scene of prosperity, and demonstrate the abnormal
importance of this topic. We have made some attempts in this field and obtained some results, see [6, 14].

In order to study sub-Riemannian geometry from the point of theory of transformation, we need to define an
analogue of the Levi-Civita connection. Because of no metric defined on the entire tangent bundle, A.Bejauce
defined a new sub-Riemannian connection in [2] and discussed the corresponding geometry that is very similar
to Riemannian geometry, which motivate us to replace the non-holonomic connection in [6] by this new sub-
Riemannian connection.

In this paper, we, based on the work by A.Bejauce [2], following the ideas of D.K.Sen and J.R.Vanstone
in [10], consider the nearly sub-Lyra manifold and the nearly sub-Weyl manifold by virtue of a SNS-non-
metric connection(defined below) in nearly sub-Riemannian manifolds, in contrast to our former papers, a
non-holonomic connection(i.e. the projection of Riemannian connection on horizontal distribution) will be
replaced by a horizontal sub-Riemannian connection.

The organization of this paper is as follows. In section 2, we will recall and give some necessary notations and
terminologies about horizontal sub-Riemannian connection and nearly sub-Riemannian manifolds. Section 3
and Section 4 are concentrated on the sub-Weyl and sub-Lyra’s geometries. Section 5 is devoted to the SNS-
non-metric connection and its geometric characteristic. An example is given in the last section.
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2. Preliminaries

Let (M,V0, g) be a n-dimensional sub-Riemannian manifold, in particular, when V0 = TM , then M is
degenerated into a Riemanian manifold and hence there are no abnormal geodesics(see [8] for details). Without
loss of generality, we assume V0 6= TM , if V0 is strongly bracket generating, then there does not exist non-trivial
abnormal geodesics (see [9]). In order to study the sub-Riemannian geometry, we suppose that there exists a
complementary distribution V1 to V0 in the tangent bundle TM ofM . We note that V1 exists on any paracompact
sub- Riemannian manifold. Indeed, in this case, there exists a Riemannian metric g∗ on M and V1 is taken as
the complementary orthogonal distribution to V0 in TM , with respect to g∗. If not stated otherwise, we suppose
that V1 is an integrable distribution on M .

Throughout the paper, we denote by F (M) the set of smooth functions on M , Γ(V0) the C∞(M) -module
of smooth sections on V0 ,and X,Y, Z, · · · the vector fields in Γ(TM), X0 the projection of X on V0, X1 the
projection of X on V1. The repeated indices with one upper index and one lower index indicates summation
over their range. We use the following ranges for indices: i, j, k, h, · · · ∈ {1, · · · , `}, α, β, · · · ∈ {`+ 1, · · · , n}.

We define a 3-multilinear mapping by

Ω : Γ(V0)× Γ(V0)× Γ(V1)→ F (M)

Ω(X0, Y0, Z1) = Z1g(X0, Y0)− g([Z1, X0]0, Y0)− g([Z1, Y0]0, X0),

It is easy to check Ω is a tensor field by a direct computation.

Definition 2.1. We say that a sub-Riemannian manifold (M,V0, g) is a nearly sub-Riemannian manifold if the
tensor field Ω vanishes identically on M .

Theorem 2.1. [2] Given a nearly sub-Riemannian manifold (M,V0, g), then there exists a unique linear connection
∇ : Γ(TM)× Γ(V0)→ Γ(V0) satisfying

(∇Zg)(X0, Y0) = Z(g(X0, Y0))− g(∇ZX0, Y0)− g(X0,∇ZY0) = 0, (2.1)

T (X,Y0) = ∇XY0 −∇Y0
X0 − [X,Y0]0 = 0. (2.2)

It is not hard to derive that the connection determined by Equation (2.1) and (2.2) is of the form

2g(∇X0
Y0, Z0) = X0g(Y0, Z0) + Y0g(Z0, X0)− Z0g(X0, Y0)

+ g([X0, Y0]0, Z0)− g([Y0, Z0]0, X0) + g([Z0, X0]0, Y0),

∇Z1
X0 = [Z1, X0]0,

Its torsion is defined by

T : Γ(TM)× Γ(V0)→ Γ(V0)

T (X,Y0) = ∇XY0 −∇Y0X0 − [X,Y0]0

By Theorem 2.1, we know

T (X1, Y0) = ∇X1
Y0 − [X1, Y0]0 = 0,

so (2.2) is equivalent to

T (X0, Y0) = ∇X0Y0 −∇Y0X0 − [X0, Y0]0 = 0. (2.3)

Definition 2.2. A linear connection satisfying (2.1) and (2.2)(or (2.3)) is called a horizontal sub-Riemannian
connection, in briefly, a HSR-connection.

Next we consider the curvature tensor R of ∇:

R : Γ(TM)× Γ(TM)× Γ(V0)→ Γ(V0)

R(X,Y, Z0) = ∇X∇Y Z0 −∇X∇Y Z0 −∇[X,Y ]Z0,

Hereafter we call R the horizontal curvature tensor because of R(X,Y, Z0) ∈ Γ(V0).
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Now we consider the local coordinate (xi, xα), such that (∂/∂x`, · · · , ∂/∂xn) is a local basis for V1 and V0 is
locally given by the Pfaff system

δxα = dxα +Aαi dx
i,

where Aαi are smooth functions locally defined on M . Thus

ei =
∂

∂xi
−Aαi

∂

∂xα
,

form a local basis of V0. We call (xi, xα) and (ei, ∂/∂x
α) an adapted coordinate system and an adapted frame

field on M induced by the foliation determined by V1. Then by a direct calculation, we obtain

Ω(ei, ej ,
∂

∂xα
) =

∂gij
∂xα

,

where gij = g(ei, ej) is the local component of the Riemannian metric g on V0, so the sub-Riemannian manifold
(M,V0, g) is a nearly sub-Riemannian manifold if and only if ∂gij

∂xα = 0, namely, gij is independent of xα. We
denote by

∇eiej = ∇iej = {kij}ek,∇ ∂
∂xα

ej = ∇αej = {kαj}ek, R(ei, ej , ek) = Rhijkeh,

R(
∂

∂xα
, ej , ek) = Rhαjkeh, R(

∂

∂xα
,
∂

∂xβ
, ek) = Rhαβkeh,

According to Theorem 2.1, we obtain

{kij} =
1

2
gkh(

∂gih
∂xj

+
∂gjh
∂xi

− ∂gij
∂xh

), {kαj} = 0,

and
Rhijk = ei({hjk})− ej({hik}) + {ejk}{hie} − {eik}{hje}, Rhαjk = 0, Rhαβk = 0. (2.4)

Denote by Rijkh = Rlijkglh, Rik = Rijkhg
jh, we further have

Rijkh = −Rijhk = −Rjikh,
Rijkh = Rkhij ,

Rijkh +Rjkih +Rkijh = 0,

Rijkl,h +Rijlh,k +Rijhk,l = 0,

(2.5)

where Rijkl,h = (∇hR)(ei, ej , ek, el) is the covariant derivative of R with respect to eh (see [2]).

3. A nearly sub-Weyl manifold

Weyl’s idea provides an instructive example of non-Riemannian connections, further G.B.Folland [5] had
given a global formulation of Weyl manifolds thereby clarifying considerably many of Weyl’s basic ideas.
Based on these facts, we, in this subsection, aim at the geometries of the nearly sub-Riemannian manifold
equipped with a Weyl structure.

Theorem 3.1. (Existence) Given a nearly sub-Riemannian manifold (M,V0, g) and a 1-form ϕ, then there exists a unique
connection ∇̂ : Γ(TM)× Γ(V0)→ Γ(V0) on M such that{

(∇̂Zg)(X0, Y0) = −ϕ(Z)g(X0, Y0),

T̂ (X,Y0) = ∇̂XY0 − ∇̂Y0
X0 − [X,Y0]0 = 0.

(3.1)

Proof. From the second equation of (3.1), one can derive the connection ∇̂ is necessarily of the form,

∇̂X1
Y0 = [X1, Y0]0.
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And (3.1) implies

g(∇̂Z0
X0, Y0) = Z0(g(X0, Y0))− g(X0, ∇̂Y0

Z0)− g(X0, [Z0, Y0]0)− ϕ(X0)g(Z0, Y0), (3.2)

By cyclic permutation of X,Y, Z, one obtains another two equations (3.2’) and (3.2”), if we add (3.2’) and (3.2”),
and subtract (3.2), one gets

2g(∇̂X0
Y0, Z0) = X0(g(Y0, Z0)) + Y0(g(Z0, X0))− Z0(g(X0, Y0))

+g([X0, Y0]0, Z0)− g([Y0, Z0]0, X0) + g([Z0, X0]0, Y0)

+ϕ(X0)g(Z0, Y0) + ϕ(Y0)g(Z0, X0)− ϕ(Z0)g(X0, Y0),

Since g is non-degenerate on horizontal distribution V0, it defines ∇̂X0
Y0 uniquely as follows,{

∇̂X0
Y0 = ∇X0

Y0 + 1
2 (ϕ(X0)Y0 + ϕ(Y0)X0 − g(X0, Y0)P )

∇̂X1
Y0 = [X1, Y0]0,

(3.3)

where P is a horizontal vector field defined by g(X0, P ) = ϕ(X0).
Conversely, the connection defined by (3.3) satisfies necessarily (3.1). Therefore, (3.3) define uniquely the

connection.
This completes the proof.

Definition 3.1. A connection is said to be a nearly sub-Weyl connection, or a nearly sub-Weyl transformation
from the point of transformation’s theory, if it satisfies (3.3). A nearly sub-Riemannian manifold (M,V0, g) is
said to be a nearly sub-Weyl manifold denoted by (M,V0, g, ϕ), if M admits a nearly sub-Weyl connection.

According to Theorem 3.1, a nearly sub-Weyl connection is uniquely determined by the sub-Riemannian
metric g and a 1-form ϕ. In our adapted coordinates, the coefficients of nearly sub-Weyl connection are given
by

Γ̂kij = {kij}+
1

2
(ϕiδ

k
j + ϕjδ

k
i − ϕkgij), Γ̂kαj = 0, (3.4)

where ϕi = ϕ(ei) and ϕk = ϕig
ik. Such a connection is called a nearly Weyl transformation from the point of

transformation theory.

Definition 3.2. An absolutely continuous curve γ : xa = xa(t) is said to be a horizontal invariant curve if it
satisfies ∇γ̇ γ̇0 = α(t)γ̇0, where t is any parameter and α(t) is a function related to γ. In particular, γ is called a
sub-Riemannian parallel curve(in short, a SR-parallel curve) if ∇γ̇ γ̇0 = 0.

Remark 3.1. It is obvious that a SR-parallel curve is necessarily a horizontal invariant curve. In contrast to the
path that Jiao and Zhao defined in [14], the horizontal invariant curve is not necessarily a horizontal curve(i.e.
γ̇ ∈ V0). On the other hand, this kind of SR-parallel curve is exactly a Riemannian geodesic when the horizontal
bundle is the whole tangent bundle.
Remark 3.2. The image curve of a a horizontal invariant curve with respect to the HSR-connection is not a
horizontal invariant curve with respect to the nearly sub-Weyl connection any more under a nearly sub-Weyl
transformation.

In fact, for an absolutely continuous curve γ : xa = xa(t) with tangent vector

γ̇ =
dxi

dt

∂

∂xi
+
dxα

dt

∂

∂xα
=
dxi

dt
ei + (Aαi

dxi

dt
+
dxα

dt
)
∂

∂xα
,

If γ : xa = xa(t) is a horizontal invariant curve with respect to the HSR-connection, then it satisfies the equation
∇γ̇ γ̇0 = α(t)γ̇0 , namely

∇γ̇ γ̇0 = ∇γ̇0 γ̇0 +∇γ̇1 γ̇0 = α(t)γ̇0,

Next we compute the second term ∇γ̇1 γ̇0. According to the definition of HSR-connection, one has

∇γ̇1 γ̇0 = [γ̇1, γ̇0]0

= [(Aαi
dxi

dt
+
dxα

dt
)
∂

∂xα
,
dxi

dt
ei]0

= {(Aαi
dxi

dt
+
dxα

dt
)
∂

∂xα
(
dxi

dt
)ei −

dxi

dt
ei(A

α
i

dxi

dt
+
dxα

dt
)
∂

∂xα

+(Aαi
dxi

dt
+
dxα

dt
)
dxi

dt

∂

∂xα
(Aβi )

∂

∂xβ
}0

= 0.
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in the adapted frame system, we derive the equations of horizontal invariant curve with respect to the HSR-
connection

d2xk

dt2
+ {kij}

dxi

dt

dxj

dt
= α(t)

dxk

dt
. (3.5)

Now we substitute (3.4) into Equation (3.5), then one gets

d2xk

dt2
+ Γ̂kij

dxi

dt

dxj

dt
+

1

2
ϕkgij

dxi

dt

dxj

dt
= β(t)

dxk

dt
.

Then, γ is not a horizontal invariant curve with respect to the nearly sub-Weyl connection. Hence the proof is
finished.

4. A nearly sub-Lyra manifold

G.Lyra [7] suggested a modification of Riemannian geometry which bears a remarkable resemblance to
Weyl’s geometry. According to Lyra’s ideas, the vector

−−→
PP ′ between two neighbouring points P (xa) and

P ′(xa + dxa) has the components ξa = x0dxa, where x0(xi) is a gauge function. The adapted coordinate system
(xa) together with the gauge x0 form a local adapted reference system (x0;xa) which induces a local natural
basis {ẽi = 1

x0
∂
∂xi }. We apply this idea into our sub-Riemannian geometry. We assume g̃ be a natural extension

of sub-Riemannian metric g such that V0 = span{ ∂
∂xi : i = 1, 2, · · · , `}, V1 = span{ ∂

∂xα : α = `+ 1, · · · , n}, where
x0 is independent of xα, then {ẽi = 1

x0
∂
∂xi } form the local reference vector fields of V0, and the Lie bracket of

any two vector fields in local reference vector fields,

[ẽi, ẽj ] =
1

2
(φ0i δ

k
j − φ0jδki )ẽk,

where φ0i = 2 ∂
∂xi (

1
x0 ). If we denote the components of the sub-Riemannian metric tensor g, in a local reference

system, by
gij = g(ẽi, ẽj),

then the metric form is
ds2 = (x0)2gijdx

idxj ,

Theorem 4.1. (Existence) Given a nearly sub-Riemannian manifold (M,V0, g) and a 1-form φ with φ(X1) = 0, then
Then there exists a unique connection ∇̃ : Γ(TM)× Γ(V0)→ Γ(V0) on M such that{

(∇̃Zg)(X0, Y0) = 0,

T̃ (X,Y0) = ∇̃XY0 − ∇̃Y0
X0 − [X,Y0]0 = 1

2 (φ(Y0)X0 − φ(X)Y0).
(4.1)

Proof. By the same method as Theorem 3.1, one can obtain an unique connection determined by Equations
(4.1), {

∇̃X0Y0 = ∇X0Y0 + 1
2 (φ(Y0)X0 − g(X0, Y0)Q),

∇̃X1Y0 = [X1, Y0]0.
(4.2)

where Q is a horizontal vector field defined by g(X0, Q) = φ(X0).

Definition 4.1. A connection is called a nearly sub-Lyra connection if it satisfies (4.2), or a nearly sub-Lyra
transformation from the point of transformation’s theory. A nearly sub-Riemannian manifold (M,V0, g) is said
to be a nearly sub-Lyra manifold denoted by (M,V0, g, φ), if M admits a nearly sub-Lyra connection.

Theorem 4.1 implies, a nearly sub-Riemannian manifold is turned out to be a nearly sub-Lyra manifold under
a nearly sub-Lyra transformation.

For an absolutely continuous curve γ : xa = xa(t), t ∈ [0, 1], we define the horizontal length of γ by

L0(γ) =

∫ 1

0

√
g(γ̇0, γ̇0)dt,

and
d0(p, q) = inf{L0(γ) : γ is an absolutely curve with γ(0) = p, γ(1) = q},

A horizontal length minimizer is a curve that realizes the distance d0(p, q).
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Theorem 4.2. Let (M,V0, g, φ) be a nearly sub-Lyra manifold, then a SR-parallel curve is actually a minimizer of the
horizontal length functional.

Proof. Now we take X0 = ẽi, Y0 = ẽj , Z0 = ẽk in Equation (4.2) and denote the coefficients by ∇̃ẽi ẽj = Γ̃kij ẽk, we
then arrive at

Γ̃kij =
1

x0
{kij}+

1

2
(φiδ

k
j − φkgij), Γ̃kαj = 0, (4.3)

where φi = φ(ẽi) + φ0i , φk = φig
ik.

Since a horizontal length minimizer is defined by the extremal curves of the problem in the calculus of
variations:

δ(

∫ 1

0

ds) = δ(

∫ 1

0

√
(x0)2gij

dxi

dt

dxj

dt
dt) = 0,

where s is the arc-length and t is an arbitrary parameter, the Lagrangian

L(xk, ẋk, t) =

√
(x0)2gij

dxi

dt

dxj

dt
=
ds

dt
,

then

∂L

∂xk
=

1

2

∂

∂xk
{(x0)2gij}

dxi

dt

dxj

ds
,

d

dt
(
∂L

∂ẋk
) = { ∂

∂xi
[(x0)2gkj ]

dxi

ds

dxj

ds
+ (x0)2gkj

d2xj

ds2
}ds
dt
.

and hence the Euler-Lagrange equations are equivalent to

d

dt
(
∂L

∂ẋk
)− ∂L

∂xk
= 0 ⇔ ∂

∂xi
[(x0)2gkj ]

dxi

ds

dxj

ds
+ (x0)2gkj

d2xj

ds2
=

1

2

∂

∂xk
{(x0)2gij}

dxi

ds

dxj

ds

⇔ (x0)2gkj
d2xj

ds2
+ (2x0

∂x0

∂xi
gkj + (x0)2

∂gkj
∂xi

)
dxi

ds

dxj

ds

= x0
∂x0

∂xk
gij
dxi

ds

dxj

ds
+

1

2
(x0)2

∂gij
∂xk

dxi

ds

dxj

ds

⇔ (x0)2gkj
d2xj

ds2
+ 2x0

∂x0

∂xi
gkj

dxi

ds

dxj

ds
+

1

2
(x0)2(

∂gkj
∂xi

+
∂gki
∂xj

)
dxi

ds

dxj

ds

= x0
∂x0

∂xk
gij
dxi

ds

dxj

ds
+

1

2
(x0)2

∂gij
∂xk

dxi

ds

dxj

ds

⇔ gkj
d2xj

ds2
+

1

x0
{2∂x

0

∂xi
gkj −

∂x0

∂xk
gij}

dxi

ds

dxj

ds

+
1

2
(
∂gkj
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

)
dxi

ds

dxj

ds
= 0

⇔ d2xl

ds2
+

1

x0
{2∂x

0

∂xi
gkj −

∂x0

∂xk
gij}

dxi

ds

dxj

ds
gkl + {lij}

dxi

ds

dxj

ds
= 0

⇔ d2xl

ds2
+ x0{− ∂

∂xi
(

1

x0
)δlj −

∂

∂xj
(

1

x0
)δli +

∂

∂xk
(

1

x0
)gijg

kl}dx
i

ds

dxj

ds

+{lij}
dxi

ds

dxj

ds
= 0

⇔ d2xk

ds2
+ {kij}

dxi

ds

dxj

ds
+
x0

2
(φ0i δ

k
j + φ0jδ

k
i − (φ0)kgij)

dxi

ds

dxj

ds
= 0.

In particular, if we choose the normal gauge x0 = 1, then we have

d2xk

ds2
+ {kij}

dxi

ds

dxj

ds
= 0. (4.4)

This completes the proof.
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Remark 4.1. Let (M,V0, g, φ) be a nearly sub-Lyra manifold, if γ(s) whose horizontal tangent vector field is
γ̇0 = x0 dx

i

ds ẽi is a SR-parallel curve with respect to the nearly sub-Lyra connection, then it satisfies ∇̃γ̇ γ̇0 = 0, i.e.

d2xk

ds
+ {kij}

dxi

ds

dxj

ds
+
x0

2
(φiδ

k
j + φjδ

k
i − φkgij)

dxi

ds

dxj

ds
=
x0

2
(φi − φ0i )

dxi

ds

dxk

ds
. (4.5)

where s is arc-length parameter. By comparing Equation(4.4) with Equation(4.5), one obtains that a SR-parallel
curve with respect to the nearly sub-Lyra connection does not coincide with the horizontal length minimizer
associated with the metric.

5. A geometric characterization of a SNS-non-metric connection

In this subsection, we will considered a class of non-symmetric connection, in briefly, a SNS-non-metric
connection, and give a geometric property of a SNS-non-metric connection.

Definition 5.1. Let (M,V0, g) be a nearly sub-Riemannian manifold, a linear connection D : Γ(TM)× Γ(V0)→
Γ(V0) is said to be a semi-symmetric non-metric connection, in briefly, a SNS-non-metric connection, if it
satisfies {

(DZg)(X0, Y0) = −π(X0)g(Y0, Z0)− π(Y0)g(X0, Z0),

TD(X,Y0) = π(Y0)X0 − π(X)Y0.
(5.1)

where π is a 1-form.

One can derive that Equations (5.1) determined uniquely a SNS-non-metric connection,

2g(DX0Y0, Z0) = X0(g(Y0, Z0)) + Y0(g(Z0, X0))− Z0(g(X0, Y0)) + g([X0, Y0]0, Z0)

= −g([Y0, Z0]0, X0) + g([Z0, X0]0, Y0) + 2π(Y0)g(X0, Z0),

DX1Y0 = [X1, Y0]0,

namely,
DX0

Y0 = ∇X0
Y0 + π(Y0)X0, DX1

Y0 = [X1, Y0]0. (5.2)

in our adapted frame system, it can be rewritten by

Dk
ij = {kij}+ πjδ

k
i , D

k
αj = 0. (5.3)

Definition 5.2. For two classes of SNS-non-metric connectionD1 andD2, let Γ̄1 and Γ̄2 be their symmetrization
of connection coefficients, if the horizontal invariant curve associated with D̄1 corresponds always to that
associated with D̄2, then we say D1 is a SR-projective transformation of D2(or, D2 is a SR-projective
transformation of D1).

Theorem 5.1. The SNS-non-metric connection (5.2) is essentially a SR-projective transformation.

Proof. We denote the symmetrization of connection coefficients of (5.2) by D̄k
ij , then

D̄k
ij =

Dk
ij +Dk

ji

2
= {kij}+

1

2
(πiδ

k
j + πjδ

k
i ), (5.4)

If γ : xa = xa(t) is a horizontal invariant curve associated with the HSR-connection, then it satisfies Equations
(5.2), one can obtain by substituting Equations (5.4) into Equations (5.2),

d2xk

dt2
+ D̄k

ij

dxi

dt

dxj

dt
= β(t)

dxk

dt
. (5.5)

where β(t) = α(t) + πi
dxi

dt .
The converse statement is also true by simple computation, which means a horizontal invariant curve

associated with the SR-connection corresponds that with respect to the SNS-non-metric connection, and hence
the proof is finished.
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Theorem 5.2. A connection transformation between a nearly sub-Weyl manifold and a nearly sub-Lyra manifold keeps
the horizontal invariant curves unchanged.

Proof. In a local reference system with the normal gauge x0 = 1, by comparing the nearly sub-Weyl connection
(3.4) with the nearly sub-Lyra connection (4.3), one has

Γ̃kij = Γ̂kij −
1

2
δki ϕj .

if we choose the 1-form φ in the nearly sub-Lyra connection (4.3) is exactly the 1-form ϕ in the nearly sub-Weyl
connection (3.4). Therefore the proof follows from Theorem 5.1.

At the end of this paper, we give a decomposition of a SNS-non-metric connection.

Theorem 5.3. A SNS-non-metric connection always decompose into a nearly sub-Weyl connection and a nearly sub-Lyra
connection.

Proof. In a local reference system with the normal gauge x0 = 1, by comparing the nearly sub-Weyl connection
(3.4) and the nearly sub-Lyra connection (4.3) with the SNS-non-metric connection (5.3), one has

Dk
ij = {kij}+ πjδ

k
i

= [
1

2
{kij}+ (πjδ

k
i + πiδ

k
j − πkgij)] + [

1

2
{kij}+ (−πiδkj + πkgij)]

=
1

2
[{kij}+

1

2
(4πjδ

k
i + 4πiδ

k
j − 4πkgij)] +

1

2
[{kij}+

1

2
((−2πi)δ

k
j − (−2πk)gij)]

=
1

2
Γ̂kij +

1

2
Γ̃kij .

This finishes the proof.

6. Examples

Example 6.1. (Almost contact metric manifold)

Let M be a (2n+ 1)-dimensional almost contact manifold endowed with an almost contact strucuture
(ϕ, ξ, η), where ϕ is a (1, 1)-tensor field, ξ is a vector field and η is a 1-form such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

If the Riemannian metric g satisfies

g(X,ϕY ) = −g(ϕX, Y ), g(X, ξ) = η(ξ).

then (ϕ, ξ, η, g) is called an almost contact metric structure and M is called an almost contact metric manifold.
Now we define a linear connection on such manifold

∇̃XY = ∇XY + η(Y )X,

where ∇ is the levi-Civita connection associated with Riemannian metric g, then we obtain

T (X,Y ) = η(Y )X − η(X)Y, α = −η ⊗ η.

which shows that ∇̃ is a semi-symmetric non-metric connection.
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