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ON PROXIMATE ORDER AND PROXIMATE TYPE OF ENTIRE
DIRICHLET SERIES

ARKOJYOTI BISWAS

Abstract. In this paper we introduce the notion of Proximate Order and
Proximate Type of Entire Dirichlet Series and prove their existence. We also
obtain some related results.

1. Introduction

Let f(s) be an entire function of the complex variable s = σ + it defined by the
everywhere convergent Dirichlet series

f(s) =

∞∑
n=1

ane
sλn (1)

where 0 < λn < λn+1(n ≥ 1), λn →∞ as n→∞ and an ∈ C.
If σc and σa be respectively the abscissa of convergence and absolute convergence

of (1) then σc = σa =∞.
For an entire function f(s) represented by (1) its maximum modulus is denoted

by F (σ) and is defined as

F (σ) = sup {|f (σ + it)| : t ∈ R} .

The Ritt order ρf of f(s) is defined as

ρf = lim sup
σ→∞

log[2] F (σ)

σ

where ( cf. [5]):

log[k] x = log(log[k−1] x) for k = 1, 2, 3 ... and log[0] x = x.
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For finite Ritt order ρf the type Tf of f(s) is defined as

Tf = lim sup
σ→∞

logF (σ)

eρfσ
.

During past decades several authors {see [1],[2],[3],[4]} made close investigations on
various properties of the entire Dirichlet series. Therefore with a view to obtain
sharper estimation of the growth properties of f(s) when ρf is finite,we first intro-
duce the concept of the proximate order and then prove its existence in the line of
Shah [6].Let us first define the proximate order of an entire function represented by
Dirichlet series.

Definition 1. Let f(s) be an entire function represented by Dirichlet series (1)
with finite order ρf .A function ρ (σ) is said to be a proximate order of f if ρ (σ)
has the following properties:

: (i) ρ (σ) is non-negative and continuous for σ > σ0, say,
: (ii) ρ (σ) is differentiable for σ ≥ σ0 except possibly at isolated points at
which ρ′(σ + 0) and ρ′(σ − 0) exist,

: (iii) lim
σ→∞

ρ (σ) = ρf ,

: (iv) lim
σ→∞

σρ′(σ) = 0 and

: (v) lim sup
σ→∞

logF (σ)

exp {σρ (σ)} = 1.

Since the type Tf is not linked with the proximate order we may expect another
comparison function which should closely connect the type and the maximum mod-
ulus of an entire function represented by Dirichlet series (1).With this in view we
define and prove the existence of such a function in line of Srivastava and Juneja
[7] which we call proximate type of f(s).
We now define the proximate type of an entire function represented by Dirichlet

series.

Definition 2. For an entire function f (s) represented by (1) with finite order ρf
and finite type Tf , a function T (σ) is said to be a proximate type of f if T (σ) has
the following properties:

: (i) T (σ) is non-negative and continuous for σ > σ0, say,
: (ii) T (σ)is differentiable for σ ≥ σ0 except possibly at isolated points at
which T ′(σ + 0) and T ′(σ − 0) exist,

: (iii) lim
σ→∞

T (σ) = Tf ,

: (iv) lim
σ→∞

σT ′ (σ) = 0 and

: (v) lim sup
σ→∞

F (σ)

exp{T (σ)eσρf } = 1.

2. Theorems

In this section we present the main results of the paper.
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Theorem 1. Let f(s) be an entire function represented by Dirichlet series (1) with
finite Ritt order ρf .Then the proximate order ρ (σ) of f(s) exists.

Proof. Let p (σ) = log[2] F (σ)
σ .Then

lim sup
σ→∞

p (σ) = ρf .

We consider two cases:
Case(I) : Let p (σ) > ρf for at least a sequences of values of r tending to infinity.
we define

φ(σ) = max
x≥σ
{p (x)}.

Clearly φ(σ) exists and is non increasing.
Let R > ee and p (R) > ρf . Then for σ ≥ R1 > R say, we get p (σ) ≤ p (R) .Since

p (σ) is continuous, there exists σ1 ∈ [R,R1] such that

p (σ1) = max
R≤x≤R1

{p (x)}.

Clearly σ1 > ee and φ(σ1) = p (σ1) .Such values σ = σ1 exists for a sequence of
values of σ tending to infinity.
Let ρ (σ1) = φ(σ1) and t1 be the smallest integer not less than 1 + σ1 such that

φ(σ1) > φ(t1).
We define ρ (σ) = ρ (σ1) for σ1 < σ ≤ t1 .Observing that φ(σ) and ρ (σ1) −

log[2] σ + log[2] t1 are continuous functions of σ, ρ (σ1) − log[2] σ + log[2] t1 > φ(t1)
for σ (> t1) suffi ciently close to t1 and φ(σ) is non increasing,we can define u1 as
follows:
u1 > t1,

ρ (σ) = ρ (σ1)− log[2] σ + log[2] t1 for t1 ≤ σ ≤ u1,
ρ (σ) = φ(σ) for σ = u1 and
ρ (σ) > φ(σ) for t1 ≤ σ < u1.
Let σ2 be the smallest value of σ for which σ2 ≥ u1 and φ(σ2) = p (σ2) .If

σ2 > u1 then let ρ (σ) = φ(σ) for u1 ≤ σ ≤ σ2.Since it can be easily shown that
φ(σ) is constant in u1 ≤ σ ≤ σ2, ρ(σ) is constant in u1 ≤ σ ≤ σ2.We repeat this
process infinitely and obtain that ρ(σ) is differentiable in adjacent intervals. Further
ρ′(σ) = 0 or (−σ log σ)−1 and ρ (σ) ≥ φ(σ) ≥ p (σ) for all σ ≥ σ1.Also ρ (σ) = p (σ)
for a sequences of values of σ tending to infinity and ρ (σ) is non increasing for
σ ≥ σ1 and

ρf = lim sup
σ→∞

p (σ) = lim
σ→∞

φ (σ) .

So lim sup
σ→∞

ρ (σ) = lim inf
σ→∞

ρ (σ) = lim
σ→∞

ρ (σ) = ρf and lim
σ→∞

σρ′(σ) = 0.
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Further we have log[2] F (σ) = σp (σ) = σρ (σ) for a sequence of values of σ tending
to infinity and log[2] F (σ) < σρ (σ) for remaining σ’s. Therefore

lim sup
σ→∞

logF (σ)

exp {σρ (σ)} = 1.

Continuity of ρ (σ) for σ ≥ σ1 follows from its construction which is complete in
case(I).
Case(II) : Let p (σ) ≤ ρf for all suffi ciently large values of r.
In Case(II) we separate two cases:
Sub case (A) : Let p (σ) = ρf for at least a sequence of values of σ tending to

infinity:
Sub case (B) : Let p (σ) < ρf for all suffi ciently large values of σ .
In Sub case (A) we take ρ (σ) = ρf for all suffi ciently large values of σ.
In Sub case (B) let

χ(σ) = max
X≤x≤σ

{p (x)},

where X > ee is such that p (σ) < ρf whenever x ≥ X. We note that χ(σ) is non

decreasing and for all σ ≥ X suffi ciently large, the roots of χ(x) = ρf + log
[2] x −

log[2] σ is less than σ. For a suitable large value v1 > X, we define
ρ (v1) = ρf ,

ρ (σ) = ρf +log
[2] σ− log[2] v1 for s1 ≤ σ ≤ v1 where s1 < v1 is such that χ(s1) =

ρ (s1).In fact s1 is given by the largest positive root of χ(x) = ρf+log
[2] x−log[2] v1.

If χ(s1) = p (s1) , let λ1 (< s1) be the upper bound of point λ at which χ(λ) 6= p (λ)
and λ < s1.Clearly at λ1, χ(s1) = p (s1) .We define ρ (σ) = χ(σ) for λ1 ≤ σ ≤ s1.
It is easy to show that χ(σ) is constant in λ1 ≤ σ ≤ s1 and so ρ (σ) is constant in
λ1 ≤ σ ≤ s1. If χ(s1) = p (s1) we take λ1 = s1.
We choose v2 > v1 suitably large and let
ρ (v1) = ρ,

ρ (σ) = ρf + log
[2] σ − log[2] v2 for s2 ≤ σ ≤ v2 where s2 < v2 is such that

χ(s2) = ρ (s2) .If χ(s2) 6= ρ (s2) let ρ (σ) = χ(σ) for λ2 ≤ σ ≤ s2,where λ2 has the
similar property as that of λ1.As above ρ (σ) is constant in[λ2, s2]. If χ(s2) = p (s2)
we take λ2 = s2.
Let ρ (σ) = ρ (λ2) − log[2] σ + log[2] λ2 for q1 ≤ σ ≤ λ2 where q1 < λ2 is the

point of intersection of y = ρf with y = ρ (λ2)− log[2] x+log[2] λ2.It is also possible
to choose v2 so large that v1 < q1.Let ρ (σ) = ρf for v1 ≤ σ ≤ q1.We repeat this
process. Now we can show that for all σ ≥ v1, ρf ≥ ρ (σ) ≥ χ(σ) ≥ p (σ) and
ρ (σ) = p (σ) for σ = λ1, λ2, ... .So we obtain that

lim sup
σ→∞

ρ (σ) = lim inf
σ→∞

ρ (σ) = lim
σ→∞

ρ (σ) = ρf .
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Since log[2] F (σ) = σp (σ) = σρ (σ) for a sequence of values of σ tending to infinity
and log[2] F (σ) < σρ (σ) for remaining σ’s it follows that

lim sup
σ→∞

logF (σ)

exp {σρ (σ)} = 1.

Also ρ(σ) is differentiable in adjacent intervals. Further ρ′(σ) = 0 or (σ log σ)−1

and so
lim
σ→∞

σρ′(σ) = 0.

Continuity of ρ(σ) follows from its construction. This completes the proof of the
theorem. �

Corollary 1. exp {σρ (σ)} is an increasing function for σ > σ0.

Theorem 2. Let f(s) be an entire function represented by Dirichlet series (1) with
finite Ritt order ρf and finite type Tf .Then the proximate type T (σ) of f(s) exists.

Proof. Let

s (σ) =
logF (σ)

eρfσ
.

Then
lim sup
σ→∞

s (σ) = Tf .

Then either Case (A): Let s (σ) > Tf for at least a sequences of values of σ tending
to infinity or,
Case (B):Let s (σ) ≤ Tf for all suffi ciently large values of σ.
In Case (A) we define

φ(σ) = max
x≥σ
{s (x)}.

Clearly φ(σ) exists and is non increasing.
Let R > ee and s (R) > Tf . Then for σ ≥ R1 > R say, we get s (σ) ≤ s (R) .Since

s (σ) is continuous, there exists σ1 ∈ [R,R1] such that
s (σ1) = max

R≤x≤R1

{s (x)}.

Clearly σ1 > ee and φ(σ1) = s (σ1) .Such values σ = σ1 exists for a sequence of
values of σ tending to infinity.
Let T (σ1) = φ(σ1) and p1 be the smallest integer not less than 1+ σ1 such that

φ(σ1) > φ(p1).
We define T (σ) = T (σ1) for σ1 < σ ≤ p1 .Observing that φ(σ) and T (σ1) −

log[2] σ+ log[2] p1 are continuous functions of σ, T (σ1)− log[2] σ+ log[2] p1 > φ(p1)
for σ (> p1) suffi ciently close to p1 and φ(σ) is non increasing,we can define u1 as
follows:
u1 > p1,

T (σ) = T (σ1)− log[2] σ + log[2] p1 for p1 ≤ σ ≤ u1,
T (σ) = φ(σ) for σ = u1 and
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T (σ) > φ(σ) for p1 ≤ σ < u1.
Let σ2 be the smallest value of σ for which σ2 ≥ u1 and φ(σ2) = s (σ2) .If

σ2 > u1 then let T (σ) = φ(σ) for u1 ≤ σ ≤ σ2.Since it can be easily shown that
φ(σ) is constant in u1 ≤ σ ≤ σ2, T (σ) is constant in u1 ≤ σ ≤ σ2.We repeat
this process infinitely and obtain that T (σ) is differentiable in adjacent intervals.
Further T ′(σ) = 0 or (−σ log σ)−1 and T (σ) ≥ φ(σ) ≥ s (σ) for all σ ≥ σ1.Also
T (σ) = s (σ) for a sequences of values of σ tending to infinity and T (σ) is non
increasing for σ ≥ σ1 and

Tf = lim sup
σ→∞

s (σ) = lim
σ→∞

φ (σ) .

So lim sup
σ→∞

T (σ) = lim inf
σ→∞

T (σ) = lim
σ→∞

T (σ) = Tf and lim
σ→∞

σT ′(σ) = 0.

Further we have F (σ) = exp {s (σ) eρfσ} = exp {T (σ) eρfσ} for a sequence of values
of σ tending to infinity and F (σ) < exp {T (σ) eρfσ} for remaining σ’s,.Therefore

lim sup
σ→∞

F (σ)

exp{T (σ)eσρf } = 1.

Continuity of T (σ) for σ ≥ σ1 follows from its construction which is complete in
Case(A).
In Case(B) we separate two cases:
Sub case (I):Let s (σ) = σf for at least a sequence of values of σ tending to

infinity:
Sub case (II):Let s (σ) < σf for all suffi ciently large values of σ .
In Sub case (I) we take T (σ) = σf for all suffi ciently large values of σ.
In Sub case (II) let

ξ(σ) = max
X≤x≤σ

{s (x)},

where X > ee is such that s (σ) < σf whenever x ≥ X. We note that ξ(σ) is non
decreasing and for all σ ≥ X suffi ciently large, the roots of ξ(x) = ρf + log

[2] x −
log[2] σ is less than σ. For a suitable large value v1 > X, we define
T (v1) = σf ,

T (σ) = σf+log
[2] σ− log[2] v1 for s1 ≤ σ ≤ v1 where s1 < v1 is such that ξ(s1) =

T (s1).In fact s1 is given by the largest positive root of ξ(x) = ρf+log
[2] x−log[2] v1.

If ξ(s1) = T (s1) let ω1 (< s1) be the upper bound of point ω at which ξ(ω) 6= s (ω)
and ω < s1.Clearly at ω1, ξ(s1) = s (s1) .We define T (σ) = ξ(σ) for ω1 ≤ σ ≤ s1.
It is easy to show that ξ(σ) is constant in ω1 ≤ σ ≤ s1 and so T (σ) is constant in
ω1 ≤ σ ≤ s1. If ξ(s1) = s (s1) we take ω1 = s1.
We choose v2 > v1 suitably large and let
T (v1) = σf ,

T (σ) = σf + log
[2] σ − log[2] v2 for s2 ≤ σ ≤ v2 where s2 < v2 is such that

ξ(s2) = T (s2) .If ξ(s2) 6= T (s2) let T (σ) = ξ(σ) for ω2 ≤ σ ≤ s2,where ω2 has the
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similar property as that of ω1.As above T (σ) is constant in[ω2, s2]. If ξ(s2) = T (s2)
we take ω2 = s2.
Let T (σ) = T (ω2) − log[2] σ + log[2] ω2 for q1 ≤ σ ≤ ω2 where q1 < ω2 is the

point of intersection of y = T with y = T (ω2)− log[2] x+log[2] ω2.It is also possible
to choose v2 so large that v1 < q1.Let T (σ) = σf for v1 ≤ σ ≤ q1.We repeat this
process. Now we can show that for all σ ≥ v1, σf ≥ T (σ) ≥ ξ(σ) ≥ s (σ) and
T (σ) = s (σ) for σ = ω1, ω2, ... .So we get that

lim sup
σ→∞

T (σ) = lim inf
σ→∞

T (σ) = lim
σ→∞

T (σ) = σf .

SinceF (σ) = exp {s (σ) eρfσ} = exp {T (σ) eρfσ} for a sequence of values of σ tend-
ing to infinity and F (σ) < exp {T (σ) eρfσ} for remaining σ’s,we get that

lim sup
σ→∞

F (σ)

exp{T (σ)eσρf } = 1.

Also T (σ) is differentiable in adjacent intervals. Further T ′(σ) = 0 or (σ log σ)−1

and so
lim
σ→∞

σT ′(σ) = 0.

Continuity of T (σ) follows from its construction. This completes the proof of the
theorem. �

Theorem 3. Let T (σ) be the proximate type of f(s).Then

lim inf
σ→∞

log T (σ)

σ
= 0.

Proof. As lim sup
σ→∞

F (σ)

exp{T (σ)eσρf } = 1, for arbitrary ε > 0 and for sequence of values
of σ we get

(1− ε) exp{T (σ)eσρf } ≤ F (σ)

i.e., log T (σ) + σρf +O (1) ≤ log[2] F (σ)

i.e.,
log T (σ)

σ
+ ρf +

O (1)

σ
≤ log[2] F (σ)

σ

i.e., lim inf
σ→∞

log T (σ)

σ
+ ρf ≤ lim sup

σ→∞

log[2] F (σ)

σ
= ρf

i.e., lim inf
σ→∞

log T (σ)

σ
≤ 0.

Since T (σ) is non negative it follows that

lim inf
σ→∞

log T (σ)

σ
= 0.

This completes the proof of the theorem. �
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