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ABSTRACT

We present the shape operator’s matrix of a surface along a surface curve. By using the obtained
matrix, we give a short proof of the Beltrami-Enneper theorem. Also, we give a new method for
determining the well-known geodesic curves of a plane, a sphere and a circular cylinder by using
the relation between the ordinary curvatures of the geodesic and the curvatures of the surface.
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1. Introduction

In Euclidean 3-space, the shape of a regular curve is measured by its curvature functions, called curvature
and torsion. If the curve lies on a regular surface, it has also curvatures with respect to the surface itself, called
normal curvature, geodesic curvature and geodesic torsion. These functions determine important properties
for surface curves. When these curvatures vanish along the curve, such curves are called as asymptotic curve,
geodesic curve, and line of curvature, respectively. Similar to curves, we can measure the shape of a surface.
To do this, we need to determine the shape operator of the surface. We can compute the shape operator of
a surface by using its definition or the Weingarten equations. Using Weingarten equations yield the shape
operator depending on the first and second fundamental form coefficients of the surface.

The purpose of this paper is to give a new method for determining the shape operator of a surface. Our
new method is based on the Darboux frame of a surface curve. By using the Darboux frame curvatures of
the curve, we obtain the shape operator of a surface along the curve depending on the normal curvature and
geodesic torsion of the surface curve. We then give the mean, Gaussian and principal curvatures depending
on these curvatures. As an application, we give a short proof of the Beltrami-Enneper theorem, and we obtain
the relation between the ordinary curvatures of the surface curve and the curvatures of the surface. Also, we
give a new and easy method for determining the well-known geodesic curves of a plane, sphere and circular
cylinder.

2. Preliminaries

Let us consider a unit speed curve β lying on a regular surfaceM in Euclidean 3-space E3. Along β, we denote
the unit tangent vector of the curve with T , the unit normal vector of the surface with U , and V = U × T . In
this case, we call the frame {T ,V,U} as Darboux frame. This frame has its own Frenet formulas given by T

′ = κgV + κnU
V ′ = −κgT + τgU
U ′ = −κnT − τgV

,

where κg is the geodesic curvature, κn is the normal curvature and τg is the geodesic torsion of β [2].
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Definition 2.1. LetM be a regular surface oriented with the unit normal U . The shape operator S : TP (M)→
TP (M) of M at the point P ∈M is defined by S(XP ) = −DU

XP
for XP ∈ TP (M), where TP (M) denotes the

tangent plane of the surface at P .

Definition 2.2. LetM be a regular surface in E3, P ∈M be a point and SP denotes the shape operator ofM
at P . The Gaussian and mean curvatures of M at P are defined by K(P ) = detSP and H(P ) = 1

2 trace(SP ),
respectively. Also, the eigenvalues of SP are called the principal curvatures ofM at P .

Definition 2.3. LetM be a regular surface in E3, P ∈M be a point, and XP ∈ TP (M) be a unit tangent vector.
Then κn(XP ) = 〈S(XP ),XP 〉 is called the normal curvature at P ofM in the direction of XP . If κn(XP ) is constant
for all XP ∈ TP (M), then P is called umbilic point onM. If κn(β′) = 0 along a regular curve β lying onM, then
β is called an asymptotic curve onM.

Lemma 2.1. LetM be a regular surface parametrized by X(u, v) and β(s) = X(u(s), v(s)) be a unit speed curve lying
onM. Then, the normal curvature of the curve is obtained by [4]

κn = L(u′)2 + 2Mu′v′ + N(v′)2, (2.1)

and the geodesic torsion of the curve is obtained by [3]

τg =
1√

EG− F2

{
(EM− FL)(u′)2 + (EN− GL)u′v′ + (FN− GM)(v′)2

}
, (2.2)

where E,F,G and L,M,N denote the first and second fundamental form coefficients of the surface, respectively.

Lemma 2.2. LetM be a regular surface given by f(x, y, z) = 0 and β(s) = (x(s), y(s), z(s)) be a unit speed curve lying
onM. Then, the normal curvature of the curve is obtained by [4]

κn = −fxx(x
′)2 + fyy(y

′)2 + fzz(z
′)2 + 2(fxyx

′y′ + fyzy
′z′ + fxzx

′z′√
f2x + f2y + f2z

(2.3)

and the geodesic torsion of the curve is obtained by [3]

τg =
1

||∇f ||
{(a3fy − a2fz)x′ + (a1fz − a3fx)y′ + (a2fx − a1fy)z′} , (2.4)

where
ai =

1
||∇f ||

(
fxixix

′
i + fxixjx

′
j + fxixk

x′k
)
− 1

||∇f ||3

{
f2xi

(
fxixix

′
i + fxixjx

′
j + fxixk

x′k
)

+fxifxj

(
fxjxix

′
i + fxjxjx

′
j + fxjxk

x′k
)
+ fxifxk

(
fxkxix

′
i + fxkxjx

′
j + fxkxk

x′k
)}

with x1 = x, x2 = y, x3 = z (i, j, k = 1, 2, 3 cyclic).

3. Shape operator’s matrix along a surface curve

In this section, we consider a regular curve lying on an oriented surface in Euclidean 3-space and compute
the shape operator’s matrix of the surface along the curve.

The following two Lemmas will be needed in Proposition 3.1.

Lemma 3.1. LetM be a regular surface parametrized by X(u, v); β(s) = X(u(s), v(s)) be a unit speed curve lying on
M, and {T ,V,U} denotes the Darboux frame field of β. Then, the normal curvature ofM in the direction of V can be
obtained by

κn(V) =
1

EG− F2

(
λ1(u

′)2 + 2λ2u
′v′ + λ3(v

′)2
)
, (3.1)

where
λ1 = F(FL− EM) + E(EN− FM),

λ2 = F(GL− FM) + E(FN− GM),

λ3 = G(GL− FM) + F(FN− GM)

are computed along β.
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Proof. Since T = β′(s) = Xuu
′ +Xvv

′ and U =
Xu ×Xv

||Xu ×Xv||
=

Xu ×Xv√
EG− F2

, we have

V = U × T =
Xu ×Xv√
EG− F2

×
(
Xuu

′ +Xvv
′)

=
1√

EG− F2

(
− Fu′ − Gv′

)
Xu +

(
Eu′ + Fv′

)
Xv. (3.2)

Thus, we obtain the desired result by using κn(V) = 〈S(V),V〉.

Lemma 3.2. LetM be a regular surface given by its implicit equation f(x1, x2, x3) = 0; β(s) = (β1(s), β2(s), β3(s)) be
a unit speed curve lying onM, and {T ,V,U} denotes the Darboux frame field of β. Then, the normal curvature ofM in
the direction of V can be obtained by

κn(V) =
−1√

(f21 + f22 + f23 )
3

3∑
i=1

{(
fjjf

2
k + fkkf

2
j − 2fjkfjfk

)
(β′

i)
2 (3.3)

+2
(
fjkfifk + fikfkfj − fifjfkk − fijf2k

)
β′
iβ

′
j

}
,

where i, j, k = 1, 2, 3 (cyclic) and

fr =
∂f

∂xr
, frs =

∂2f

∂xs∂xr
, r, s = 1, 2, 3

are computed along β.

Proof. Since T = β′(s) =
(
β′
1(s), β

′
2(s), β

′
3(s)

)
and U =

∇f
||∇f ||

=
1

||∇f ||
(
f1, f2, f3

)
, we have

V = U × T =
1√

f21 + f22 + f23

(
f2β

′
3 − f3β′

2, f3β
′
1 − f1β′

3, f1β
′
2 − f2β′

1

)
.

The desired result follows from (2.3).

Proposition 3.1. LetM be a regular surface, β be a unit speed curve lying onM, and {T ,V,U} denotes the Darboux
frame field of β. Then, the shape operator’s matrix ofM along β with respect to the basis {T ,V} is given by

S =

[
κn(T ) τg
τg κn(V)

]
. (3.4)

Proof. We may write
S(T ) = −∇U

T = −U ′ = κn(T )T + τgV. (3.5)

Let
S(V) = aT + bV.

Then, we obtain
a = 〈S(V), T 〉 = 〈V, S(T )〉 = 〈V,−U ′〉 = τg,

b = 〈S(V),V〉 = κn(V),

i.e.
S(V) = τgT + κn(V)V. (3.6)

Thus, the assertion is clear from (3.5) and (3.6).
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4. Applications of Main Result

If we use Proposition 3.1, the following results can be given:

Corollary 4.1. Let β be a unit speed curve lying on an oriented surfaceM, and {T ,V,U} denotes the Darboux frame
field of β. Then, the curvatures of the surface along β depending on the Darboux frame curvatures are given by

Gaussian curvature : K = κn(T )κn(V)− τ2g (4.1)

Mean curvature : H =
1

2

(
κn(T ) + κn(V)

)
(4.2)

Principal curvatures : k1,2 =
1

2

(
κn(T ) + κn(V)±

√(
κn(T )− κn(V)

)2
+ 4τ2g

)
(4.3)

Corollary 4.2. If the curve β is a line of curvature onM with non-umbilical points, then T corresponds to the principal
direction, i.e. κn(T ) = k1, κn(V) = k2. Thus, substituting these results together with τg = 0 into (4.1) and (4.2) we

obtain the classical results: K = k1k2 and H =
k1 + k2

2
.

Corollary 4.3. Let M be a regular surface parametrized by X(u, v), and β(s) = X(u(s), v(s)) be a unit speed curve
lying onM. Then, the Gaussian curvature of the surface along β is given by

K =
1

EG− F2

{(
L(u′)2 + 2Mu′v′ + N(v′)2

)(
λ1(u

′)2 + 2λ2u
′v′ + λ3(v

′)2
)

−
[
(EM− FL)(u′)2 + (EN− GL)u′v′ + (FN− GM)(v′)2

]2}
,

and the mean curvature of the surface along β is given by

2H =

(
L+

λ1
EG− F2

)
(u′)2 + 2

(
M+

λ2
EG− F2

)
u′v′ +

(
N+

λ3
EG− F2

)
(v′)2,

where λi are as given in Lemma 3.1.

Proposition 4.1. Let β be a geodesic curve on a regular surface M⊂ E3. Then the relation between the ordinary
curvatures of β and the curvatures ofM is given by

2κH−K = κ2 + τ2. (4.4)

Proof. Since β is geodesic onM, we have κg = 0, κn(T ) = κ and τg = τ . Then, from (4.1) and (4.2) we obtain

K = κ.κn(V)− τ2, 2H = κ+ κn(V).

If we eliminate κn(V) from these equations, we find (4.4).

If we use our new results, we may also give a short proof of the Beltrami-Enneper theorem:

Theorem 4.1 (Beltrami-Enneper). [1] Let β be an asymptotic curve on a regular surface M⊂ E3, and assume the
curvature κ of β does not vanish. Then the torsion τ of β and the Gaussian curvature K of M are related along β by
K = −τ2.

Proof. Since β is asymptotic onM, we have κn(T ) = 0 and τg = τ . The assertion is clear from (4.1).

Similar to the Beltrami-Enneper theorem, we may state the following theorem:

Theorem 4.2. Let β be a geodesic curve on a minimal surfaceM⊂ E3. Then the Gaussian curvature K ofM and the
ordinary curvatures of β are related along β by K = −

(
κ2 + τ2

)
.

Proof. The proof follows from (4.4).
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5. The geodesics of plane, sphere, circular cylinder

The geodesics of plane, cylinder and sphere are well-known. If we use the relation (4.4), we may give a
different way of obtaining the geodesic curves of plane, sphere and circular cylinder.

5.1. Geodesics of a plane

Let β be a geodesic curve on a plane. Then, since we have K = H = 0 for the plane, the curvatures of a
geodesic on planes satisfy κ2 + τ2 = 0, i.e. κ = τ = 0. This means the geodesics of planes are only straight lines.

5.2. Geodesics of a sphere

Let β be a geodesic curve on a sphere with radius r. Then, since we have K =
1

r2
,H =

1

r
for the sphere, the

curvatures of a geodesic on sphere satisfy (
κ− 1

r

)2

+ τ2 = 0

i.e. κ =
1

r
, τ = 0. Then geodesics of spheres are planar curves with constant curvature, i.e. the circles having the

same radius with the sphere. This means the geodesics of the spheres are their great circles.

5.3. Geodesics of a circular cylinder

Let β be a geodesic curve on a circular cylinder with radius r. Since we have K = 0,H =
1

2r
for the circular

cylinder, then the curvatures of a geodesic on circular cylinder satisfy(
κ− 1

2r

)2

+ τ2 =
1

4r2

i.e.
κ =

1

2r
+

1

2r
cosϕ, τ =

1

2r
sinϕ

for some ϕ. Thus, if ϕ = 2nπ, n ∈ Z, we obtain κ =
1

r
, τ = 0 which means β is a circle with the same radius of

cylinder. This means the normal section of a circular cylinder is a geodesic.
If ϕ = (2n+ 1)π, n ∈ Z, we obtain κ = τ = 0 which means β is a straight line on the cylinder. This means the

rulings of the circular cylinder are also geodesic.
If ϕ 6= kπ, k ∈ Z and ϕ is constant, then β is a circular helix on cylinder.
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