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ABSTRACT 

 
In this study a completion theorem for vector metric spaces is proved. The completion spaces are defined by means 
of an equivalence relation obtained by order convergence via the module of the Riesz space E. 
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1. INTRODUCTION 

 

Let E be a Riesz space. If ( )na  is a decreasing sequence 

in E such that inf ,na a=  we will write .na a↓  A 

sequence ( )nb  is said to order convergence (or o-

convergence) to b if there is a sequence ( )na  in E 

satisfying 0na ↓  and n nb b a− ≤  for all n, and written 

o

nb b→  or o- lim .nb b=  Furthermore ( )nb  is said to be 

order-Cauchy (or o-Cauchy) if there exists a sequence 

( )na  in E such that 0na ↓  and n n p nb b a+− ≤  holds 

for all n and p. E is said to be o-Cauchy complete if 
every o-Cauchy sequence is o-convergence. If every 
nonempty bounded above countable subset of E has a 
supremum, then E is called Dedekind σ -complete. An 
operator T : E → F  between two Riesz spaces is a 
lattice homomorphism if ( ) ( ) ( )T x y T x T y∨ = ∨  for all 

, .x y E∈  For notations and other facts regarding Riesz 

spaces we refer to [1] and [9]. 
 
In [3], a vector metric space is defined with a distance 
map having values in a Riesz space, and some results in 
metric space theory are generalized to vector metric 
space theory. Some fixed point theorems in vector 
metric spaces are given in [2,3,10,12,13]. In [4], new 
notions of vectorial and topological continuities are 
defined and some new basic results are presented. In 
Section 2, we recall basic concepts some results of the 
metric spaces theory in vector metric spaces. 

 
Section 3 is an exposition of the fundamentals of 
completeness and completion by E-Cauchy sequences 
in vector metric spaces. In [5], order-Cauchy 
completeness and completions of Archimedean Riesz 
spaces and rings of real-valued continuous functions are 
discussed. Most of the material presented in [5] is due 
to Everett [6] and Papangelou [11] in the case of l-
groups. Every Archimedean Riesz space or f-algebra 
has an o-Cauchy completion in a sense defined 
precisely in [5]. Among other things, conditions are 
given under which the order-Cauchy completion and the 
Dedekind completion coincide. Completions akin to the 
order-Cauchy completion are described also in [14]. We 
give an abstract characterization of E-completion for 
vector metric which valued o-Cauchy complete Riesz 
space. 
 
2. VECTOR METRIC SPACES AND 

    CONTINUITY 

 

In this section we recall vector metric spaces and prove 
some properties. 
 
Definition 1. [3] Let X be a nonempty set and E be a 
Riesz space. The function d : X × X → E is said to be a 
vector metric (or E-metric) if it is satisfying the 
following properties: 

(vm1) d(x, y) = 0 if and only if x = y, 

(vm2) d(x, y) ≤ d(x, z) + d(y, z) 
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for all x, y, z ∈ X. Also the triple ( , , )X d E  is said to be 
vector metric space. 
 

Proposition 1. [3] For arbitrary elements , , ,x y z w  of a 
vector metric space, the following properties hold: 

(i)   0 ( , ),d x y≤  

(ii)  ( , ) ( , ),d x y d y x=  

(iii) ( , ) ( , ) ( , ),d x z d y z d x y− ≤  

(iv) ( , ) ( , ) ( , ) ( , ).d x z d y w d x y d z w− ≤ +  

 
Now we give some examples of vector metric spaces. 
 

Example. (a) A Riesz space E is a vector metric space 

with d : E × E → E defined by ( , )d x y x y= − . This 

vector metric is called to be absolute valued metric on 
E. 

(b) The complexification E
�

 of a real Banach lattice E 

is a vector metric space with :d E E E× →
� �

 defined 

by ( , )d x y x y= −
� � � �

. 

(c) Suppose we have a finite number of vector metric 
spaces ( , , )i iX d E , i = 1,…, k. On the cartesian product 

1 kX X X= ×⋅ ⋅ ⋅×  various vector metrics can be defined. 

Let 1( , , )kx x x= K  and 1( , , )ky y y= K  be two elements 

of the product space X. We define 

(1)
1

( , ) ( , )
n

i i i
i

d x y d x y
=

= ∑  and 

( , ) sup{ ( , ) : 1, , }.i i id x y d x y i k∞ = = K  

It can be verified easily that (1)d  and d∞  are vectorial 

distance functions on the product space X. If E is 

Banach lattice and 1 p< < ∞  where 
1 1

1
p q

+ = ,  

then by the functional calculus of J.L.Krivine, 

( )
1

1
( , )

k pp
i i ii

d x y E
=

∈∑  with  

1

1

( , )
k p

p
i i i

i

d x y
=

 
 
 
∑  

1
1 1

sup ( , ) : ( , ,a ) , 1
k k

qk
i i i i k i

i i

a d x y a a
= =

 
= ∈ ≤ 

 
∑ ∑K �  

(see [7], [8] pp. 42-44). We define 

( )
1

( )
1

( , ) ( , ) .
k pp

p i i i
i

d x y d x y
=

 
=  

 
∑  

Thus, ( )pd  is a vector metric on the product space X.  

 

Definition 2. [3] (a) A sequence ( )nx  in a vector metric 

space ( , , )X d E  vectorially converges (or is E-conver-

ges) to some ,x X∈  written 
,

,
d E

nx x→  if there is a 

sequence ( )na  in E such that 0na ↓  and ( , )n nd x x a≤  

for all n. 

(b) A sequence ( )nx  is called an E-Cauchy sequence 

whenever there exists a sequence ( )na  in E such that 

0na ↓  and ( , )n n p nd x x a+ ≤  holds for all n and p.  

(c) A vector metric space ( , , )X d E  is called E-

complete if each E-Cauchy sequence in X E-converges 
to a limit in X. 

(d) A subset Y of a vector metric space ( , , )X d E  is said 

to be E-closed whenever ( )nx Y⊆  and 
,d E

nx x→  imply 

.x Y∈  
 

Remark. More explicit (and overly cumbersome) 
terminology would perhaps be sequentially E-Cauchy 
complete, to distinguish from the corresponding notion 
for nets. However, this paper is concerned exclusively 
with sequences, so dropping "sequentially" introduces 
no ambiguity here. 
 

Theorem 1. [3] If 
,d E

nx x→ , then the followings hold: 

(i) The limit x is unique. 

(ii) Every subsequence of ( )nx  E-converges to x. 

(iii) If also 
,

,
d E

ny y→  then ( , ) ( , ).
o

n nd x y d x y→  

 
Also, we have the following theorem. 
 

Theorem 2. [3] For the vector metric space ( , , ),X d E  
the followings hold: 

(i) Every E-convergent sequence is an E-Cauchy 
sequence; 

(ii) Every E-Cauchy sequence is E-bounded; 

(iii) If an E-Cauchy sequence ( )nx  has a subsequence 

( )
knx  such that

,

k

d E

nx x→ , then 
,d E

nx x→ ; 

(iv) If ( )nx  and ( )ny  are E-Cauchy sequences, then 

( ( , ))n nd x y  is an order Cauchy sequence. 

 
When ,E = �  the concepts of vectorial convergence 
and convergence in metric are the same. When also 
X E=  and  d  is the concepts of absolute valued vector 

metric, vectorial convergence and convergence in order 
are the same. When ,E = �  the concepts of E-Cauchy 
sequence and Cauchy sequence are the same.  
 
Now, let us fix a vector metric space ( , , ).X d E  For two 

elements a and b in E, we shall write a b<  to indicate 
that a b≤  but ,a b≠  while b a>  will stand for .a b<  
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Definition 3. [3] (a) A subset Y of X is called ,d Eτ -

dense whenever ( , )B x r Y∩ ≠ ∅  for each x X∈  and 

0 r E< ∈ . 

(b) A subset Y of X is called E-dense whenever for 
every x X∈  there exists a sequence ( )nx   in Y 

satisfying 
,d E

nx x→ . 

 
We have already following results. 
 

Corollary 1. [3] Let Y be a subset of a vector metric 
space ( , , )X d E  with E Archimedean. If Y is ,d Eτ -

dense, then Y is E-dense. 
 
The relationships between the concepts of boundedness 
and diameter of a subset of a vector metric space are a 
different from the usual. For a nonempty subset A of a 
vector metric space ( , , )X d E  its E-diameter defined by 

{ }( ) sup ( , ) : ,d A d x y x y A= ∈  if { }sup ( , ) : ,d x y x y A∈  

in E. Furthermore, if there exists an a > 0 in E such that 
( , )d x y a≤  for , ,x y A∈  then A is called E-bounded 

set. If E is Dedekind complete, then every E-bounded 
set of ( , , )X d E  has a diameter. 

 

Definition 4. [4] Let ( , , )X d E  and ( , , )Y Fρ  be vector 

metric spaces, and let .x X∈  

(a) A function :f X Y→  is said to be topologically 

continuous at x if for every b > 0 in F there exists some 
a in E such that ( ( ), ( ))f x f y bρ <  whenever y X∈  

and ( , ) .d x y a<  The function f is said to be 
topologically continuous if it is topologically 
continuous at each point of X. 

(b) A function :f X Y→  is said to be vectorially 

continuous at x if 
,d E

nx x→  in X implies 
,

( ) ( )
F

nf x f x
ρ

→  in 

Y. The function f is said to be vectorially continuous if 
it is vectorially continuous at each point of X. 
 

Theorem 3. [4] Let ( , , )X d E  and ( , , )Y Fρ  be vector 
metric spaces where F is Archimedean. If a function 

:f X Y→  is topologically continuous, then f is 
vectorially continuous. 
 

Corollary 2. [4] For a function :f X Y→  between 

two vector metric spaces ( , , )X d E  and ( , , )Y Fρ  the 
following statements hold: 

(a) If F is Dedekind σ -complete and  f  is vectorially 
continuous, then ( ( ), ( )) 0nf x f xρ ↓   whenever 

( , ) 0.nd x x ↓  

(b) If E is Dedekind σ -complete and 
( ( ), ( )) 0nf x f xρ ↓   whenever ( , ) 0,nd x x ↓  then the 

function  f  is vectorially continuous. 

(c) Suppose that E and F are Dedekind σ -complete. 
Then, the function  f  is vectorially continuous if and 
only if ( ( ), ( )) 0nf x f xρ ↓   whenever ( , ) 0.nd x x ↓  

 

Definition 5. [4] Let ( , , )X d E  and ( , , )Y Fρ  be vector 

metric spaces. A function :f X Y→  is said to be a 
vector isometry if there exists a linear operator 

:fT E F→  satisfying the following two conditions, 

(i) ( ( , )) ( ( ), ( ))fT d x y f x f yρ=  for all , ,x y X∈   

(ii) ( ) 0fT a =  implies a = 0 for all .a E∈  

If the function  f  is onto, and the operator fT  is a lattice 

homomorphism, then the vector metric spaces 
( , , )X d E  and ( , , ( ))fY T Eρ  are called vector 

isometric.  
 
If  E = F  in Definition 5, then the map :f X Y→  

between two vector metric spaces ( , , )X d E  and 

( , , )Y Eρ  is called E-isometry if d(x, y) = ρ (i(x), i(y)) 

holds for all , .x y X∈  If in addition f is onto, then 

( , , )X d E  and ( , , )Y Eρ  are called E-isometric. 
 
3. ORDER-CAUCHY COMPLETIONS OF 

     VECTOR METRIC SPACES 

 

Given a vector metric space ( , , )X d E  which is not E-
complete, we are going to construct a E-complete vector 

metric space ˆˆ( , , )X d E  such that there is an E-isometry   

ˆ:i X X→  with the property that i(X) is E-dense in 
ˆ .X  We call ˆˆ( , , )X d E  the order-Cauchy completion 

of ( , , ).X d E  
 
Let E be an order-Cauchy complete Riesz space and let 
( )nx  and ( )ny  be two E-Cauchy sequences in X. Then 

we define a equivalence relation denoted by 

( , ) 0.
o

n nd x y →  

Let X̂  be the set of all equivalence classes of E-
Cauchy sequences of X. Since ( , )n nd x y  is an order 

Cauchy sequence whenever ( )nx  and ( )ny  are E-

Cauchy sequences, by E is order-Cauchy we define 

ˆ ˆ ˆ( , ) -lim ( , )n nd x y o d x y=  

in E for all ˆˆ ˆ,x y X∈  with ˆ( )nx x∈  and ˆ( )ny y∈ . It is 

not difficult to see that ˆˆ( , , )X d E  is a vector metric 

space.  

For an element x of X consider the equivalence class 
ˆ( )i x X∈  which is generated by the constant sequence 

whose each term is x. This way we define a map 
ˆ:i X X→ . Then ( , , )X d E  and ˆ( ( ), , )i X d E  are E-

isometric. 
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Lemma 1. ˆ( ( ), , )i X d E  is E-dense in ˆˆ( , , ).X d E  

Proof Let ˆ( )nx x∈  and for fixed 0n  consider 
0

( )ni x  

as an element i(X). 
0

( )ni x  is of course the equivalence 

class generated by the constant 
0 0

( , , ).n nx x K  For every 

0n n≥  there exists a number p such that 0 .n n p= +  

Since ( )nx  is E-Cauchy, there exists a sequence ( )na  in 

E such that 0na ↓  and 

0 0

0 0 0

ˆ ˆ( ( ), ) -lim ( , )

                 -lim ( , )

n n n

n n p n

d i x x o d x x

o d x x a+

=

= ≤
 

holds for all 0n n≥  with 0 .n n p= +  Hence 

ˆ ˆ( ( ), )k kd i x x a≤  for all k; i.e., 
ˆ ,

ˆ( )
d E

ki x x→ . 

 
We have the following theorem. 
 

Theorem 4. ˆˆ( , , )X d E  is unique E-complete vector 

metric space generated by ( , , ).X d E  

Proof Let ˆ( )nx  be a E-Cauchy sequence in ˆ .X  Using 

the fact that i(X ) is E-dense in X̂  for each n we find 

ny  in X and na  in E with 

ˆ ˆ( ( ), )n n nd i y x a≤ . 

We will show that ( )ny  is a E-Cauchy sequence in X 

and if ŷ  is the equivalence class generated by ( ),ny  

then ˆ ˆnx y→  in ˆˆ( , , ).X d E  We have 

ˆ( , ) ( ( ), ( ))

ˆ ˆ ˆˆ ˆ ˆ ˆ                  ( ( ), )) ( , ) ( , ( ))

                  3

n n p n n p

n n n n p n p n p

n

d y y d i y i y

d i y x d x x d x i y

a

+ +

+ + +

=

≤ + +

≤

for all n and p. By (1) we have 
ˆ ,

ˆ( ) .
d E

ni x y→  Hence, 

ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ( )) ( ( ), ) 2n n n n nd y x d y i y d i y x a≤ + ≤  

which implies 
ˆ ,

ˆ.
d E

nx y→  Therefore, ˆˆ( , , )X d E  E-

complete. 

Let ( , , )X d E%%  be another E-complete vector metric 

space such that there is an E-isometry :j X X→ %  with 

j(X ) is E-dense in .X%  We will show that ( , , )X d E%%  is 

then isometrically equivalent to the completion 
ˆˆ( , , ).X d E  Hence in this sense the completion is 

unique. 

We define first 0 : ( ) ( )h i X j X→  by 0( ( )) ( )h i x j x=  for 

all .x X∈  It is clear that ( )i X  and ( )j X  are E-

isometric. Let ˆˆ .x X∈  Then there exists a E-Cauchy 

sequence ( )ni x  in ( )i X  such that 
ˆ ,

ˆ( )
d E

ni x x→ . Since 0h  

is an E-isometry, then 0( ( )) ( ( ))n nj x h i x= o  is also an E-

Cauchy sequence in .X%  Because X%  is E-complete, 

there exists x%  in X%  such that 
,

( )
d E

nj x x→
%

% . Hence we 

define 

ˆ:h X X→ %  with ˆ( ) .h x x= %  

For two elements x̂  and ŷ  in X̂  there exist two 

sequences ( ( ))ni x  and ( ( ))ni y  in ( )i X  such that 
ˆ ,

ˆ( )
d E

ni x x→  and 
ˆ ,

ˆ( ) .
d E

ni y y→  Then 
,

ˆ( ) ( )
d E

nj x h x→
%

 and 

,

ˆ( ) ( )
d E

nj y h y→
%

 hold. Since 0h  is an E-isometry, by 

Theorem 2 (4) we have 

ˆ ˆ( ( ), ( )) -lim ( ( ), ( ))

ˆ ˆ ˆ ˆ                      - lim ( ( ), ( )) ( , ).

n n

n n

d h x h y o d j x j y

o d i x i y d x y

=

= =

% %

 

Finally, we will show that h is onto. If x%  in ,X%  then 

there exists a E-Cauchy sequence ( )nj x   in j(X ) such 

that 
,

( )
d E

nj x x→
%

% . Since i(X ) E-isometric to j(X ), ( )ni x  is 

also an E-Cauchy sequence in ˆ .X  If x̂  is d̂ -limit of 

( ),ni x  then 
,

ˆ( ( )) ( )
d E

nh i x h x→
%

 since h is an E-isometry. By 

using ( ) ( ( ))n nj x h i x=  we have 

ˆ ˆ( , ( )) ( , ( )) ( ( ), ( ( )))n nd x h x d x j x d h x h i x≤ +% % %

% %  

for each n. Therefore, ˆ( )h x x= %  holds in .X%  
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