SOME RESULTS ON PRIME RINGS AND (σ, τ) - LIE IDEALS

E. Güven* and M. Soytürk*

Received 27:04:2006 : Accepted 08:03:2007

Abstract

Let R be a prime ring with characteristic not 2, $\sigma, \tau, \alpha, \beta, \lambda$ and μ automorphisms of R and $d:R\longrightarrow R$ a nonzero (σ,τ) -derivation. Suppose that $a \in R$. In this paper, we give some results on (σ, τ) -Lie ideals and prove that: (1) If $[a, d(R)]_{\alpha,\beta} = 0$ and $d\sigma = \sigma d$, $d\tau = \tau d$, then $a \in C_{\alpha,\beta}$. (2) Let d_1 be a nonzero (σ,τ) -derivation and d_2 an (α, β) -derivation of R such that $d_2\alpha = \alpha d_2$, $d_2\beta = \beta d_2$. If $[d_1(R), d_2(R)]_{\lambda,\mu} = 0$ then R is commutative. (3) If I is a nonzero ideal of R and d(x,y) = 0 for all $x,y \in I$, then R is commutative. (4) If d(R, a) = 0 then $(d(R), a)_{\sigma, \tau} = 0$.

Keywords: Prime ring, (σ, τ) -derivation, Commutativity.

2000 AMS Classification: 16 W 25, 16 U 80.

1. Introduction

Let $\sigma, \tau, \alpha, \beta, \lambda, \mu$ be automorphisms of a ring R and U an additive subgroup of R. The definition of (σ, τ) -Lie ideal is given in [6] as follows.

- (i) U is a right (σ, τ) -Lie ideal of R, if $[U, R]_{\sigma, \tau} \subset U$.
- (ii) U is a left (σ, τ) -Lie ideal of R, if $[R, U]_{\sigma, \tau} \subset U$.
- (iii) U is a (σ, τ) -Lie ideal of R if U is both a left (σ, τ) -Lie ideal of R and a right (σ, τ) -Lie ideal of R.

It is clear that every Lie ideal of R is a (1,1)-Lie ideal of R.

An additive mapping $d: R \longrightarrow R$ is called a (σ, τ) -derivation if $d(xy) = d(x)\sigma(y) +$ $\tau(x)d(y)$ for all $x,y \in \mathbb{R}$. We write $[x,y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x, \ [x,y] = xy - yx, \ C_{\sigma,\tau} = \{c \in \mathbb{R}\}$ $R \mid c\sigma(r) = \tau(r)c$ for all $r \in R$ and use the following commutator identities extensively.

- (A): $[xy, z]_{\sigma, \tau} = x[y, z]_{\sigma, \tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma, \tau}y$
- (B): $[x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z)$ (C): $(xy, z)_{\sigma,\tau} = x(y, z)_{\sigma,\tau} [x, \tau(z)]y = x[y, \sigma(z)] + (x, z)_{\sigma,\tau}y$
- (D): $(x, yz)_{\sigma,\tau} = \tau(y)(x, z)_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z)$

E-mail: (E. Güven) evrimokaya@yahoo.com (M. Soytürk) msoyturk@kou.edu.tr

^{*}Department of Mathematics, Kocaeli University, Kocaeli, Turkey.

Suppose that a is an element of R such that ad(x) = d(x)a for all $x \in R$. Then, a must be central due to Herstein's theorem [4]. In [2], J. C.Chang extended this result by assuming that $[a, \delta(x)] = 0$ for all $x \in R$, where δ is an (α, β) -derivation of R such that $\delta \alpha = \alpha \delta$, $\delta \beta = \beta \delta$. One of the goals of this paper is to generalize the preceding results in ferom expressed in abstract (1). In [3,Theorem 2] Herstein proved that if [d(x), d(y)] = 0 for all $x \in R$ then R is commutative. J. C.Chang extended this result in [2,Theorem-2(i)] by assuming that $[\delta(x), \delta(y) = 0$ for all $x, y \in R$, where δ is an (α, β) -derivation of R such that $\delta \alpha = \alpha \delta$, $\delta \beta = \beta \delta$. In this paper, we generalize this result in the form expressed in abstract (2). Furthermore, we give some results on (σ, τ) -Lie ideals in prime rings.

2. Results

- **2.1. Lemma.** [7, Lemma 3] Let R be a prime ring. If $b, ab \in C_{\sigma,\tau}$ then $a \in Z$ or b = 0.
- **2.2. Lemma.** [5, Lemma 2] Let U be a nonzero left (σ, τ) -Lie ideal of R and $d: R \longrightarrow R$ a nonzero derivation. If d(U) = 0 then $[U, \sigma(U)] = 0$ and $[\sigma(U), \tau(U)] = 0$.
- **2.3. Lemma.** [8, Lemma 1] Let U be a nonzero ideal of R and $d: R \longrightarrow R$, a nonzero (σ, τ) -derivation such that $d\sigma = \sigma d$, $d\tau = \tau d$. If $d^2(U) = 0$ then d = 0.
- **2.4. Lemma.** Let U be a nonzero left (σ, τ) -Lie ideal of R. If $U \subset C_{\alpha, \beta}$ then $U \subset Z$.

Proof. For any $r, x \in R$, $v \in U$, we have

$$\begin{split} 0 &= [[r\sigma(v),v]_{\sigma,\tau},x]_{\alpha,\beta} \\ &= [r[\sigma(v),\sigma(v)] + [r,v]_{\sigma,\tau}\sigma(v),x]_{\alpha,\beta} \\ &= [r,v]_{\sigma,\tau}[\sigma(v),\alpha(x)] + [[r,v]_{\sigma,\tau},x]_{\alpha,\beta}\sigma(v) \\ &= [r,v]_{\sigma,\tau}[\sigma(v),\alpha(x)]. \end{split}$$

That is:

 $(2.1) [r, v]_{\sigma, \tau}[\sigma(v), \alpha(x)] = 0, \text{ for all } r, x \in R, v \in U.$

Replacing x by $xz, z \in R$ in (2.1) and using the primeness of R we get

(2.2) $[r, v]_{\sigma, \tau} = 0$, for all $r \in R$ or $[\sigma(v), R] = 0$.

If $[r,v]_{\sigma,\tau}=0$ for all $r\in R$, then $0=[rt,v]_{\sigma,\tau}=r[t,v]_{\sigma,\tau}+[r,\tau(v)]t=[r,\tau(v)]t$, for all $r,t\in R$. Since R is prime we obtain $v\in Z$ from the last relation. That is, $U\subset Z$ is obtained from (2.2).

The following lemma is a generalization of [3,Lemma 5.1].

2.5. Lemma. Let d be a nonzero (σ, τ) -derivation on R. If $d(R) \subset C_{\lambda,\mu}$, then R is commutative.

Proof. For any $x, y, r \in R$ we have

$$\begin{split} 0 &= [d(xy), r]_{\lambda,\mu} \\ &= [d(x)\sigma(y) + \tau(x)d(y), r]_{\lambda,\mu} \\ &= d(x)[\sigma(y), \lambda(r)] + [d(x), r]_{\lambda,\mu}\sigma(y) + \tau(x)[d(y), r]_{\lambda,\mu} + [\tau(x), \mu(r)]d(y) \\ &= d(x)[\sigma(y), \lambda(r)] + [\tau(x), \mu(r)]d(y). \end{split}$$

Replacing r by $\mu^{-1}\tau(x)$ in the last relation we have,

(2.3)
$$0 = d(x)[\sigma(y), \lambda \mu^{-1} \tau(x)], \text{ for all } x, y \in R.$$

If we take yz instead of y in (2.3), and use the primeness of R we have d(x)=0 or $x\in Z$. Let us consider Brauer's Trick. Note that $K=\{x\in R\mid x\in Z\}$ and

 $L = \{x \in R \mid d(x) = 0\}$ are subgroups of R, furthermore $R = K \cup L$. This gives R = K or R = L by Brauer's Trick. Since d is nonzero, we obtain that R = K, and so R is commutative.

2.6. Theorem. If d is a nonzero (σ, τ) -derivation of R such that $d\sigma = \sigma d$, $d\tau = \tau d$ and $[a, d(R)]_{\alpha,\beta} = 0$, then $a \in C_{\alpha,\beta}$.

Proof. Let $[a, d(R)]_{\alpha,\beta} = 0$. For any $x, y \in R$ we have

$$\begin{split} 0 &= [a, d(xy)]_{\alpha,\beta} \\ &= [a, d(x)\sigma(y) + \tau(x)d(y)]_{\alpha,\beta} \\ &= \beta d(x)[a, \sigma(y)]_{\alpha,\beta} + [a, \tau(x)]_{\alpha,\beta} \alpha d(y), \end{split}$$

for all $x, y \in R$. Replacing x by $\tau^{-1}d(x)$ in the last relation and using the hypothesis, we get

(2.4)
$$\beta d\tau^{-1} d(x)[a, \sigma(y)]_{\alpha, \beta} = 0$$
, for all $x, y \in R$.

If we take $yz, z \in R$ instead of y in (2.4) we obtain $\beta d\tau^{-1}d(x)\beta\sigma(y)[a,\sigma(z)]_{\alpha,\beta} = 0$, for all $x,y,z \in R$. Since R is prime and σ,β are onto we have:

(2.5)
$$d\tau^{-1}d(R) = 0 \text{ or } [a, R]_{\alpha, \beta} = 0.$$

Now $d\tau = \tau d$ and $d\tau^{-1}d(R) = 0$ imply that $d^2(R) = 0$. Thus d = 0 by Lemma 2.3. Hence $a \in C_{\alpha,\beta}$ follows from (2.5) and the hypothesis.

2.7. Corollary. Let U be a nonzero right (σ, τ) -Lie ideal of R and d a nonzero derivation on R such that $d\sigma = \sigma d$, $d\tau = \tau d$. If d(U) = 0 then $U \subset C_{\sigma,\tau}$.

Proof. We have

$$0 = d[v, r]_{\sigma, \tau}$$

$$= d(v\sigma(r) - \tau(r)v)$$

$$= vd\sigma(r) - d\tau(r)v,$$

for all $r \in R$, $v \in U$. So we obtain $[v, d(r)]_{\sigma,\tau} = 0$ for all $r \in R$, $v \in U$. This implies that $U \subset C_{\sigma,\tau}$ by Theorem 2.6.

- **2.8. Theorem.** (1) Let U be a nonzero left (σ, τ) -Lie ideal of R and d a nonzero (α, β) -derivation on R such that $d\alpha = \alpha d$, $d\beta = \beta d$. If $[U, d(R)]_{\lambda,\mu} = 0$ then $U \subset Z$
 - (2) Let d_1 be a nonzero (σ, τ) -derivation, d_2 a nonzero (α, β) -derivation on R such that $d_2\alpha = \alpha d_2$ and $d_2\beta = \beta d_2$. If $[d_1(R), d_2(R)]_{\lambda,\mu} = 0$ then R is commutative.

Proof. (1) If $[U, d(R)]_{\lambda,\mu} = 0$ then we have $U \subset C_{\lambda,\mu}$ by Theorem 2.6. This implies that $U \subset Z$ by Lemma 2.4.

- (2) If $[d_1(R), d_2(R)]_{\lambda,\mu} = 0$ then $d_1(R) \subset C_{\lambda,\mu}$ by Theorem 2.6. This implies that R is commutative by Lemma 2.5.
- **2.9. Theorem.** Let d be a nonzero (σ, τ) -derivation and $a \in R$. If d(R, a) = 0 then $(d(R), a)_{\sigma, \tau} = 0$.

Proof. For any $r \in R$, using the hypothesis, we have:

$$0 = d(ar, a) = d(a(r, a) - [a, a]r)$$

= $d(a(r, a))$
= $d(a)\sigma(r, a) + \tau(a)d(r, a)$
= $d(a)\sigma(r, a)$.

That is,

(2.6) $d(a)\sigma(r,a) = 0$, for all $r \in R$.

Replacing r by $rx, x \in R$ in (2.6) we get, $0 = d(a)\sigma(r)\sigma[x,a] + d(a)\sigma(r,a)\sigma(x)$. Thus we obtain

(2.7)
$$d(a)\sigma(r)\sigma[x,a] = 0$$
, for all $x, r \in R$.

Since R is prime we have d(a)=0 or $a\in Z$ by (2.7). If $a\in Z$ then we can deduce that d(a)=0 as follows. Firstly,

$$0 = d(r, a)$$

$$= 2d(ra)$$

$$= 2d(r)\sigma(a) + 2\tau(r)d(a)$$

for all $r \in R$. Replacing r by (r, a) in the preceding relation and using that $\operatorname{char} R \neq 2$, we have

(2.8)
$$\tau(r,a)d(a) = 0$$
, for all $r \in R$.

Since $a \in Z$ and $\operatorname{char} R \neq 2$ we have $aR\tau^{-1}d(a) = 0$ by (2.8) and so d(a) = 0 is obtained. Thus, we have, $0 = d(r, a) = (d(r), a)_{\sigma, \tau} + (d(a), r)_{\sigma, \tau} = (d(r), a)_{\sigma, \tau}$, for all $r \in R$.

2.10. Lemma. Let U be a nonzero left (σ, τ) -Lie ideal of R and d a nonzero derivation of R such that $d\sigma = \sigma d$ and $d\tau = \tau d$. If d(U) = 0 then U is commutative.

Proof. For any $r \in R$, $v \in U$ we have

$$\begin{split} 0 &= d[r,v]_{\sigma,\tau} \\ &= d(r\sigma(v) - \tau(v)r) \\ &= d(r)\sigma(v) + rd\sigma(v) - d\tau(v)r - \tau(v)d(r) \\ &= d(r)\sigma(v) - \tau(v)d(r). \end{split}$$

That is,

(2.9)
$$d(r)\sigma(v) = \tau(v)d(r \text{ for all } r \in R, v \in U.$$

Replacing r by rx, $x \in R$ in (2.9) and using (2.9) again we get:

$$0 = d(rx)\sigma(v) - \tau(v)d(rx)$$

= $d(r)x\sigma(v) + rd(x)\sigma(v) - \tau(v)d(r)x - \tau(v)rd(x)$
= $d(r)x\sigma(v) + r\tau(v)d(x) - d(r)\sigma(v)x - \tau(v)rd(x)$,

for all $x, r \in R$, $v \in U$. That is,

(2.10)
$$d(r)[x, \sigma(v)] + [r, \tau(v)]d(x) = 0$$
, for all $x, r \in R$, $v \in U$.

If we take $\sigma(w)$, $w \in U$ instead of x in (2.10) we obtain, $d(R)[\sigma(w), \sigma(v)] = 0$, for all $v, w \in U$. Since R is prime we have d = 0 or $\sigma[U, U] = 0$. Since $d \neq 0$ we get [U, U] = 0.

2.11. Lemma. Let U be a nonzero left (σ, τ) -Lie ideal of R and d a nonzero derivation of R such that $d\sigma = \sigma d$, $d\tau = \tau d$. If $d^2(U) = 0$ and $d(U) \subset Z$ then U is commutative.

Proof. For all $x \in R$ and $u \in U$ we have

$$U\ni [\tau(u)x,u]_{\sigma,\tau}=\tau(u)[x,u]_{\sigma,\tau}[\tau(u),\tau(u)]x=\tau(u)[x,u]_{\sigma,\tau}.$$

That is, $\tau(u)[x,u]_{\sigma,\tau} \in U$, for all $x \in R$, $u \in U$. Thus,

$$\begin{split} 0 &= d^2(\tau(u)[x,u]_{\sigma,\tau}) \\ &= d(d\tau(u)[x,u]_{\sigma,\tau} + \tau(u)d[x,u]_{\sigma,\tau}) \\ &= d^2\tau(u)[x,u]_{\sigma,\tau} + d\tau(u)d[x,u]_{\sigma,\tau} + d\tau(u)d[x,u]_{\sigma,\tau} + \tau(u)d^2[x,u]_{\sigma,\tau}, \end{split}$$

gives

 $(2.11) \quad d\tau(u)d[x,u]_{\sigma,\tau}=0, \text{ for all } x\in R,\ u\in U.$

Replacing u by u + v, $v \in U$ in (2.11) we obtain,

$$(2.12) \quad d\tau(u)d[x,v]_{\sigma,\tau} + d\tau(v)d[x,u]_{\sigma,\tau} = 0, \text{ for all } x \in R, \ u,v \in U.$$

If we multiply (2.12) on the by left by $d\tau(u)$ and use that $d(U) \subset Z$ and $d\tau = \tau d$, we have that

(2.13)
$$(d\tau(u))^2 d[R, U]_{\sigma,\tau} = 0$$
, for all $u \in U$.

On the other hand, for any $x \in R$ and $v \in U$ we obtain:

$$\begin{split} [x\sigma(v),v]_{\sigma,\tau} &= x[\sigma(v),\sigma(v)] + [x,v]_{\sigma,\tau}\sigma(v) \\ &= [x,v]_{\sigma,\tau}\sigma(v) \in [R,U]_{\sigma,\tau}. \end{split}$$

That is, $d([x, v]_{\sigma, \tau}\sigma(v)) \in d[R, U]_{\sigma, \tau}$. If we consider this relation in (2.13) we have,

$$0 = (d\tau(u))^{2} d([x, v]_{\sigma, \tau} \sigma(v))$$

= $(d\tau(u))^{2} d[x, v]_{\sigma, \tau} \sigma(v) + (d\tau(u))^{2} [x, v]_{\sigma, \tau} d\sigma(v).$

That is,

(2.14)
$$(d\tau(u))^2 [x, v]_{\sigma, \tau} d\sigma(v) = 0$$
, for all $x \in R$, $u, v \in U$.

Taking v + w, $w \in U$ instead of v in (2.14) we get

$$0 = (d\tau(u))^{2} [x, v + w]_{\sigma,\tau} d\sigma(v + w)$$

= $(d\tau(u))^{2} [x, v]_{\sigma,\tau} d\sigma(v) + (d\tau(u))^{2} [x, w]_{\sigma,\tau} d\sigma(v) + (d\tau(u))^{2} [x, v]_{\sigma,\tau} d\sigma(w)$
+ $(d\tau(u))^{2} [x, w]_{\sigma,\tau} d\sigma(w)$.

If we use (2.14), we obtain:

$$(2.15) \quad (d\tau(u))^{2}[x,v]_{\sigma,\tau}d\sigma(w) + (d\tau(u))^{2}[x,w]_{\sigma,\tau}d\sigma(v) = 0, \text{ for all } x \in R, \ u,v,w \in U.$$

Let us multiply (2.15) by $d\sigma(v)$ on the right hand side, and use that $d(U)\subset Z$ and (2.14). Then we have,

$$(2.16) \quad (d\tau(u))^{2}[x, w]_{\sigma, \tau}(d\sigma(v))^{2} = 0, \text{ for all } x \in R, \ u, v, w \in U.$$

Since $d(U) \subset Z$ and R is prime we obtain:

$$(2.17)$$
 $(d\tau(u))^2[x,w]_{\sigma,\tau}=0$, for all $x \in R$, $u,w \in U$ or $(d\sigma(v))^2=0$, for all $v \in U$.

If we recall that $d(U) \subset Z$ and $d\sigma = \sigma d$, $d\tau = \tau d$, we obtain d(U) = 0 or $[R, U]_{\sigma, \tau} = 0$.

Case 1. If $[R, U]_{\sigma,\tau} = 0$ then for all $x, y \in R$, $v \in U$ we have,

$$\begin{aligned} 0 &= [xy, v]_{\sigma, \tau} \\ &= x[y, \sigma(v] + [x, v]_{\sigma, \tau}y \\ &= x[y, \sigma(v]. \end{aligned}$$

That is, $R[R, \sigma(U)] = 0$. Since R is prime we obtain $U \subset Z$.

Case 2. If d(U) = 0 then U is commutative by Lemma 2.10.

2.12. Theorem. Let U be a nonzero left (σ, τ) -Lie ideal of R and d a nonzero derivation of R such that $d\sigma = \sigma d$ and $d\tau = \tau d$. If $d(U) \subset Z$ then U is commutative.

Proof. Let $x, y \in R$ and $u, v \in U$. Then we have,

$$\begin{split} Z \ni d[d(v)x, u]_{\sigma,\tau} &= d(d(v)[x, u]_{\sigma,\tau} + [d(v), \tau(u)]x) \\ &= d(d(v)[x, u]_{\sigma,\tau}) \\ &= d^2(v)[x, u]_{\sigma,\tau} + d(v)d[x, u]_{\sigma,\tau} \end{split}$$

for all $x \in R$, $u, v \in U$. Since $d(v)d[x, u]_{\sigma, \tau} \in Z$ we have:

(2.18)
$$d^2(v)[x, u]_{\sigma, \tau} \in Z$$
, for all $x \in R$, $u, v \in U$.

If we recall that $d(U) \subset Z$, then Lemma 2.1 and (2.18) give $d^2(v) = 0$, for all $v \in U$, or $[x, u]_{\sigma, \tau} \in Z$, for all $x \in R$, $u \in U$.

Case 1. If $d^2(U) = 0$, then U is commutative by Lemma 7.

Case 2. If $[x, u]_{\sigma, \tau} \in \mathbb{Z}$, for all $x \in \mathbb{R}$, $u \in \mathbb{U}$, then

$$Z\ni [x\sigma(u),u]_{\sigma,\tau}=x[\sigma(u),\sigma(u)]+[x,u]_{\sigma,\tau}\sigma(u)=[x,u]_{\sigma,\tau}\sigma(u)$$

for all $x \in R$, $u \in U$. Again applying Lemma 2.1 in the last relation we obtain,

$$(2.19) \quad [x, u]_{\sigma, \tau} = 0, \text{ for all } x \in R, \text{ or } u \in Z.$$

If $[x, u]_{\sigma,\tau} = 0$, for all $x \in R$ then,

$$\begin{aligned} 0 &= [xr, u]_{\sigma, \tau} \\ &= x[r, \sigma(u)] + [x, u]_{\sigma, \tau} r \\ &= x[r, \sigma(u)] \end{aligned}$$

for all $x, r \in R$, $u \in U$. That is , $R[R, \sigma(u)] = 0$. Since R is prime, the last equation gives us $u \in Z$. So, we have $u \in Z$ for the two cases in (2.19). Hence we obtain $U \subset Z$, so again U is commutative. \square

2.13. Theorem. Let U be a nonzero left (σ, τ) -Lie ideal of R and d a nonzero derivation of R such that $d\sigma = \sigma d$ and $d\tau = \tau d$. If d(U) = 0 and $u^2 \in Z$ for all $u \in U$ then $U \subset Z$.

Proof. If d(U)=0 then $[U,\sigma(U)]=0$ by Lemma 2.2, and U is commutative by Lemma 2.10. For any $u,v\in U$ we have $(u+v)^2=u^2+v^2+2uv\in Z$. Since char $R\neq 2$ we have $uv\in Z$ for all $u,v\in U$. Now let us take the arbitrary elements r,s of R and u,v of U. Then we get

$$(2.20) \quad [r, u]_{\sigma, \tau}[s, v]_{\sigma, \tau} \in Z, \text{ for all } r, s \in R, u, v \in U.$$

Replacing s by $sx, x \in R$, in (2.20), we have

$$Z\ni [r,u]_{\sigma,\tau}[sx,v]_{\sigma,\tau}=[r,u]_{\sigma,\tau}s[x,\sigma(v)]+[r,u]_{\sigma,\tau}[s,v]_{\sigma,\tau}x.$$

Taking $w \in U$ instead of x, and using that $[U, \sigma(U)] = 0$ in the preceding relation, we get:

$$(2.21) \quad [r, u]_{\sigma, \tau}[s, v]_{\sigma, \tau}w \in Z, \text{ for all } r, s \in R, \ u, v, w \in U.$$

From the (2.20), (2.21) and Lemma 2.1 we have,

$$(2.22) \quad [r,u]_{\sigma,\tau}[s,v]_{\sigma,\tau}=0, \text{ for all } r,s\in R,\ u,v\in U, \text{ or } w\in Z, \text{ for all } w\in U.$$

If $[r,u]_{\sigma,\tau}[s,v]_{\sigma,\tau}=0$ for all $r,s\in R,\ u,v\in U,$ then
$$\begin{split} 0&=[rt,u]_{\sigma,\tau}[s,v]_{\sigma,\tau}\\ &=r[t,u]_{\sigma,\tau}[s,v]_{\sigma,\tau}+[r,\tau(u)]t[s,v]_{\sigma,\tau} \end{split}$$

 $= [r, \tau(u)]t[s, v]_{\sigma, \tau},$

for all $r,t,s\in R,\ u,v\in U$. This gives that $[R,\tau(U)]R[R,U]_{\sigma,\tau}=0$. On the other hand, $[R,U]_{\sigma,\tau}=0$ implies that $U\subset Z$ as we saw in the proof of Lemma 2.11.

References

- [1] Chang, J. C. On fixed power central (α, β) -derivations, Bull. Inst. Math. Acad. Scica **15** (2), 163–178, 1975.
- [2] Chang, J. C. On (α, β) -derivations of prime rings, Chinese J. Math.(Taiwan, R.O.C.) **22**(1), 21–30, 1994.
- [3] Herstein, I. N. A note on derivations, Canad. Math. Bull. 21, 369-370, 1978.
- [4] Herstein, I. N. A note on derivations, II, Canad. Math. Bull. 22 (4), 509-511, 1979.
- [5] Kaya, K. and Aydın, N. Some results on generalized Lie ideals, A Scientific Journal Issued by Jordan University for Women 3 (1), 1999.
- [6] Kaya, K. (σ, τ) -Lie ideals in prime rings, An. Univ. Timisoara, Stiinte Mat. **30** (2-3), 251–255, 1992.
- [7] Kaya, K. On (σ, τ) -derivations of prime rings, Doğa TU Mat. D. C. $\mathbf{12}$ (2), 42–45, 1988.
- [8] Soytürk, M. The commutativity of prime rings with (σ, τ) -derivations, C. Ü. Fen Bil. Derg. 15–16, 1996.