
Universal Journal of Mathematics and Applications, 2 (4) (2019) 224-228
Research paper

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653
DOI: https://doi.org/10.32323/ujma.649122

On a Competitive System of Rational Difference Equations
Mehmet Gümüş1
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Abstract

This paper aims to investigate the global stability and the rate of convergence of positive
solutions that converge to the equilibrium point of the system of difference equations in the
modeling competitive populations in the form

x(1)n+1 =
αx(1)n−2

β + γ
2
∏
i=0

x(2)n−i

, x(2)n+1 =
α1x(2)n−2

β1 + γ1
2
∏
i=0

x(1)n−i

, n = 0,1, ...

where the parameters α,β ,γ,α1,β1,γ1 are positive numbers and the initial conditions
x(1)−i ,x

(2)
−i are arbitrary non-negative numbers for i ∈ {0,1,2}.

1. Introduction

Difference equation or discrete dynamical system is a diverse field which impacts almost every branch of pure and applied mathematics.
Every difference equation determines a dynamical system and vice versa. Recently, there has been a big interest in studying difference
equation systems. One of the reasons for this is a necessity for some techniques which can be used in investigating equations arising
in mathematical models describing real life situations in population biology, economics, probability theory, genetics, psychology, see
[10, 11]. Therefore, the asymptotic behavior of solutions of the system for rational difference equations has received huge interest, see
[1, 2, 3, 4, 5, 6, 7, 8, 9, 13].
This paper deals with the following two-dimensional system

x(1)n+1 =
αx(1)n−2

β + γ
2
∏
i=0

x(2)n−i

, x(2)n+1 =
α1x(2)n−2

β1 + γ1
2
∏
i=0

x(1)n−i

, n = 0,1, ... (1.1)

where the parameters α,β ,γ,α1,β1,γ1 are positive numbers and the initial conditions x(1)−i ,x
(2)
−i are arbitrary non-negative numbers for

i ∈ {0,1,2}. Actually, in [15] some dynamical behaviors of the system (1.1) has been studied. But, we notice that the authors have not
examined various properties of system (1.1), namely, the global stability, the rate of convergence and the asymptotic behavior. Our aim in
this paper is to give a complete picture as regards the global behavior of positive solutions of system (1.1). That is, we here study the global
asymptotic stability of zero equilibrium and the rate of convergence of solutions.
The following the boundedness and the local stability results have obtained in [15].

Lemma 1.1. (x1,x2) = (0,0) is always an equilibrium point of system (1.1).

Theorem 1.2. If both α

β
< 1 and α1

β1
< 1, then every positive solution of system (1.1) is bounded.

Theorem 1.3. If both α

β
< 1 and α1

β1
< 1, then the zero equilibrium point of system (1.1) is locally asymptotically stable.

In the present paper, we will provide some results about the global behavior and the rate of convergence of positive solutions that converge to
the zero equilibrium point of the system (1.1), in the regions of parameters described in Theorem 1.3. In addition to this, we will present the
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use of Poincaré’s Theorem and a devolopment of Perron’s Theorem to conclude the precise asymptotics of positive solutions that converge to
the equilibrium.
Consider the following one-dimensional system of difference equations

xn+1 = f1(xn,yn), n = 0,1, . . .
yn+1 = f2(xn,yn), n = 0,1, . . .

}
(1.2)

where f1, f2 are continuous functions that maps some set I into I. The set I is an interval of real numbers. System (1.2) is competitive if
f1(x,y) is non-decreasing in x and non-increasing in y and f2(x,y) is non-increasing in x and non-decreasing in y. System (1.2) is called
anti-competitive system, if the functions f1 and f2 have monotonic character opposite to the monotonic character in competitive system. It
is well know that the dynamical properties of competitive populations has received great interest from both theoretical and mathematical
biologists [14] due to its universal commonness. Competitive and anti-competitive systems were studied by many authors (see [1, 4, 5, 8]).
Especially, studying the rate of convergence of solutions of some systems of difference equations is a topic of big interest [2, 3, 9].
We state that the following theorems give precise information about the asymptotics of linear non-autonomous difference equations. Consider
the scalar mth-order linear difference equation

yn+m + p1(n)yn+m−1 + . . .+ pm(n)yn = 0 (1.3)

where m is a positive integer and pi : Z+→ C for i ∈ {1, . . . ,m}. Suppose that

qi = lim
n→∞

pi(n), for i = 1,2, . . . ,m, (1.4)

exist in C. For the following limitting equation of (1.3)

yn+m +q1yn+m−1 + . . .+qmyn = 0, (1.5)

the asymptotics of solutions of (1.3) are given the following results. See [10, 13].

Theorem 1.4. (Poincaré’s Theorem) Consider (1.3) based on the condition (1.4). Let λi for i = 1, . . . ,m be the roots of the characteristic
equation

λ
m +q1λ

m−1 + . . .+qm = 0 (1.6)

of the limiting equation (1.5) under the condition that |λi| 6=
∣∣λ j
∣∣ for i 6= j. If xn is a positive solution of (1.3), then either xn = 0 for all large

n or there exists an index j ∈ {1, . . . ,m} such that

lim
n→∞

xn+1

xn
= λ j.

The releated results were obtained by Perron, and one of Perron’s results was improved by Pituk, see [13].

Theorem 1.5. Assume that (1.4) holds. If xn is a positive solution of (1.3), then either eventually xn = 0 or

lim
n→∞

sup(
∣∣xn j
∣∣)1/n =

∣∣λ j
∣∣ ,

where λ1, . . . ,λm are the roots (not necessarily distinct) of the characteristic equation (1.6).

Consider

Yn+1 = [A+B(n)]Yn (1.7)

where Yn is an m-dimensional vector, A ∈Cm×m is a constant matrix and

B : Z+→Cm×m

is a matrix function satisfying

‖B(n)‖→ 0, when n→ ∞, (1.8)

where ‖.‖ denotes any matrix norm which is associated with the vector norm ‖.‖. See [12].

Theorem 1.6. (Pituk) Suppose that condition (1.8) holds for system (1.7). If Yn is a solution of (1.7), then either

Yn = 0

for all large n or

θ = lim
n→∞
‖Yn‖1/n

exists and θ is equal to the modulus one of the eigenvalues of the matrix A.

Theorem 1.7. (Pituk) Suppose that condition (1.8) holds for system (1.7). If Yn is a solution of (1.7), then either

Yn = 0

for all large n or

θ = lim
n→∞

‖Yn+1‖
‖Yn‖

exists and θ is equal to the modulus one of the eigenvalues of the matrix A.
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2. Global Behavior of the system (1.1)

In this section, we investigate the global behavior of the system (1.1).

Theorem 2.1. If both α

β
< 1 and α1

β1
< 1, then the zero equilibrium point of system (1.1) is globally asymptotically stable.

Proof. We know by Theorem 1.3 that the zero equilibrium point (x1,x2) = (0,0) of the system (1.1) is locally asymptotically stable. So, it
suffices to prove for any solution {(x(1)n ,x(2)n )}∞

n=−2 of system (1.1) that

lim
n→∞

(x(1)n ,x(2)n ) = (0,0).

From the boundedness result system (1.1) it is clear that it is sufficient to prove that {(x(1)n ,x(2)n )}∞
n=−2 is decreasing. We have that

0≤ x(1)n+1 =
αx(1)n−2

β + γ
2
∏
i=0

x(2)n−i

<
α

β
x(1)n−2

and

0≤ x(2)n+1 =
α1x(2)n−2

β1 + γ1
2
∏
i=0

x(1)n−i

<
α1

β1
x(2)n−2.

By induction on n, one has

0≤ x(1)3n+i < (
α

β
)n+1x(1)−3+i, i = 1,2,3,

and

0≤ x(2)3n+i < (
α

β
)n+1x(2)−3+i, i = 1,2,3.

Thus, for α

β
< 1 and α1

β1
< 1, we can have

lim
n→∞

(x(1)n ,x(2)n ) = (0,0).

This completes the proof.

3. Rate of Convergence

In this section, we will characterize the rate of convergence of a solution that converges to the equilibrium point

M = (x1,x2) = (0,0)

of the system (1.1).
Using Theorem 1.6 and 1.7, we obtain the following rate of convergence result.

Theorem 3.1. Suppose that α

β
< 1 and α1

β1
< 1. Let {(x(1)n ,x(2)n )}∞

n=−2 be any positive solution of the system (1.1) such that

lim
n→∞

x(1)n = x1,

lim
n→∞

x(2)n = x2

where M = (x1,x2) and M is globally asymptotically stable. Then, the error vector

En =



e1
n

e1
n−1

e1
n−2
e2

n
e2

n−1
e2

n−2


6×1

=



x(1)n − x1

x(1)n−1− x1

x(1)n−2− x1

x(2)n − x2

x(2)n−1− x2

x(2)n−2− x2


6×1

of every positive solution of the system (1.1) satisfies both of the following asymptotic relations:

lim
n→∞
‖En‖1/n = |λiJF (M)| , for some i = 1,2, . . . ,6

lim
n→∞

‖En+1‖
‖En‖

= |λiJF (M)| , for some i = 1,2, . . . ,6

where

|λiJF (M)|

is equal to the modulus one of the eigenvalues of the Jacobian matrix evaluated at the equilibrium point M.
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Proof. Let {(x(1)n ,x(2)n )}∞
n=−2 be any positive solution of the system (1.1) such that

lim
n→∞

x(1)n = x1

and

lim
n→∞

x(2)n = x2.

To find the error terms, we have

x(1)n+1− x1 = ∑
2
i=0 Ai(x

(1)
n−i− x1)+∑

2
i=0 Bi(x

(2)
n−i− x2)

x(2)n+1− x2 = ∑
2
i=0 Ci(x

(1)
n−i− x1)+∑

2
i=0 Di(x

(2)
n−i− x2).

Set

e1
n = x(1)n − x1,

e2
n = x(2)n − x2;

it follows that

e1
n+1 = ∑

2
i=0 Aie1

n−i +∑
2
i=0 Bie2

n−i

e2
n+1 = ∑

2
i=0 Cie1

n−i +∑
2
i=0 Die2

n−i

where

A0 = 0, A1 = 0, A2 =
α

β + γ
2
∏
i=0

x(2)n−i

,

B0 =−
αγx(1)n−2x(2)n−1x(2)n−2

(β + γ
2
∏
i=0

x(2)n−i)
2

, B1 =−
αγx(1)n−2x(2)n x(2)n−2

(β + γ
2
∏
i=0

x(2)n−i)
2

, B2 =−
αγx(1)n−2x(2)n x(2)n−1

(β + γ
2
∏
i=0

x(2)n−i)
2
,

C0 =−
α1γ1x(2)n−2x(1)n−1x(1)n−2

(β1 + γ1
2
∏
i=0

x(1)n−i)
2

, C1 =−
α1γ1x(2)n−2x(1)n x(1)n−2

(β1 + γ1
2
∏
i=0

x(1)n−i)
2

, C2 =−
α1γ1x(2)n−2x(1)n x(1)n−1

(β1 + γ1
2
∏
i=0

x(1)n−i)
2
,

D0 = 0, D1 = 0, D2 =
α1

β1 + γ1
2
∏
i=0

x(1)n−i

.

Taking the limits, it is clear that

lim
n→∞

A0 = 0, lim
n→∞

A1 = 0 and lim
n→∞

A2 =
α

β + γx3
2

lim
n→∞

B0 =−
αγx1x2

2
(β + γx3

2)
2

, lim
n→∞

B1 =−
αγx1x2

2
(β + γx3

2)
2

and lim
n→∞

B2 =−
αγx1x2

2
(β + γx3

2)
2
,

lim
n→∞

C0 =−
α1γ1x2

1x2

(β1 + γ1x3
1)

2
, lim

n→∞
C1 =−

α1γ1x2
1x2

(β1 + γ1x3
1)

2
and lim

n→∞
C2 =−

α1γ1x2
1x2

(β1 + γ1x3
1)

2
,

lim
n→∞

D0 = 0, lim
n→∞

D1 = 0 and lim
n→∞

D2 =
α1

β1 + γ1x3
1
.

That is

A2 =
α

β+γx3
2
+ ςn, B0 =−

αγx1x2
2

(β+γx3
2)

2 + τn, B1 =−
αγx1x2

2
(β+γx3

2)
2 +υn, B2 =−

αγx1x2
2

(β+γx3
2)

2 +δn

C0 =−
α1γ1x2

1x2

(β1+γ1x3
1)

2 +λn, C1 =−
α1γ1x2

1x2

(β1+γ1x3
1)

2 + εn, C2 =−
α1γ1x2

1x2

(β1+γ1x3
1)

2 +ηn, D2 =
α1

β1+γ1x3
1
+ϕn

where ςn→ 0, τn→ 0, υn→ 0, δn→ 0, λn→ 0, εn→ 0, ηn→ 0, ϕn→ 0 for n→ ∞.
Thus, the limitting system of error terms about the equilibrium M can be written as follows:

En+1 = (C+D(n))En,

where En = (e1
n,e

1
n−1,e

1
n−2,e

2
n,e

2
n−1,e

2
n−2)

T ,

C =



0 0 α

β
0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 α1

β1

0 0 0 1 0 0
0 0 0 0 1 0


6×6

, Dn =


0 0 ςn τn υn δn
0 0 0 0 0 0
0 0 0 0 0 0
λn εn ηn 0 0 ϕn
0 0 0 0 0 0
0 0 0 0 0 0


6×6

and ‖D(n)‖→ 0, when n→ ∞. This completes the proof.
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