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Abstract 

Any mechanical performance measure of a structure is strongly related with its topology. Size and shape 

optimization cannot give the best structural performance, since these methods cannot change the 

structure’s topology. Hence, topology optimization should be employed to obtain the best performance. In 

this paper, a review of topology optimization is provided. At first, the general topology optimization 

problem is defined. Then, modern topology optimization methods are presented and discussed.  
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YAPISAL MÜHENDİSLİKTE KULLANILAN TOPOLOJİ ENİYİLEMESİ 

YÖNTEMLERİ ÜZERİNE GENEL BİR BAKIŞ 
 

Özet 

Bir yapının gösterdiği mekanik performans, o yapının topolojisi ile çok yakından alakalıdır. Boyut ve şekil 

eniyilemeleri sonucunda, yapının topolojisinde bir değişiklik olmadığı için, en iyi performans elde 

edilemez. Netice itibariyle, en iyi performansın elde edilebilmesi için topoloji eniyilemesinden 

faydalanılması gerekmektedir. Bu çalışmada, topoloji eniyilemesi yöntemleri hakkında bir derleme 

sunulmuştur. İlk olarak, genel topoloji eniyilemesi problemi tanıtılmış, ardından modern topoloji 

eniyilemesi yöntemleri tartışılmıştır.   
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1. INTRODUCTION 

Structural optimization is a subspace of the general optimization field which concerns with 

obtaining optimized structures to achieve certain needs while satisfying some constraints. Three 

types of structural optimization problems are encountered in the field: size, shape and topology 

optimization. In size optimization, the geometry of the structure is known, but certain sizes 

(dimensions) are the design variables to be determined. In shape optimization, the topology is 

known, but the boundary curves/surfaces of the structure either parameterized or discretized 

design variables are to be found. Whereas in topology optimization, usually the whole design 

domain is discretized, then the boundary curves/surfaces as well as number of holes and the 

location of the holes inside the design domain can be altered. 

Topology optimization [1, 2] is basically the determination of optimum material distribution in a 

design space which minimizes (or maximizes) an objective function while satisfying some 

constraints. The objective function can be compliance minimization (i.e., stiffness maximization) 

for static problems and, fundamental frequency or frequency gap maximization for dynamic 

problems [3]. A topology optimization problem is solved in a certain design space in which 

applied loads and boundary conditions are specified. In this design space, a volume fraction 

value, which indicates the ratio of solid volume to total design space volume, is also defined. 

Volume fraction determines how much of the design space will include solid material. In order to 

conduct topology optimization, a finite element model is needed. For two dimensional structures, 

a finite element model can be constructed by employing large number of square elements, which 

can be considered as pixels. Then, the topology optimization problem can be summarized as 

determining which pixels will include material and which pixels will be void, for the optimized 

design.  

Topology optimization is the most comprehensive method to be employed in structural design, 

since it involves simultaneous size and shape optimization, as well. Because of this promise, it is 

widely studied in the structural engineering field [4-6]. In this study, a brief review on topology 

optimization fundamentals and modern topology optimization methods utilized in optimum 

structural design is provided. 
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2. TOPOLOGY OPTIMIZATION  

2.1. Description of Topology 

Mathematically, topology is concerned with the deformable objects, and all distortions are 

considered as transformations or reversibly unique mappings [7]. The topological transformations 

or topological mappings are the transformations which do not change the neighborhood relations, 

in other words, topological transformations cause topologically equivalent domains, therefore, 

topological property of a domain is invariant for all topological mappings [7]. 

Topological domains consist of all subsets of R
3
. The degree of connection of domains 

determines its topology class. Domains belonging to the same topology class are considered as 

topologically equivalent [7] (see Figure 1a). Naming of topology classes can be done as follows: 

n-fold connected domains require (n-1) cuts from one boundary to another, to convert them into a 

simply connected domain [7] (see Figure 1b). 

According to the above definitions, size and shape optimizations cause topological mappings that 

result in topologically equivalent structures. However, topology optimization transforms the 

structure from one topology class to another. 

2.2. Topology Optimization Problem 

Although exact analytical solutions of topology optimization problems reveal basic 

characteristics of optimal designs, they are only capable of solving problems having simple load 

and support conditions [8]. Therefore, for more realistic problems, it is necessary to use a 

discretized design domain. Most of the studies in the literature use finite element formulation 

with a fixed mesh as the discretized model [9]. Here, the general form of topology optimization 

problem is provided for this model as: 

                                               minimize:  𝐻(𝒖 𝒙 , 𝒙)    

                                               subject to:  𝐺𝑗  𝒖 𝒙 , 𝒙 ≥ 0    for 𝑗 = 1, 2, … . . , 𝑃                    (1) 

                                     𝑥𝑒 = 0 or 1     for 𝑒 = 1, 2, … . . , 𝑁  

where x is the design variable vector, u is the state field, H is the objective function, Gj is the jth 

constraint, P is the total number of constraints, xe is the eth structural member that constitutes the 

design variable vector x, N is the total number of design variables (structural members). One of 
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the mostly used constraints above is the so called volume (or mass) constraint [9]. 

 

 

Figure 1. (a) Topologically equivalent domains. (b) Topological classes of simply, two-fold,  

                three-fold connected domains. 
 

The formulation given in Equation (1) most of the time represents a nonlinear topology 

optimization problem. Here, it should be emphasized that, design variables can only take a value 

of 0 or 1. In general, topology optimization problems lack solutions (i.e., ill-posed) with this 

current form [7, 9]. If design variables are defined as continuous, the problem relaxes and 

efficient gradient-based optimization algorithms can be utilized [9]. Then, the continuous 

topology optimization problem can be written as: 

                                               minimize:  𝐻(𝒖 𝒙 , 𝒙)    

                                               subject to:  𝐺𝑗  𝒖 𝒙 , 𝒙 ≥ 0    for 𝑗 = 1, 2, … . . , 𝑃                    (2) 

                                     0 ≤ 𝑥𝑒 ≤ 1     for 𝑒 = 1, 2, … . . , 𝑁  

The formulation in Equation (2) is extensively used in the modern topology optimization 

literature [9]. For instance a static topology optimization problem, where the objective function is 

minimization of the compliance (or equivalently maximization of the stiffness) of the structure, 

can be written as:  
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                                               minimize:  𝐻 𝒙 = 𝒖(𝒙)𝒕𝑲𝒖(𝒙) 

                                               subject to:  𝑲𝒖 − 𝒇 = 𝟎                                                             (3) 

                                                                  𝑎𝑉0 − 𝑉(𝒙) ≥ 0 

                                                                  0 ≤ 𝑥𝑒 ≤ 1     for 𝑒 = 1, 2, … . . , 𝑁 

where u is the displacement field, K is the global stiffness matrix, f is the load vector, V(x) is the 

total solid material volume, V0 is the total design space volume, a is the volume fraction value 

which is the ratio between the total solid material volume and the total design space volume. In 

the problem given in Equation (3), mass constraint is employed via the volume fraction term. 

Moreover, static equilibrium equation must be satisfied in all of the iteration steps. A sample 

compliance minimization (i.e., stiffness maximization) topology optimization problem [10] 

description and its solution is provided in Figure 2. In this problem the volume fraction, a, is 

selected as 0.5 (i.e., half void-half solid design). The finite element discretization is 50 × 150, 

therefore design space consists of 7500 elements (i.e., Vo = 7500). The beam dimensions are 1 m 

× 3 m. Applied vertically downward force’s (F) magnitude is 1 kN and an isotropic material with 

E = 210 GPa and  = 0.3 is utilized. In Figure 2, at left, the design space, applied load and the 

boundary conditions are seen. Whereas, at right, the topology optimized design is presented.    

 

 

Figure 2. A compliance minimization topology optimization problem [10]. 

 

On the other hand, for dynamic problems, objective function can be nth natural frequency 

maximization or frequency gap maximization. A topology optimization problem in which nth 

natural frequency is maximized with a mass constraint can be defined as: 

                                               maximize:  𝜔𝑛
2(𝒙) =

𝒖𝑛
𝑡 𝑲𝒖𝑛

𝒖𝑛
𝑡 𝑴𝒖𝑛
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                                               subject to:  𝑲𝒖𝒏 − 𝜔𝑛
2𝑴𝒖𝒏 = 𝟎                                                (4) 

                                                                  𝑎𝑉0 − 𝑉(𝒙) ≥ 0 

                                                                  0 ≤ 𝑥𝑒 ≤ 1     for 𝑒 = 1, 2, … . . , 𝑁 

where ωn is the nth natural frequency, un is the nth mode shape vector and M is the global mass 

matrix of the structure. Similarly a frequency gap maximization topology optimization problem 

in which the frequency gap between nth and n+1th natural frequencies are maximized for a given 

mass constraint can be defined as: 

                                               maximize:  
𝜔𝑛+1

2  𝒙 

𝜔𝑛
2  𝒙 

                  

                                               subject to:  𝑲𝒖𝒏 − 𝜔𝑛
2𝑴𝒖𝒏 = 𝟎                                                (5) 

                                                                  𝑲𝒖𝒏+𝟏 − 𝜔𝑛+1
2 𝑴𝒖𝒏+𝟏 = 𝟎 

                                                                  𝑎𝑉0 − 𝑉(𝒙) ≥ 0 

                                                                  0 ≤ 𝑥𝑒 ≤ 1     for 𝑒 = 1, 2, … . . , 𝑁  

Sample natural frequency maximization and frequency gap maximization topology optimization 

problems are provided in Figure 3 and Figure 4, respectively.  

 

 

Figure 3. A fundamental frequency maximization topology optimization problem [10]. 

 

In Figure 3, a fundamental frequency maximization topology optimization problem [10] with 0.5 

volume fraction value (a) is solved. The finite element discretization is 40 × 320, therefore the 

total design space consists of 12800 elements (i.e., Vo = 12800). The beam dimensions are 1 m × 

8 m. An isotropic material with E = 210 GPa,  = 0.3 and ρ = 7800 kg/m
3
 is employed. At top of 

the Figure 3, the design space is provided and at bottom, the topology optimized design is 
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presented.  

On the other hand, in Figure 4, a frequency gap maximization topology optimization problem 

[11] with 0.5 volume fraction value is given. The objective function is to maximize the gap 

between the second and the first natural frequencies of a compliant inertial amplification 

mechanism [12]. The finite element discretization is 50 × 100, and mechanism has 50 mm height 

(vertical) and 100 mm length (horizontal). An isotropic material with E = 210 GPa,  = 0.3 and ρ 

= 7800 kg/m
3
 is used. At left of the Figure 4, the design space is given, whereas at right, the 

topology optimized design is presented. 

  

Figure 4. A frequency gap maximization topology optimization problem [11] of a compliant  

                   inertial amplification mechanism [12].  

 

2.3 Early Historical Progress Achieved in Structural Topology Optimization 

Topology optimization studies can be traced back more than a hundred years ago [13]. In 

Michell’s pioneering work [13], optimal layout of truss structures which minimizes the weight is 

studied for a single load condition while only stress constraints are being employed. This type of 

structures are known as Michell trusses to honor their founder. Further discussions on Michell 

trusses are provided in [14]. However, the subject was untouched until 1950s [15]. Between 

1950s and 1980s, various analytical and numerical studies on layout optimization are done (for 

detailed discussions see [8, 15-17]). In that period, conducted works are referred as layout 

optimization, since grid-like structures are studied. In topology optimization, the ratio of solid 

structure’s volume to total design space volume is referred as the volume fraction. Therefore, 

layout optimization deals with low volume fraction designs like truss topology optimization [8, 

18]. 
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During 1980s, the necessity of studying high volume fraction design spaces emerged. In those 

years, it was discovered that, for the problems with high volume fractions, it is necessary to 

consider the microstructure of the system (see [15] for historical progress). The so-called 

microstructure approach is considered under the topic of generalized shape optimization [8, 18]. 

More clearly, generalized shape optimization is the topology optimization performed for high 

volume fraction design spaces and it is the most general problem formulation that also covers 

layout optimization. In this study, ―generalized shape optimization‖ term is omitted. Instead, 

―topology optimization‖ is used. So, when the term ―topology optimization‖ is seen in the text, it 

should be understood that the problem deals with the most general case, i.e., problems with high 

volume fractions. 

The introduction of microstructure approach to topology optimization field leads the modern 

topology optimization techniques to emerge. In the next section, the basic categories of these 

techniques are discussed in detail. 

 

3. BASIC CATEGORIES OF MODERN TOPOLOGY OPTIMIZATION METHODS 

For almost 30 years, numerous topology optimization methods emerged. In a recent study [9], the 

close relationship among these methods are pointed out. However, a coarse classification of the 

existing methods is still possible. To that end, in this section, modern topology optimization 

methods are categorized and the popular ones are introduced within each subsection. One can 

refer to [7, 9, 18, 19], to extend the idea about the subject. 

Here, it should be noted that, it is a tradition to develop and test the topology optimization 

algorithms on compliance minimization problems with a mass constraint. Unless specified, 

throughout this chapter, the methods presented are also for that kind of topology optimization 

problems, as well. 

3.1. Homogenization Methods 

The discrete nature of topology optimization problem formulation given in Equation (1) leads 

lack of existence of solutions even for the simple problems such as minimum compliance case 

[8]. One way of making the problem formulation relaxed and continuous as given in Equation (2) 



 

Derleme                              Yüksel/Kırklareli University Journal of Engineering and Science 5-2(2019) 159-175   

                      DOI: 10.34186/klujes.606666                                                           Geliş Tarihi:19.08.2019  Kabul Tarihi:30.12.2019 

 

An Overview On Topology Optimization Methods Employed In Structural Engineering                                                      167 

is to introduce composite microstructures to the design domain [20]. To that end, mathematical 

theory of homogenization (see [21] for a brief review) is used to obtain a homogenized equivalent 

material model which replaces the composite, in turn, making the optimization problem relaxed 

and design variables continuous. The usage of homogenization theory is the reason why these 

techniques are called homogenization methods in the literature [7, 22-24]. 

In these methods, design domain is considered as being consisted of composite microstructures. 

These composite microstructures are composed of periodically repeating porous unit cells. These 

unit cells can be a hole-in-cell type or a layered type [7]. Other unit cell composite types can be 

found in the literature as well [20]. It is assumed that there exists infinitely many periodically 

distributed small unit cells within the microstructure. This assumption leads the continuous 

variation of material density throughout the microstructure [7]. This periodic microstructure’s 

effective macroscopic properties depend on its unit cell geometry, and homogenization theory is 

utilized to calculate them at this point [7]. Following this procedure, a well-posed topology 

optimization problem formulation is obtained, as desired. 

There exists mainly two homogenization methods which are classified according to the unit cell 

type used in the microstructure [18]. One of them uses optimal unit cell structures which are 

previously found for a certain type of problem. However, that situation brings a disadvantage, 

since advanced mathematical treatment to obtain optimal unit cells is needed for other problem 

types [18]. The other method utilizes non optimal unit cells [20]. This type of unit cell consists of 

a rectangular void inside and isotropic material on the edges. For this type of structure, 

rectangular void lengths (a and b) and unit cell orientation angle with respect to global coordinate 

system (θ) are the design variables. Design variables a and b are continuous and they can vary 

between 0 and 1. By homogenization, mechanical properties of the microstructure which is 

composed of infinitely many unit cells can be defined in terms of a, b and θ. In other words, when 

homogenization method is employed, a, b and θ variables actually define the configuration of the 

microstructure. In discretized domain, a microstructure corresponds to an individual finite 

element. Simple microstructure definition of this type is used in the first homogenization method 

topology optimization study in the literature [22] and caused the modern topology optimization 

field to emerge. 
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3.2. Density Methods 

Density methods [25-27] are introduced after the homogenization methods. In these methods, for 

an individual finite element (i.e., microstructure) there exists only one design variable which is 

the element density (xe). A microstructure’s material property contribution to the whole structure 

depends on this density design variable which can take any value between 0 and 1. With this 

formulation, various well-known optimization algorithms (see [28]) can be utilized to solve the 

topology optimization problem. Moreover, density methods involve penalization parameters, 

which penalize intermediate densities to obtain manufacturable solid-void designs with clear 

material boundaries instead of the perforated ones acquired with homogenization methods. 

Various density methods can be found in the literature [9, 19]. Here, the most popular of them, 

―Solid Isotropic Microstructure with Penalization‖ (SIMP) method [25, 26] is addressed.  

The SIMP method [25, 26] is a density method in which elastic properties of a microstructure is 

proportional to an exponential multiple of an element density (xe) function. Exponential 

multiplier of an element density function (penalization number, p) causes the continuous and 

differentiable variation of the microstructure property of an individual finite element, therefore 

the topology optimization problem is converted into a continuous problem (like Equation 2). This 

allows one to use the gradient based mathematical programming methods. Moreover, in the 

presence of a volume constraint, the use of penalization number (p) values larger than 1 (i.e., p > 

1) penalizes microstructures with intermediate densities [7]. When p > 1, the microstructures with 

intermediate densities contribute to structure’s elasticity less than the structure’s mass. In other 

words, they do not provide enough stiffness for the structure compared to their mass. So it 

becomes uneconomical for the structure to hold them. Consequently microstructures (finite 

elements) with intermediate densities are penalized and they are forced to vanish through the 

optimization process.  As a result, a void-solid (0-1) type of a final design is obtained. On the 

other hand, the common numerical instabilities in topology optimization problems, such as local 

minima problem, checkerboard pattern formation and more importantly, mesh dependency issues 

[29], can also occur in the SIMP method with its current formulation, as well.  

In Section 2.2, the need to transform the original problem in Equation (1) to Equation (2) is 

mentioned. One way to successfully achieve this is the homogenization approach (see Section 
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3.1). On the other hand, the relaxation attained by the SIMP method with its current form is not 

satisfactory enough to make the problem well-posed [7]. The nonexistence of solutions forces the 

optimization to converge to different results for different finite element mesh discretizations. This 

phenomenon is known as the mesh dependency of solutions in the literature [29]. To close the 

design space in an appropriate sense, i.e., to make the optimization problem well-posed, problem 

regularization is needed [7]. Thus, lack of convergence related with mesh dependency can be 

discarded. There exist many problem regularization techniques in the literature [30-33].  

3.3 Discrete Methods 

Usage of continuous density design variables in the topology optimization problems results in 

porous or grey regions in the optimized structure if proper penalization or problem regularization 

is not applied. Discrete methods concern with Equation (1) instead of Equation (2) in an attempt 

to obtain directly 0-1 (i.e., void-solid) designs. For this discrete problem, a natural choice is to 

use non-gradient optimization approaches such as Genetic Algorithms, Simulated Annealing, 

Particle Swarms, Ant Colonies, etc. However, these methods are inefficient for topology 

optimization problems in which large number of design variables are involved [34]. They can 

only solve problems with coarse finite element meshes [34]. Moreover, these algorithms also 

need some type of problem regularization or filtering to obtain physically reliable designs. 

There exists another type of approach so-called evolutionary methods [35]. Inspired from the 

natural evolutionary process, evolutionary structural optimization (ESO) method [36] is 

suggested. In the ESO method, the optimum is sought by removing some of the inefficient 

material from the design domain in every iteration step. The determination of inefficient material 

depends on the type of objective function and constraints. However, as the material can only be 

removed (not added) during optimization, sometimes non-optimized designs are obtained [15]. 

To cope with this problem, ―bi-directional evolutionary structural optimization‖ (BESO) method 

[37] is suggested. In the BESO method, material is being added in the vicinity of overstressed 

elements while in the inefficient areas, material is being removed. 

Despite its conceptual simplicity, ESO/BESO methods are subjected to criticism [38-40]. These 

include, intuitive nature of the procedure, obtaining non optimal designs at the end of the process 

and difficulties encountered with multiple constraints [39]. As a consequence of these, a new 
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BESO algorithm is suggested recently [41, 42]. In the new BESO algorithm, design variable 

sensitivities are utilized with penalization in order to sort the elements with respect to their 

efficiency. One further novelty in the method is, none of the elements are completely removed 

from the design space, instead, inefficient elements get a predetermined minimum value. By this, 

it is claimed that, void elements can become solid in any iteration step of the algorithm. It is 

argued in the literature that, the new BESO algorithm can be categorized as a discrete update 

version of the standard SIMP scheme [9]. 

3.4. Boundary Variation Methods 

Boundary variation methods are the recent development in the topology optimization field. They 

emerged from the need to obtain crisp and smooth edged structures as a result of optimization 

procedure. These methods have their roots in shape optimization techniques, however, they are 

fundamentally different, because they allow formation and disappearance of void regions inside 

the design domain in addition to allowing structural boundary movements [19]. There exist 

numerous boundary variation methods in the literature, but here, only the most popular level set 

methods are considered. For other alternative approaches, refer to [9, 19]. 

In the level set approach [43-45], the level set function determines where the boundaries, void 

and solid sections take place. Material boundaries exist where the level set function takes a 

certain constant value (usually it is 0). Where the level set function values are below this constant 

there exist void regions, whereas solid regions take place where the level set function values are 

greater than that constant. Changes in structure’s topology are achieved by level set function 

updating, and mostly it is performed by solving the augmented Hamilton-Jacobi equation with 

diffusive and reactive terms [9]. In this manner, the original Hamilton-Jacobi equation is utilized 

for shape updating, reactive term is used for nucleation of new holes and diffusive term is 

employed to smooth the level set field [9]. 

Level set methods are mainly composed of level set function parameterization, mechanical model 

and optimization parts [46]. Firstly, design variables are parameterized via level set function. 

Then, geometry described by the level set function is mapped onto the mechanical structural 

model. Finally, design update is performed [46]. Depending on the level set method type used, in 

each of these three parts, regularization techniques can be employed to regularize ill-posedness of 



 

Derleme                              Yüksel/Kırklareli University Journal of Engineering and Science 5-2(2019) 159-175   

                      DOI: 10.34186/klujes.606666                                                           Geliş Tarihi:19.08.2019  Kabul Tarihi:30.12.2019 

 

An Overview On Topology Optimization Methods Employed In Structural Engineering                                                      171 

the topology optimization problem [46]. Many level set methods utilize the regularization 

techniques used in density methods. Moreover, similar material interpolation schemes with 

density methods are utilized in the geometry mapping part of many level set methods, as well. A 

comprehensive review on the level set methods can be found in [46]. 

4. CONCLUSION 

In this paper, a brief review on topology optimization methods used in structural engineering is 

presented. Topology optimization problem is defined and early historical progress in the field is 

addressed. The modern structural topology optimization methods are classified into four main 

categories as: homogenization methods, density methods, discrete methods and boundary 

variation methods. Each of these methods is discussed considering major points. Finally, the list 

of the pioneering works for the basic categories of the modern topology optimization methods is 

provided in Table 1.     

 

Table 1. The list of the pioneering works for modern topology optimization methods. 

The Pioneering Work Method Year 

Reference [22]  Homogenization 1988 

Reference [25]  Density 1989 

Reference [36]  Discrete 1993 

Reference [44]  Boundary Variation 2003 
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