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Abstract— Convolutional Neural Networks (CNNs) are one of the most commonly used architectures for image-related 
deep learning studies. Despite its popularity, CNNs have some intrinsic limitations such as losing some of the spatial 
information and not being robust to affine transformations due to pooling operations. On the other hand, Capsule 
Networks are composed of groups of neurons, and with the help of its novel routing algorithms, they have the capability 
for learning high dimensional pose configuration of the objects as well. In this study, we investigate the performance of 
brand-new Capsule Networks using dynamic routing algorithm on the clothing classification task. To achieve this, we 
propose 4-layer stacked-convolutional Capsule Network architecture (FashionCapsNet), and train this model on 
DeepFashion dataset that contains 290k clothing images over 46 different categories. Thereafter, we compare the category 
classification results of our proposed design and the other state-of-the-art CNN-based methods trained on DeepFashion 
dataset. As a result of the experimental study, FashionCapsNet achieves 83.81% top-3 accuracy, and 89.83% top-5 
accuracy on the clothing classification. Based upon these figures, FashionCapsNet clearly outperforms the earlier methods 
that neglect pose configuration, and has comparable performance to the baseline study that utilizes an additional landmark 
information to recover pose configuration. Finally, in the future, proposed FashionCapsNet may inherit extra performance 
boost on the clothing classification due to advances in the relatively new Capsule Network research. 
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FashionCapsNet: Kapsül Ağları ile Kıyafet Sınıflandırma 
 
Özet— Konvolüsyonel Sinir Ağları (KSA) görsel ilişkili derin öğrenme çalışmalarında en sık kullanılan mimarilerden 
biridir. Popülaritesine rağmen, KSA’lar ortaklama işlemi yüzünden konumsal bilgi kaybı ve afin dönüşümlerine dayanıklı 
olmama gibi bazı yerleşik sınırlamalara sahiptir. Öte yandan, gruplanmış nöronlardan oluşan Kapsül Ağları, özgün 
yönlendirme algoritmalarının yardımıyla, nesnenin yüksek boyutlu poz konfigürasyonunu da öğrenme kapasitesine 
sahiptir. Bu çalışmada dinamik yönlendirme algoritmasını kullanan Kapsül Ağları’nın kıyafet sınıflandırma 
performansını inceledik. Bu amaçla, arka arkaya yerleştirilmiş 4 Konvolüsyonel katmanlı bir Kapsül Ağ mimarisi 
(FashionCapsNet) önerdik, ve bu modeli 46 kategoriye ayrılmış 290 bin kıyafet resmi içeren DeepFashion adlı veri seti 
ile eğittik. Akabinde, modelimizin ve DeepFashion veri seti ile eğitilmiş CNN tabanlı en gelişmiş metotların kategori 
sınıflandırma sonuçlarını karşılaştırdık. Çalışmamızın sonucunda, FashionCapsNet, kıyafet sınıflandırma için %83,81’lik 
en yüksek-3 başarım oranı ve %89,83’lük en yüksek-5 başarım oranı sonuçlarını elde etmiştir. Bu rakamlara dayanarak, 
FashionCapsNet, poz konfigürasyonunu ihmal eden eski metotları açık bir şekilde geride bırakmıştır, ve poz 
konfigürasyonunu belirgin nokta bilgisinden faydalanarak telafi eden referans çalışmasıyla benzer bir performans 
göstermiştir. Son olarak, görece yeni olan Kapsül Ağları üzerine yapılacak araştırmalardaki gelişmeler sayesinde, 
önerdiğimiz bu modelin (FashionCapsNet) kıyafet sınıflandırma performansında ekstra bir artış gözlemlenebilir. 
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1. INTRODUCTION  

Fashion is one of the most prominent industries in the 
world. In recent years, with the advent of the cutting-edge 
technologies in computer science and the emergence of e-
commerce, clothing recommendation systems have drawn 
the attention of large fashion companies. Although these 
systems have great potential for most companies, it is 
essential to be come up with certain solutions for the 
problems such as clothing classification [1-3], attribute 
prediction [3-5], clothing segmentation [5], and style 
prediction [6,7]. The common solution approach in 
Computer Vision was to use feature descriptors like 
Histogram of Gradients [8] (HOG) or Scale-Invariant 
Feature Transform [9] (SIFT) to extract the features from 
the images and to deploy these features on traditional 
Machine Learning algorithms. Thereafter, the achievement 
of AlexNet [10] on ImageNet Challenge (ILSVRC) [11] 
and the prime motivating force of using deeper 
architectures in neural networks due to the improvements 
of GPU technologies lead up to significant 
accomplishments of fashion recommendation systems 
using deep learning methods [12-14]. 

Broadly speaking, Convolutional Neural Networks 
(CNNs) work well in most Computer Vision tasks. A CNN 
is basically composed of an input, an output and some 
hidden layers (e.g. convolutional, pooling, dense and 
normalization layers). Furthermore, CNNs are capable of 
learning some different representations directly from 
sample images by obtaining regional spatial information 
with local receptive fields [15]. Although CNNs have 
outstanding performance on image-related deep learning 
tasks, in real life, there are some intrinsic limitations of this 
architecture. First, pooling layer used for down-sampling 
the output of the previous layer ignores the spatial 
relationship between some parts of the image. For that 
matter, CNNs cannot gather the hierarchical information 
between important pieces that identify the object. 
Likewise, CNNs are not robust to affine transformations. 
Due to pooling operations, this architecture cannot employ 
pose information for recognizing the objects. An image 
with pose configuration that is not encountered during 
training could be misclassified by CNNs on testing phase. 
Therefore, the training data needs to include different kinds 
of transformations of the sample images to get better 
performances in CNN-based architectures. 

Recently, an alternative Deep Learning approach called 
Capsule Networks (CapsNets), with a novel routing 
algorithm between capsules, has been proposed by Sabour 
and Hinton et al. [16]. In this design, it is supposed to learn 
the information about the object and the intrinsic spatial 
relationship between the parts of the object by harnessing 
the routing-by-agreement algorithm. Thus, CapsNets are 
able to recognize the objects regardless of the viewing 
angle and without needing different transformations of 
them during training.  

 

In recent studies on clothing recognition, CNN-based 
methods neglecting pose configuration achieve arguably 
good performances [4,18,20]. However, it hinders further 
improvements on the recognition accuracy. On the 
contrary, most state-of-the-art CNN-based methods figure 
out to recover pose configuration of the objects by 
employing hand-crafted landmark information [3] or bag-
of-words descriptors [21], or by adding attention 
mechanisms for the guidance of domain knowledge 
[22,23]. In this study, we indicate that Capsule Networks 
can achieve similar, even better performance on the 
clothing category classification without using any side 
information or extra module such as attention maps. To 
achieve this, we propose a novel Capsule Network 
architecture, which extracts the features from the images 
by a number of stacked-convolutional layers, and forwards 
these features to the fully-connected capsule layers. Our 
proposed design is trained on DeepFashion dataset [3] that 
contains 290k images with 46 fine-grained category labels. 

The rest of the paper is organized as follows: Section 2 
surveys the previous studies on the clothing category 
classification. Section 3 describes required mathematical 
background for CNNs and Capsule Networks. Section 4 
gives detailed information about DeepFashion dataset. 
Proposed Capsule Network architecture and our 
methodology are introduced in Section 5. While Section 6 
discusses the experimental results of our methodology, and 
finally, Section 7 concludes the paper. 

2. RELATED WORKS 

Clothing recognition is one of the starting points of visual 
fashion analysis. In earlier studies, fashion models are 
mostly relied on hand-crafted feature descriptors [8-9], and 
it is attempted to generate a powerful clothing 
representation with these features. In recent years, with the 
emergence of deep learning techniques, neural networks 
can have better performances on clothing recognition tasks 
as in the case of several different domains (e.g. fine-
grained object recognition, face recognition) 
[10,24,27,30]. To survey the recent studies on clothing 
recognition, Kiapour et al. [4] proposes introduces an 
excessively challenging task, namely  Exact Street to Shop, 
where the goal is to match street photos that are captured 
in uncontrolled settings to the same item in online shop 
photos that are captured by professionals. In this study, it 
is experimentally shown that learning the category-specific 
similarity between street and online shop photos has better 
performance on both category classification and image 
retrieval tasks than applying traditional machine learning 
techniques to the hand-crafted features.  

Huang et al. [18] shows that incorporation of semantic 
attributes and visual similarity between cross-scenario 
images increases the expressive power of extracted 
features. To demonstrate this argument, Dual Attribute-
aware Ranking Network (DARN) is introduced in this 
study. This network consists of two Network-in-Network 
(NiN) mechanisms [19] to learn both category and 
semantic attributes of the images in cross-domain scenario. 
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Thereafter, the outputs of two sub-networks are 
concatenated, and fed into triplet ranking loss to learn the 
visual similarity.  

Liu et al. [3] introduces a large-scale clothing dataset, 
called DeepFashion, with comprehensive annotations. In 
this dataset, there are nearly 800k images with numerous 
attributes, landmarks and cross-domain image pairs. To 
show the usefulness of this dataset, Liu et al. proposes 
FashionNet [3] architecture that iteratively estimates the 
landmark information in the intermediate step to gate the 
learned features for the prediction of the category and 
attributes. Moreover, for an ablation study, FashionNet is 
represented by different building blocks where the model 
has different numbers of attributes (i.e. 100, 500 and 1000), 
or fashion landmarks are replaced with human joints or 
poselets to gate the features. 

Lu et al. [20] proposes an automated learning framework 
that contains a multi-task deep network using a novel 
dynamic branching procedure. In this framework, the 
network model is initialized as a thin model, and is 
expanded with dynamic branching that is mainly 
responsible for grouping the shared features in each layer 
by considering the task and the complexity of the model.  

Corbière et al. [21] demonstrates that it is possible to 
achieve promising results on the clothing category 
classification and image retrieval by integrating bag-of-
words approach to weakly-supervised learning process. 
The proposed model encodes weakly-annotated noisy data 
using the bag-of-words descriptors to generate separable 
visual concepts, and to provide meaningful similarity 
between images. Along with that, the learned 
representations are suitable for both classification and 
retrieval tasks, and this study essentially addresses the 
issue of finding a large, rich-annotated and clean-labeled 
dataset for training of deep neural networks. 

Wang et al. [22] introduces a novel knowledge-guided 
deep network that captures the kinematic and symmetric 
relations between the clothing landmarks to address the 
landmark localization and category classification 
problems. In addition, two attention modules (i.e. 
landmark-aware and category-driven) are employed for 
boosting the category classification performance. With the 
help of the attention modules, the network is enforced to 
focus on the functional parts of the clothes, and also to 
reinforce the expressive power of extracted features on 
classifying the clothing category. 

Analogous with the approach in [22], Liu et al. [23] attacks 
to the landmark localization and category classification 
problems with the guidance of a single attention map. In 
this study, transpose-convolutional up-sampling is used for 
generating the feature maps in order to detect the 
landmarks in low-resolution images more accurately. 
Instead of using two isolated attention mechanisms as in 
the case of [22], Liu et al. employs a single attention 
mechanism generated by landmark heatmaps to the 
network, and it is reported that this approach improves the 

precision of fashion category classification and attribute 
prediction. 

3. BACKGROUND INFORMATION 

The main objective of this study is to classify the clothing 
images by category with Capsule Networks, brand-new 
deep learning architecture. Next, we compare the 
performances of Capsule Networks, our baseline study [3] 
and the other state-of-the-art methods using CNNs (with 
heuristic down-sampling layers) on DeepFashion [3] 
dataset. Before revealing the details of our methodology, 
we concisely review the basic structure of CNNs frequently 
used in many Computer Vision tasks, and the structure of 
Capsule Networks. At the end of this section, we 
investigate which limitations of CNNs are overcome by 
Capsule Networks, and how to achieve it. 

3.1. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) generally contain 
a certain number of convolutional layers combined with a 
non-linear activation function and down-sampling layers 
(e.g. max-pooling). The convolution is performed by 
sliding the kernel over the input data to form the receptive 
fields, as shown in Figure 1. Due to the consecutive 
convolutional layers in this architecture, low-level features 
such as corner, texture and edge are extracted from the 
input data by sharing the weights. Then, these features are 
combined in deeper layers to compose higher level 
features. 

Figure 1. Performing convolution operation by sliding the 
kernel over the input data to form the receptive fields. 

CNNs are applicable for a wide range of Computer Vision 
tasks such as image classification [10,24-26], object 
detection [27-29], object localization [24-26], synthetic 
image generation [30-32]. This popularity stems from the 
fact that they can automatically learn by deriving the 
identical properties of the data without needing any prior 
knowledge about the domain. There are also a number of 
studies emphasizing the importance of parameter changes 
in success rate of CNNs [39-41]. However, there are some 
intrinsic limitations on CNN architecture. First, CNNs 
classify an image by joining some components of the 
object in the image regardless of the spatial relationship 
between them. The main reason of this problem is that 
pooling operations are kinds of rudimentary routing 
methods, where the neurons are picked by a heuristic (e.g. 
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maximum, average or minimum) without considering the 
task. Therefore, CNNs can easily confuse an object with 
the fake one that contains some components of the object 
with improper alignment. Secondly, CNNs are not robust 
to affine transformations since the output of pooling 
operations completely throws away pose information that 
is important for correct recognition. In other words, CNNs 
are not able to capture different pose information of the 
images if this information is not seen on the training set. 
To address it, this design needs to be trained with several 
different transformations of the images to generalize the 
performance. However, for real world applications, it is 
impractical to have all possible transformations of the 
images in the training set. Based upon these reasons, a new 
deep learning architecture called Capsule Networks is 
proposed by Sabour and Hinton et al. [16]. In fact, the idea 
behind this approach [33] goes back decade ago, but it 
recently starts to work well after inventing dynamic routing 
algorithm. 

3.2. Capsule Networks (CapsNets) 

Basically, a capsule could be considered as a group of 
neurons who together pack a high dimensional 
information. This information refers to the existence of the 
entity and pose configuration describing the underlying 
behavior of the entity in a more refined way. The activation 
vector within an active capsule represents several features 
of a specific entity such as position, size, orientation, 
deformation and texture, while the overall length of the 
vector states the probability of the existence of that specific 
entity. Capsule output in a layer is routed to the capsules in 
the next layer by multiplying it with the weight matrix (as 
coupling coefficient). The magnitude of the coupling 
coefficient represents the strength of a parent capsule to be 
routed. In other words, this algorithm is kind of a top-down 
feedback mechanism where the predictions in lower levels 
determine which capsule in the higher level is activated. 
This is called "routing-by-agreement" [16]. This algorithm 
is a far more powerful routing algorithm than pooling 
variants that pick the neurons by a heuristic. The overall 
architecture can be seen in Figure 2. 

Figure 2. Capsule Network architecture proposed by 
Sabour and Hinton et al. [16]. 

Considering ui as the output of capsule i, and Wij as the 
weight matrix 

     𝑢𝑢𝑗𝑗|𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖                    (1) 

where ûj|i is the vector that predicts the output of the parent 
capsule j by capsule i. The relationship between capsules 
in the previous layer and the possible parent capsule is 
encoded to a coefficient cij as "routing soft-max" whose 
initial logits bij are the log prior probabilities of routing ith 

capsule in the previous layer to jth capsule in the next layer. 
The logits of all capsules in each layer are initialized to 0 
at the beginning of the routing-by-agreement algorithm. 

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑏𝑏𝑖𝑖𝑖𝑖

∑𝑒𝑒𝑏𝑏𝑖𝑖𝑖𝑖
                           (2) 

The input for the parent capsule j is calculated as weighted 
sum over all prediction vectors from the capsules in the 
previous layer. 

𝑠𝑠𝑗𝑗 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑗𝑗|𝑖𝑖                 (3)  

Figure 3. Example images from DeepFashion [3] dataset. 



BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020 91 

A non-linear function called squashing is applied to the 
input for the parent capsule j to ensure that the values in 
this vector are compressed in a range between zero and 
slightly below one. Note that epsilon value (10-7) is added 
to the denominator of unit scaling of the input vector since 
we observed that the gradients vanish at the early stage of 
our experiments. The final version of squashing formula is 
calculated as follows. 

    𝑣𝑣𝑗𝑗 =
�𝑠𝑠𝑗𝑗�

2

1+�𝑠𝑠𝑗𝑗�
2

𝑠𝑠𝑗𝑗
�𝑠𝑠𝑗𝑗�+𝜀𝜀

              (4) 

Therefore, the magnitude of the inner product of vj and ûj|i 
decides which capsule in the next layer is likely to route 
(agreement). 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑗𝑗 ⋅ 𝑢𝑢𝑗𝑗|𝑖𝑖    (5) 

For Capsule Networks, the loss is the sum of the losses of 
all category capsules that are calculated as separate margin 
loss Lk, for each category capsule k. 

𝐿𝐿𝑘𝑘 = 𝑇𝑇𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑚𝑚+ − ‖𝑣𝑣𝑘𝑘‖)2
+ 𝜆𝜆(1 − 𝑇𝑇𝑘𝑘)𝑚𝑚𝑎𝑎𝑎𝑎(0, ‖𝑣𝑣𝑘𝑘‖ − 𝑚𝑚−)2 

(6) 

where Tk represents the existence of the instantiation in 
category capsule k; and m+, m- and λ hyper-parameters that 
control the loss value by the existence, and set to 0.9, 0.1 
and 0.5 respectively as proposed in [16]. 

4. DATASET 

DeepFashion [3] is a dataset of 800K high/mid-resolution 
images that belong to 50 fine-grained categories. The 
images in this dataset were collected by Multimedia 
Laboratory of The Chinese University of Hong Kong, from 
two representative online shopping Web pages and user-
generated contents on blogs and forums by querying from 
Google Images. Sample images of DeepFashion dataset 
with category labels can be seen in Figure 3. 

Table 1. Forming five main attribute groups, and the 
examples of the attributes in each group. 

 

Groups Attributes 

Texture Floral, Stripe, Paisley, Distressed, 
Dot, Plaid, Panel, Raglan … 

Fabric Lace, Denim, Chiffon, Pleated, 
Woven, Leather, Cotton, Linen … 

Shape Crop, Maxi, Fit, Longline, Boxy, Mini, 
Skinny, Midi, Pencil, Sheath … 

Part Sleeveless, Pocket, V-Neck, Hooded, 
Racerback, Peplum, Strappy … 

Style Graphic, Muscle, Tribal, Peasant, 
Surplice, Polka, Retro, Yoga… 

 

(a) (b) 

(c)                                     (d) 

Figure 4. Example images from DeepFashion [3] dataset 
with (a) and without (b) landmarks employed; with (c) 

human joints and with (d) poselets, a part of pose. 

DeepFashion is an extensively annotated clothing dataset 
that contains numerous attributes, localization parameters 
and correspondence of images shot under different 
scenarios ranging from well-posed online shopping photos 
to unstructured customer photos. For the clothing category 
classification task, there are 210k training images, 40k 
validation images and 40k test images with 46 different 
categories in this dataset. Moreover, the attributes form 
five groups: texture, fabric, shape, part, and style, and an 
image can have +8 landmark locations. The attributes and 
their group information can be seen in Table 1, while 
different extra information to the visual features in the 
dataset that can be included to the training is demonstrated 
in Figure 4. We specifically did not include these hand-
crafted landmark or attribute information in the dataset to 
our training process since our proposed architecture, 
namely FashionCapsNet, has the capacity for learning 
pose information by itself. 

5. EXPERIMENTAL STUDY 

In this study, our main objective is to observe the category 
classification performance of Capsule Networks on 
realistic, diverse and large clothing images. To achieve 
this, we propose 4-layer stacked-convolutional Capsule 
Network architecture (FashionCapsNet) with dynamic 
routing algorithm. Next, we train our proposed model on 
210k training images in DeepFashion [3] dataset. Finally, 
we examine the best top-3 and top-5 accuracy of this 
model, namely FashionCapsNet, on the category 
classification, and compare the results with both the 
baseline study (FashionNet) [3] and the other state-of-the-
art methods trained on DeepFashion dataset. 
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5.1. Baseline: FashionNet 

We picked FashionNet proposed in Liu et al. [3] as the 
representative of CNN-based architectures. The limitations 
of traditional CNN architectures are addressed in 
FashionNet [3] by taking advantage of hand-crafted 
landmark information.  

FashionNet is built on VGG-16 model [34] by ramifying 
the last layer into 3 different branches. The first branch in 
the intermediate layer, named as pose branch, is 
responsible for learning the location value and the visibility 
of the key-points on the structure of clothes from the 
images. Separately, local branch is the second branch that 
captures the local features by passing over the output of 
pose branch. The last branch in this design directly learns 
the global features from images. At the end, as shown in 
Figure 5, these three branches are concatenated into a 
single output layer in order to predict the clothing category 
and attributes, as well as to learn the pair-wise relationships 
between clothing images. In addition, there are several 
different variants of FashionNet utilizing different number 
of attributes (100, 500 or 1000) to create comprehensive 
profiles of different clothing variations. Liu et al. [3], first, 
pre-train FashionNet by using a large subset of 
DeepFashion as training and validation data. Thereafter, 
another (smaller) subset of DeepFashion is used for fine-
tuning the pre-trained FashionNet model, where any item 
in the smaller subset overlaps with the larger one.   

FashionNet is optimized by weighted sum of four different 
loss functions with iterative training strategy. In the first 

step of this strategy, the location and visibility information 
for landmarks is estimated with the help of local and global 
features of the images. Then, the clothing category is 
predicted by utilizing the estimated landmark locations to 
gate the local features. At this point, it clearly shows that 
FashionNet tries to cope with the lack of pose information 
in CNN-based models by supporting the model with the 
extra information extracted from the hand-crafted 
landmark annotations. 

5.2. Our Proposed Architecture: FashionCapsNet 

In this study, we propose FashionCapsNet, 4-layer stacked-
convolutional Capsule Network design for clothing 
category classification. This design inherently has the 
capability of preserving the pose configuration and being 
robust to affine transformations without any extra 
information, while it learns low/mid-level features by 
deriving the identical characteristics of the objects without 
needing any prior knowledge about the domain. 

FashionCapsNet is a hybrid architecture for clothing 
category classification which provides feasible training 
process for Capsule Networks on large-sized clothing 
images. To achieve this, instead of directly resizing the 
images before fitting to the model, several consecutive 
convolution operations with stride has been incorporated. 
Before primary capsule, a number of convolutional layers 
with different number of filters are stacked without any 
pooling operation between layers, as distinct from the 
default methodology proposed by Sabour and Hinton et al. 
[16] (i.e. 1 convolutional layer with 64 filters).  This 
mechanism helps us to extract the features of the objects in 
the images, and these features are sent to the primary 
capsule layer as the input. At the same time, adding more 
convolutional layers before capsules reduces the number of 
trainable parameters of fully-connected capsule layers, so 
that it can provide feasible training of such a large dataset 
within limited computational resources. 

We used leaky rectified linear unit (Leaky ReLU) [35] as 
activation function that allows for a small, non-zero 
gradient (when the unit is saturated and not active) and 
batch normalization [36] between stacked-convolutional 
layers for regularization purposes. As for the rest of our 

Figure 6. FashionCapsNet (our) model architecture. 

Figure 5. FashionNet [3] model architecture. 
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proposed model, the primary capsule layer has 32 channels 
of 8-dimensional  fully-connected  capsules  after stacked- 
convolutional layers.  Capsules are activated by slightly 
different version (see Equation 4.) of squashing 
(activation) function proposed in Sabour and Hinton et al.  
[16]. At this point, dynamic routing mechanism is iterated 
3 times to route the activation to 16-dimensional capsules 
in the final layer, namely FashionCaps. The length of the 
activation of each capsule in FashionCaps represents the 
presence of an instance for each category. 

Furthermore, we masked the activity vector of the correct 
capsule, and used it for reconstructing the images. To 
achieve this, the output of FashionCapsNet is fed into a 
decoder network that contains 4 transpose-convolutional 
layers followed by Leaky ReLU activation function and 
batch normalization. The mean-squared difference 
between the original images and the reconstructed ones is 
added to the loss function in order to create a regularization 
effect on double margin loss [16]. Final loss is calculated 
as follows:  

𝐿𝐿 = 𝐿𝐿𝑘𝑘 + 𝜆𝜆
𝑁𝑁
∑ (𝑥𝑥𝑖𝑖 − 𝑟𝑟𝑖𝑖)𝑁𝑁
𝑖𝑖                 (7) 

where x represents a set of the original images, r the 
reconstructed images, and λ is a coefficient that scales 
down the reconstruction loss, so that it does not dominate 
the margin loss.   

During training, we picked Adam [37] to optimize the loss 
function with learning rate 10-3, and decay rate 5 × 10-4. 
Image batch for each gradient step contains 32 different 
samples, and dynamic routing algorithm is iterated 3 times. 

The reconstruction coefficient λ is set to 10-4. Pixel-wise 
normalization is applied to all samples in the dataset. All 
hyper-parameter settings are introduced in Table 2, and for 
the sake of clarity, the final version of our proposed 
architecture, FashionCapsNet is shown in Figure 6. 

6. RESULTS & DISCUSSION 

In this study, we mainly investigate the performance of 
Capsule Networks [16] on clothing classification. 
Therefore, we propose a hybrid Capsule Network 
architecture called FashionCapsNet, and train our proposed 
model on 210k training samples of DeepFashion [3] dataset 
with hyper-parameters presented in Table 2. This task is 
fine-grained category classification (46 classes), hence the 
performance is measured by top-K accuracy metric, where 
K equals to 3 or 5. We test our proposed model with 40k 
testing samples of DeepFashion dataset.  

Hyper-parameters 

Optimizer Adam [37] 

Learning Rate 0.001 

Decay Rate 0.00005 

Batch Size 32 

Routings 3 

Reconstruction Weight (λ) 0.0001 

Normalization Pixel-wise 

Figure 8. Examples for DeepFashion test reconstructions. (L): Labels, (P): Predictions 

Table 2. Hyper-parameter settings of FashionCapsNet. 

Figure 7. Our proposed architecture sees only images 
during training, while the baseline model [3] utilizes 

several attributes and landmark information besides to 
images in order to train the model. 
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Although CNNs have a proven track record of 
accomplishments in Computer Vision tasks, as a matter of 
fact, CNNs neglect pose configuration of the object and are 
not robust to affine transformations. In the literature, 
several different approaches (see in Section 2) have been 
enforced to CNNs in order to mitigate the negative effects 
of these problems so far. However, Capsule Networks 
inherently learn pose information without needing any side 
information and extra modules. In this study, we compare 
the results of our proposed Capsule Network model with 
the results of the other state-of-the-art CNN-based models 
that employs any extra side information or module in the 
clothing category classification task. The overall idea is 
represented in Figure 7. Table 3 summarizes clothing 
category classification results of FashionCapsNet and 
FashionNet variants.  

Moreover, in our design, we include the reconstruction loss 
that measure the difference between the original and 
reconstructed images in our final loss. The main reason 
behind this is to regularize the margin loss, and to prevent 
over-fitting. As illustrated in Figure 8, the reconstructions 
of the correct capsule consist of the structurally identical 
features, independent from their pose configuration. At this 
point, the most dominant pose configuration among the 
images (i.e. upper body/middle shot) occurs in most of the 
reconstructed images regardless of their categories. 

In the course of the first experimental comparison, we 
discuss the results of our proposed Capsule Network 
architecture, and our baseline study FashionNet [3]. We 
report that our proposed FashionCapsNet achieves 83.81% 
top-3 accuracy and 89.83% top-5 accuracy on clothing 
category classification. As shown in Table 3, these figures 
demonstrate that FashionCapsNet outperforms most of 
FashionNet variants including building blocks that employ 
a smaller number of attributes, and use human joints or 
poselets instead of landmarks. In the meantime, 
FashionCapsNet has comparable performance to the best 
variant of FashionNet which utilizes 1000 attributes and 
the landmark information during training. Capsule 
Network model seeing only the images during training has 
close to, even better performance than, CNN-based 
architectures supported by hand-crafted landmarks and  

Models & Side Information  Top-3 Top-5 

FashionNet [3] 

+100 A + L 47.38% 70.57% 

+500 A + L 57.44% 77.39% 

+J + L 72.30% 81.52% 

+P +L 75.34% 84.87% 

+1000 A +L 82.58% 90.17% 

FashionCapsNet No SI/EM 83.18% 89.83% 

 
attributes. Consequently, CNNs may utilize various kinds 
of side information to deal with deformation and pose 
variation, but capsules can inherently learn pose 
information within the activation vectors flowing in the 
network. 

Table 4 summarizes the clothing category classification 
results of our proposed model and the state-of-the-art 
methods with the information of applied techniques and the 
number of parameters in the models. These figures indicate 
how successful FashionCapsNet is, and what are the 
performance limits it has when compared to the state-of-
the-art CNN-based architectures. First, FashionCapsNet 
clearly outperforms WTBI [4] and DARN [18] which both 
use semantic attributes disparately to improve the 
classification performance, but neglect pose configuration 
during training. Moreover, as aforementioned before, 
FashionCapsNet and the best variant of FashionNet [3] (i.e. 
supported by 1000 attributes and +8 landmarks) have 
closely contested classification performances on 
DeepFashion [3] dataset. At this point, while FashionNet 

Architectures Backbone Side information (SI) /  
Extra Module (EM) 

# 
Parameters 

  

Top-3 
(%) 

 

Top-5 
(%) 

 
WTBI [4] AlexNet Category-specific Similarity (SI) 60 43.73 66.26 

DARN [18] Custom NiN Visual Similarity (SI) 105 59.48 79.58 

FashionNet [3] VGG-16 Landmark Information (SI) 134 82.58 90.17 

FashionCapsNet CapsNet No SI / EM Used 45 83.18 89.83 

Corbière et al. [21] ResNet50 Bag-of-words Descriptors (EM) 25 86.30 92.80 

Lu et al. [20] VGG-16 Dynamic Branching (EM) 134 86.72 92.51 

Wang et al. [22] VGG-16 Two Attention Modules (EM) 142 90.99 95.78 

Liu et al. [23] VGG-16 Single Attention Module (EM) 138 91.16 96.12 
 

   
  

Table 4. Experimental results on DeepFashion dataset for the clothing category classification. 

Table 3. Top-K accuracy performance of the variants of 
the baseline study [3] and our proposed model. 

FashionNet has different building blocks where the model 
has different numbers of attributes (A) (i.e. 100, 500 and 
1000), or fashion landmarks (L) are replaced with human 

joints (J) or poselets (P). FashionCapsNet does not use 
any extra side information during training. 
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employs landmark information to recover pose 
configuration thrown away due to pooling operations, 
FashionCapsNet can learn pose information by preserving 
the spatial relationship between pixels. However, our 
proposed architecture cannot achieve the performance of 
more advanced CNN-based architectures. The underlying 
reason for this is that encapsulating the neurons as a 
densely connected layer is completely different, but not a 
complex structure. On the other hand, state-of-the-art 
CNN-based methods referred in Table 4 adopt different 
techniques (e.g. bag-of-words descriptors, dynamic 
branching and attention mechanisms) to their models to 
improve the overall clothing classification performance. In 
the future, our proposed model, FashionCapsNet, may 
inherit extra performance boost on the clothing 
classification, due to advances in the relatively new 
Capsule Network research. 

7. CONCLUSION 

Digital transformation is taking over nearly all businesses, 
and fashion industry is one of the recent adopters of deep 
learning-based solutions. The initial task for fashion 
recommendation systems is generally to classify the 
clothing categories. Despite its popularity, the clothing 
category classification has never been easy to achieve 
when employed in real world applications. It was attacked 
with several different methodologies that utilizing feature 
extractors [8-9] in the past decade. In recent studies, CNN-
based deep learning architectures [3-4,18] generally 
perform better when compared to the heuristic methods, 
and applying some different techniques such as bag-of-
descriptors [20], dynamic branching [21] and attention 
modules [22-23] significantly improves the performance of 
clothing recognition models.  

In this study, we investigate the performance of a custom 
Capsule Network architecture on the clothing category 
classification by using DeepFashion dataset [3] that 
contains the clothing images with 46 fine-grained category 
labels. Thereafter, we compare our results with the results 
of the other state-of-the-art CNN-based models. Our first 
observation is that our Capsule Network design trained 
only on images perform even better than CNN-based 
models [3] that is supported by extra information (e.g. 
hand-crafted landmarks and attributes) besides the images. 
Secondly, our proposed architecture outperforms the 
methods [4,18] that neglect pose configuration, while it 
needs some improvements to reach the performances of 
more advanced methods [20-23].  

As the future work, using matrix capsule structure with EM 
routing, which has recently been introduced by Hinton et 
al. [38], may increase the classification accuracy of our 
proposed architecture. Furthermore, extracting the features 
by residual blocks instead of plain convolutional blocks 
may increase the representative power of the input of 
primary capsules. In addition, transfer learning for feature 
extraction, and adding attention mechanism to the capsule 
block of FashionCapsNet could be considered as the 

methods that may improve the overall performance of our 
model. 
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