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Abstract 

In this study slash Maxwell (SM) distribution, defined as a ratio of a Maxwell random variate to 

a power of an independent uniform random variate, is introduced. Its stochastic representation 

and some distributional properties such as moments, skewness and kurtosis measures are 

provided. The maximum likelihood (ML) method is used for estimating the unknown parameters. 

However, closed forms of the ML estimators cannot be obtained since the likelihood equations 

include nonlinear functions of the unknown parameters. We therefore use Tiku's (1967,1968) 

modified maximum likelihood (MML) methodology which allows to obtain explicit forms of the 

estimators. Some asymptotic properties of the MML estimators are derived. A Monte-Carlo 

simulation study is also carried out to compare the performances of the ML and MML estimators. 

Two data sets taken from the literature are modelled using the SM distribution in application part 

of the study.  
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1. INTRODUCTION 

 

Slash distribution is defined as 

𝑍 =
𝑌

𝑈1/𝑞
 

where the random variables 𝑌 and 𝑈 are independent and have the standard normal 𝑁(0,1) and uniform 

𝑈(0,1) distributions, respectively. Here, 𝑞 > 0 is the shape parameter which controls the kurtosis of the 

distribution. It is clear from this representation that the slash distribution is an extension of normal 

distribution. Indeed, the slash distribution has heavier tails than the normal distribution, see for example 

Rogers and Tukey [1], Mosteller and Tukey [2]. 

 

First aim of this study is to introduce a new distribution obtained using slashing methodology. Indeed, most 

of the new distributions existing in the literature are obtained by extending well-known distributions [3-6]. 

Some of the new extended/generalized distributions are also obtained via slashing methdology using 

different baseline distributions. For example, Gomez et al. [7] propose slash-elliptical distributions which 

are obtained as an extension of the symmetric distributions. Olivares-Pacheco et al. [8] introduce slash-

Weilbull distribution. Olmos et al. [9,10] present slash half normal and slash generalized half normal 

distributions, respectively. Genc [11] obtains a skew extenstion of the slash distribution is using beta-normal 

distribution.  Genc et al. [12] suggest beta Moyal-slash distribution. Korkmaz [13] proposes gamma-slash 
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distribution based on gamma-normal distribution. Gomez et al. [14] introduce a slash Gumbel (SG) 

distribution as a heavy tailed alternative to the Gumbel distribution. 

 

In this study, we consider Maxwell distribution as baseline distribution and propose a slash Maxwell (SM) 

distribution. Therefore, we first give brief information about the Maxwell distribution. The Maxwell 

distribution is proposed to model speeds of molecules in thermal equilibrium. Its probability density 

function (pdf) is given as follows: 

𝑓𝑌(𝑦; 𝜎) =
4

𝜎Γ (
1
2
)
(
𝑦

𝜎
)
2

exp {− (
𝑦

𝜎
)
2

} ;     𝑦 > 0,    𝜎 > 0 (1) 

where 𝜎 stands for the scale parameter and 𝛤(𝛼) = ∫ 𝑡𝛼−1
∞

0
𝑒−𝑡𝑑𝑡 is the gamma function. The Maxwell 

distribution was firstly used for modeling lifetime data by Tyagi and Battacharya [15, 16] in the context of 

statistics. It has also many applications in different areas of science. For example, Bayes estimators of the 

scale parameter of the Maxwell distribution under various different loss functions are considered by Dey 

and Maiti [17]. The maximum likelihood (ML) estimators of the location and the scale parameters of the 

mixture of the Maxwell distribution under Type I censoring are considered by Kazmi et al. [18]. Li [19] 

uses the Minimax, the Bayesian and the ML methods to estimate the scale parameter of the Maxwell 

distribution. The Bayesian method is used to estimate the loss and the risk function for the scale parameter 

by Fan [20]. Arslan et al. [21, 22] obtain the modified maximum likelihood (MML) estimators for the 

location and scale parameter of the Maxwell distribution.   

 

Although there is a great interest on the Maxwell distribution in the literature, it may be inadequate for 

modelling data sets having higher kurtosis values. We therefore introduce the SM distribution which has 

heavier tails than the Maxwell distribution and thus it is flexible enough to accommodate the greater 

kurtosis values; see Acitas et al. [23]. The new distribution is obtained as the ratio of a Maxwell variate to 

a power of an independent uniform variate. The ML method is used to compute the estimates of distribution 

parameters. However, the ML estimates cannot be obtained explicitly since likelihood equations include 

nonlinear functions of the parameters. Thus, we use Tiku’s [24, 25] MML methodology which allows to 

obtain the closed forms of the estimators. This is the second aim of the study. We therefore believe that 

current study has the following contributions to the related literature: (i) A new distribution called as SM is 

introduced as an alternative to the existing distributions for modelling data sets having skewness and/or 

excess kurtosis and (ii) Closed forms of the estimators for the location and scale parameters of the SM 

distribution are obtained using the MML methodology. 

 

Independently, Iriarte et al. [26] also obtain the SM distribution in the context of slashed generalized 

Rayleigh (SGR) distribution. Essentially, the SGR reduces to the SM distribution for certain values of the 

parameters. It should be noted that in this study the SM distribution has location, scale and shape 

parameters. We focus on the MML estimation of the location and scale parameters and the shape parameter 

is estimated using profile likelihood method. On the other hand, Iriarte et al. [26] consider the SGR 

distribution including one scale and two shape parameters. 

 

The rest of the paper is organized as follows. The SM distribution and its properties are presented in Section 

2. Section 3 includes the MML method for estimating the unknown parameters of the SM distribution. Two 

data sets taken from the literature are analyzed in Section 4 and the paper is finalized with a conclusion 

section. 

 

2. THE SM DISTRIBUTION: DENSITY FUNCTION AND PROPERTIES 

 

In this section, the SM distribution is derived as a scale mixture extension of the Maxwell distribution. 

Some basic properties of the SM distribution are also presented. We consider two parameter SM distribution 

through the subsections 2.1 – 2.4 for the sake of brevity. Location-scale case of the SM distribution is given 

in subsection 2.5. 
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2.1. Stochastic Representation 

 

The SM distribution is stochastically represented as follows:  

𝑍 =
𝑌

𝑈1/𝑞
, 𝑞 > 0 (2) 

where 𝑌 and 𝑈 are independent random variables having the Maxwell(𝜎) and 𝑈(0,1) distributions, 

respectively. Hereinafter, the random variable 𝑍 having the SM distribution will be denoted by 

𝑍~SM(𝜎, 𝑞). 
 

2.2. The pdf and Its Properties 

 

The pdf of the SM distribution is given in Theorem 1. 

 

Theorem 1.  Let 𝑍~SM(𝜎, 𝑞), then the random variable 𝑍 has the following pdf  

𝑓𝑍(𝑧; 𝜎, 𝑞) =
2𝑞

Γ(1/2)𝜎
Γ (
𝑞 + 3

2
) (
𝑧

𝜎
)
−(1+𝑞)

𝐺 (𝑧2;
𝑞 + 3

2
, 𝜎2) ,    𝑧 > 0,    𝜎 > 0,    𝑞 > 0 (3) 

where 𝜎 and 𝑞 are the scale and shape parameters, respectively, and 𝐺(⋅) is the cumulative distribution 

function (cdf) of gamma distribution defined by  

𝐺(𝑥; 𝛼, 𝛽) =
1

Γ(𝛼)𝛽𝛼
∫

𝑥

0

𝑡𝛼−1exp (−
𝑡

𝛽
)𝑑𝑡. 

Proof. We use the stochastic representation given in Equation (2) and Jacobian transformation to complete 

the proof. 

 

Consider the following transformations  

 

𝑍 =
𝑌

𝑈1/𝑞

𝑊 = 𝑈1/𝑞

}
 
 

 
 

⇒
𝑌 = 𝑍𝑊
𝑈 = 𝑊𝑞 } ⇒ 𝐽 =

|
|

∂𝑌

∂𝑍

∂𝑌

∂𝑊

∂𝑈

∂𝑍

∂𝑈

∂𝑊

|
|
= |
𝑊 𝑍
0 𝑞𝑊𝑞−1| = 𝑞𝑊𝑞 

where 𝐽 is the Jacobian, 0 < 𝑤 < 1  and 𝑧 > 0. Then, the joint pdf of 𝑍 and 𝑊 is obtained as follows:  

𝑓𝑍,𝑊(𝑧, 𝑤) = |𝐽|𝑓𝑌,𝑈(𝑦(𝑧, 𝑤), 𝑢(𝑧, 𝑤)) 

= 𝑞𝑤𝑞𝑓𝑌(𝑧𝑤)𝑓𝑈(𝑤
𝑞) 

=
4𝑞

𝜎Γ(
1
2)
𝑤𝑞

𝑧2𝑤2

𝜎2
exp(−

𝑧2𝑤2

𝜎2
). 

Taking integration with respect to the variable 𝑢, we obtain the marginal pdf of 𝑍 given by  

𝑓𝑍(𝑧) = ∫

1

0

𝑞𝑤𝑞𝑓𝑌(𝑧𝑤)𝑓𝑈(𝑤
𝑞)𝑑𝑤 =

4𝑞

𝜎Γ(
1
2)
∫

1

0

𝑤𝑞
𝑧2𝑤2

𝜎2
exp(−

𝑧2𝑤2

𝜎2
)𝑑𝑤. 

After using the transformation 𝑡 = 𝑧2𝑤2, we have  

𝑓𝑍(𝑧) =
2𝑞

𝜎3Γ (
1
2) 𝑧

𝑞+1
∫

𝑧2

0

𝑡
𝑞+3
2
−1exp (−

𝑡

𝜎2
)𝑑𝑡, 𝑧 > 0 

where  

Γ (
𝑞 + 3

2
)𝜎𝑞+3𝐺 (𝑧2;

𝑞 + 3

2
, 𝜎2) = ∫

𝑧2

0

𝑡
𝑞+3
2
−1exp(−

𝑡

𝜎2
)𝑑𝑡. (4) 
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It is known that the Equation (4) is essentially cdf of the gamma distribution. Finally, pdf of random variable 

𝑍 is obtained as given in Equation (3).  

 

In Figure 1, shape of the SM distribution is illustrated for certain values of the shape parameter 𝑞. It should 

be noted that the shape parameter 𝑞 controls kurtosis of the SM distribution. 

 
Figure 1. The pdf plots of the SM distribution for certain values of 𝑞 (𝜎 = 1) 

 

It is clear from Figure 1 that the SM tends to the Maxwell distribution as 𝑞 gets larger. In other words, the 

Maxwell distribution is a limiting distribution for the SM distribution when the slashing parameter 𝑞 goes 

to infinity. 

 

After giving the definition of the SM distribution, we now provide the mixing property in Theorem 2. The 

importance of this theorem is that the SM distribution can be represented as a scale mixture of the 

Maxwell(𝜎) and 𝑈(0,1) distributions.  

 

Theorem 2.  Let 𝑍|𝑈 = 𝑢~Maxwell(𝑢−1/𝑞𝜎) and 𝑈~𝑈(0,1), then 𝑍~SM(𝜎, 𝑞).  
Proof. The pdf of 𝑍 can be obtained from the following integral  

𝑓𝑍(𝑧; 𝜎, 𝑞) = ∫

1

0

𝑓𝑍|𝑈(𝑧|𝑢)𝑓𝑈(𝑢)𝑑𝑢 

=
4

𝜎Γ(1/2)
∫

1

0

𝑢1/𝑞 (
𝑢1/𝑞𝑧

𝜎
)

2

exp {−(
𝑢1/𝑞𝑧

𝜎
)

2

} 𝑑𝑢 

The proof is completed after the following transformation: 𝑡 = (𝑧𝑢1/𝑞)2.  

 

2.3. Moments 

 

The moments of the SM distribution are obtained using the stochastic representation given in Equation (2). 

Therefore, following Lemma should be considered before obtaining the moments. 

 

Lemma 1.  Let 𝑌~ Maxwell(𝜎) and 𝑈~𝑈(0,1) be independent random variables, then  

𝐸[𝑌𝑟] =
2

√𝜋
𝜎𝑟Γ (

𝑟 + 3

2
)     and    𝐸 [𝑈

−
𝑟
𝑞] =

𝑞

𝑞 − 𝑟
    ,    𝑞 > 𝑟 

respectively. 

 

We now give the moments of the SM distribution in Theorem 3. 

 

Theorem 3.  Let 𝑍~𝑆𝑀(𝜎, 𝑞), then 𝑟 − 𝑡ℎ non-central moment of the SM distribution is formulated by 

𝐸[𝑍𝑟] =
2

√𝜋
𝜎𝑟Γ (

𝑟 + 3

2
)

𝑞

𝑞 − 𝑟
    ,    𝑞 > 𝑟. (5) 
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Proof. The proof follows from the stochastic representation given in Equation (2) and Lemma 1.  

𝐸[𝑍𝑟] = 𝐸 [𝑌𝑟𝑈
−
𝑟
𝑞] = 𝐸[𝑌𝑟]𝐸 [𝑈

−
𝑟
𝑞] =

2

√𝜋
𝜎𝑟Γ (

𝑟 + 3

2
)

𝑞

𝑞 − 𝑟
    ,    𝑞 > 𝑟. 

Variance (Var), skewness (√𝛽1) and kurtosis (𝛽2) measures of the SM distribution are formulated using 

Equation (5) as follows:  

𝑉𝑎𝑟(𝑍) =
2𝑞

√𝜋
[
Γ (
5
2
)

𝑞 − 2
−

2𝑞

√𝜋
(𝑞 − 1)2

] 𝜎2, √𝛽1 = √
2√𝜋

𝑞

1
𝑞 − 3

−
3Γ(

5
2
) 𝑞2

(𝑞 − 2)(𝑞 − 1)
+
4
𝜋

𝑞2

(𝑞 − 1)3

[
Γ (
5
2)

𝑞 − 2
−

2𝑞

√𝜋
𝑞 − 1]

3
2

 

  and  

𝛽2 =

√𝜋
2𝑞 [

Γ (
7
2)

𝑞 − 4
−

16𝑞

√𝜋(𝑞 − 3)(𝑞 − 1)
+

12Γ (
5
2) 𝑞

2

𝜋(𝑞 − 2)(𝑞 − 1)2
−

24𝑞3

(√𝜋)
3
2𝑞4

]

[
Γ (
5
2
)

𝑞 − 2 −

2𝑞

√𝜋
𝑞 − 1]

2 , 

 respectively. 

 

In Table 1, the values of the skewness and kurtosis measures of the SM distribution are tabulated for certain 

values of the shape parameter 𝑞 to gain insight about shape of the distribution. 

 

Table 1. The values of the skewness and kurtosis measures of the SM distribution for certain values of 𝑞 

𝑞 5 6 7 8 9 10 20 50 100 

√𝛽1 1.8514 1.2605 0.9832 0.8307 0.7381 0.6779 0.5220 0.4906 0.4868 

𝛽2 18.7474 8.4771 5.7898 4.6989 4.1535 3.8440 3.2117 3.1203 3.1109 

  

It is clear from Table 1 that the SM distribution has higher skewness and kurtosis values for small values 

of the shape parameter 𝑞. Indeed, √𝛽1 and 𝛽2 are decreasing functions of 𝑞; see Figure 2 in which the 

skewness and kurtosis measures are plotted. We also compute the limits of √𝛽1 and 𝛽2 when 𝑞 goes to 

infinity as follows: 

 lim
𝑞→∞

√𝛽1 = 0.4857    and    lim
𝑞→∞

𝛽2 = 3.1082. 

These values are very similar to those of the Maxwell distribution. Therefore, the Maxwell distribution is 

a limiting case of the SM distribution. It should be noted that 𝜎 is taken to be 1 in Table 1 and Figure 2 

without loss of generality. 

  
(a) Skewness (b) Kurtosis 

Figure 2. The plots of the skewness and kurtosis measures of the SM distribution for certain values of 𝑞 



254 Sukru ACITAS, Talha ARSLAN, Birdal SENOGLU/ GU J Sci, 33(1): 249-263 (2020) 

2.4. Data Generation 

 

Random numbers having the SM distribution can be generated using Equation (2) in which the stochastic 

representation of the SM distribution is provided. The following steps can be followed for data generation 

from the SM distribution.   

 

Step 1. Generate 𝑤 from 𝑈(0,1) distribution to obtain random number from the Maxwell distribution using 

the following inverse transformation:  

𝑦 = 𝐹𝑌
−1(𝑤) = √Γ−1(𝑤; 3/2, 𝜎) 

 where 𝐹𝑌
−1 is the inverse of cdf of the Maxwell distribution and Γ−1 is the inverse incomplete gamma 

function. 

Step 2. Generate 𝑢 from the 𝑈(0,1) distribution to obtain random number from the SM distribution using 

the following equality:  

𝑧 =
𝑦

𝑢1/𝑞
   . 

2.5. Location - Scale case 

 

The SM distribution is represented in the location-scale form as follows:  

𝑓𝑋(𝑥; 𝜇, 𝜎, 𝑞) =
2𝑞

Γ(1/2)𝜎
Γ (
𝑞 + 3

2
) (
𝑥 − 𝜇

𝜎
)
−(1+𝑞)

𝐺 ((𝑥 − 𝜇)2/𝜎2;
𝑞 + 3

2
, 1) ,    𝑥 > 𝜇 (6) 

where 𝜇 ∈ ℝ is the location parameter. Random variable 𝑋 having the pdf given in (6) is shortly denoted 

by 𝑋~𝑆𝑀(𝜇, 𝜎, 𝑞). 
 

3. MODIFIED MAXIMUM LIKELIHOOD ESTIMATION 

In this section, the MML estimators of the location and scale parameters of the SM distribution are obtained. 

It is known that the estimation of the shape parameter along with the other parameters yields unreliable 

results when sample size is not large enough, see for example Bowman and Shenton [27], Kantar and 

Senoglu [28]. We therefore estimate the shape parameter 𝑞 by using the methodology known as profile 

likelihood. The details of the profile likelihood methodology will be provided in Section 4. 

The log-likelihood (ln 𝐿) function of the SM distribution is expressed as follows: 

ln𝐿 = 𝑛ln(2𝑞) − 𝑛ln [Γ (
1

2
)] + 𝑛ln [Γ (

𝑞 + 3

2
)] − (𝑞 + 1)∑

𝑛

𝑖=1

ln𝑧𝑖 − 𝑛ln𝜎 

            +∑

𝑛

𝑖=1

ln [𝐺 (𝑧𝑖
2;
𝑞 + 3

2
, 1)] 

(7) 

 

where 𝑧𝑖 = (𝑥𝑖 − 𝜇)/𝜎 (𝑖 = 1,2,… , 𝑛). After taking derivatives of the ln𝐿 function with respect to the 

parameters 𝜇 and 𝜎 and setting them equal to 0, following likelihood equations are obtained:  

∂ln𝐿

∂𝜇
=
𝑞 + 1

𝜎
∑

𝑛

𝑖=1

ℎ1(𝑧𝑖) −
2

𝜎
∑

𝑛

𝑖=1

ℎ2(𝑧𝑖) = 0 (8) 

and 

∂ln𝐿

∂𝜎
= −

𝑛

𝜎
+
𝑞 + 1

𝜎
∑

𝑛

𝑖=1

𝑧𝑖ℎ1(𝑧𝑖) −
2

𝜎
∑

𝑛

𝑖=1

𝑧𝑖ℎ2(𝑧𝑖) = 0, (9) 

respectively. Here,  
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ℎ1(𝑧𝑖) = 𝑧𝑖
−1,    ℎ2(𝑧𝑖) =

𝑧𝑖𝑔 (𝑧𝑖
2;
𝑞 + 3
2

, 1)

𝐺 (𝑧𝑖
2;
𝑞 + 3
2

, 1)
, 

𝑔(⋅) denotes pdf of the 𝐺𝑎𝑚𝑚𝑎 (
𝑞+3

2
, 1) distribution. It is clear that closed form estimators of the location 

and scale parameters cannot be obtained since the likelihood equations given in the Equation (8) and 

Equation (9) include nonlinear functions of these parameters. Therefore, numerical methods should be 

performed. However, using numerical methods causes various problems such as (i) non-convergence of 

iterations (ii) convergence to multiple roots and (iii) convergence to wrong root, see e.g. Puthenpura and 

Sinha [29] and Vaughan [30]. 

 

In this study, Tiku’s [24,25] MML methodology is used to avoid the mentioned computational difficulties. 

The MML methodology not only gives explicit forms of the estimators but also is asymptotically equivalent 

to the ML methodology. There are three steps to obtain the MML estimators of the location parameter 𝜇 

and scale parameter 𝜎: 

Step 1. Standardized observations are ordered in ascending way, i.e. 𝑧(1) ≤ 𝑧(2) ≤ ⋯ ≤ 𝑧(𝑛).  

Step 2. The ordered standardized observations are incorporated into the likelihood equations since complete 

sums are invariant to ordering, i.e., ∑𝑛𝑖=1 𝑓(𝑧𝑖) = ∑
𝑛
𝑖=1 𝑓(𝑧(𝑖)).  

Step 3. ℎ1(⋅) and ℎ2(⋅) functions are linearized about the expected values of the ordered standardized 

observations, i.e. 𝑡(𝑖) = 𝐸(𝑧(𝑖)), using the first two terms of Taylor series expansion:  

ℎ1(𝑧(𝑖)) ≅ 𝛼1𝑖 − 𝛽1𝑖𝑧(𝑖),    and    ℎ2(𝑧(𝑖)) ≅ 𝛼2𝑖 − 𝛽2𝑖𝑧(𝑖);     (𝑖 = 1, . . . , 𝑛). (10) 

After incorporating the linearized versions of ℎ1(⋅) and ℎ2(⋅) functions into the likelihood equations, 

following modified likelihood equations are obtained:  

∂ln𝐿∗

∂𝜇
=
𝑞 + 1

𝜎
∑

𝑛

𝑖=1

(𝛼1𝑖 − 𝛽1𝑖𝑧(𝑖)) −
2

𝜎
∑

𝑛

𝑖=1

(𝛼2𝑖 + 𝛽2𝑖𝑧(𝑖)) = 0, (11) 

∂ln𝐿∗

∂𝜎
= −

𝑛

𝜎
+
𝑞 + 1

𝜎
∑

𝑛

𝑖=1

𝑧(𝑖)(𝛼1𝑖 − 𝛽1𝑖𝑧(𝑖)) −
2

𝜎
∑

𝑛

𝑖=1

𝑧(𝑖)(𝛼1𝑖 + 𝛽1𝑖𝑧(𝑖)) = 0. (12) 

Here, the ln𝐿∗ stands for modified log-likelihood function. Solutions of the Equations in (11)-(12) are 

the MML estimators and formulated by  

𝜇̂𝑀𝑀𝐿 = 𝑥̅[⋅] −
Δ

𝑚
𝜎̂𝑀𝑀𝐿    𝑎𝑛𝑑    𝜎̂𝑀𝑀𝐿 =

𝐵 + √𝐵2 − 4𝑛𝐶

2√𝑛(𝑛 − 1)
 (13) 

where  

𝑥̅[⋅] = ∑
𝑛
𝑖=1 𝛿𝑖𝑥(𝑖)/𝑚,    𝑚 = ∑𝑛𝑖=1 𝛿𝑖 ,    𝛿𝑖 = [(𝑞 + 1)𝛽1𝑖 + 2𝛽2𝑖],    𝛽1𝑖 = 𝑡(𝑖)

−2,  

𝛽2𝑖 = [
𝑔 (𝑡𝑖

2;
𝑞 + 3
2 , 1) + 2𝑡(𝑖)

2 𝑔′ (𝑡𝑖
2;
𝑞 + 3
2 , 1)𝐺 (𝑡𝑖

2;
𝑞 + 3
2 , 1) − 2𝑡(𝑖)

2 𝑔2 (𝑡𝑖
2;
𝑞 + 3
2 , 1)

𝐺2 (𝑡𝑖
2;
𝑞 + 3
2 , 1)

], 

𝛾𝑖 = [(𝑞 + 1)𝛼1𝑖 − 2𝛼2𝑖],    Δ =∑

𝑛

𝑖=1

𝛾𝑖 ,    𝛼1𝑖 = 2𝑡(𝑖)
−1,    𝛼2𝑖 = ℎ2(𝑡(𝑖)) − 𝛽2𝑖𝑡(𝑖) 
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𝐵 =∑

𝑛

𝑖=1

𝛾𝑖(𝑥(𝑖) − 𝑥̅[⋅])    𝑎𝑛𝑑    𝐶 =∑

𝑛

𝑖=1

𝛿𝑖(𝑥(𝑖) − 𝑥̅[⋅])
2. 

 

It should be noted that 𝑡(𝑖) values cannot be obtained exactly. We therefore use their approximate 

values using the following equality:  

𝑡(𝑖) = 𝐹
−1 (

𝑖

𝑛 + 1
) ,    𝑖 = 1,2, … , 𝑛 

 where 𝐹−1(⋅) is the inverse of cdf of the SM distribution. 

 

Remark. The original denominator of 𝜎̂𝑀𝑀𝐿 is 2𝑛, however it is replaced by 2√𝑛(𝑛 − 1) for bias 

correction. 

 

It should be noted that the MML estimator of the location parameter may be greater than the smallest order 

statistics 𝑥(1). In case of this situation, it is replaced by 𝑥(1) − 10
−4, see for example, Kantar and Senoglu 

[28], Singh and Sharma [31]. 

 

The advantage of the MML estimators is that they do not require any numerical calculations since they are 

functions of the sample observations and have closed forms. Furthermore, the MML estimators are 

asymptotically equivalent to the ML estimators. 

 

The asymptotic distributions of 𝜇̂𝑀𝑀𝐿 and 𝜎̂𝑀𝑀𝐿 are provided in Theorem 4 – 5, respectively. 

 

Theorem 4. 𝜇̂𝑀𝑀𝐿 is normally distributed with mean 𝜇 and variance 𝜎2/𝑚 for 𝑛 → ∞.  
Proof. The proof is done based on the following fact: The likelihood and modified likelihood equations, 

i.e. Equations (8) and (11), are asymptotically equivalent. Furthermore, the 𝜕 ln 𝐿∗ / 𝜕𝜇 can be written as 
𝜕 ln 𝐿∗

𝜕𝜇
=
𝑚

𝜎2
[(𝑥̅[⋅] −

Δ

𝑚
𝜎̂𝑀𝑀𝐿) − 𝜇] 

=
𝑚

𝜎2
(𝜇̂𝑀𝑀𝐿 − 𝜇). 

See Kendall and Stuart [32].  𝜇̂𝑀𝑀𝐿 is normally distributed since 𝐸(𝜕 ln 𝐿∗ / 𝜕𝜇𝑟) = 0 for all 𝑟 ≥  3, see 

Bartlett [33]. 

 

Theorem 5. 𝜎̂𝑀𝑀𝐿 conditional on 𝜇 known, 𝑛𝜎̂𝑀𝑀𝐿
2 /𝜎2  is asymptotically chi-square distributed with 𝑛 

degrees of freedom.  

Proof. This follows from the fact that 𝐵0 √𝐶0⁄ ≅ 0 and thus 

𝜕 ln 𝐿∗

𝜕𝜎
=
𝑛

𝜎3
( 
𝐶0
𝑛
− 𝜎2) 

where 𝐵0 and 𝐶0 are same as the 𝐵 and 𝐶, respectively. See for example Tiku [34] and Senoglu [35] for 

further information. 

 

3.1. Simulation Study 

 

In this subsection, we conduct a Monte-Carlo (MC) simulation study to compare the performances of the 

ML and MML estimators of the parameters of the SM distribution. The ML estimates of the parameters of 

the SM distribution are obtained using “fminsearch” function available in the optimization toolbox of 

MATLAB software. The MML estimators are directly obtained using Equation (13). The simulation setup 

is considered as follows. Without loss generality, true values of 𝜇 and 𝜎 are taken to be 0 and 1, respectively. 

Three different values of the shape parameter of the SM distribution are considered, i.e. 𝑞 = 0.8, 1.8 and 

2.8 for illustrative purposes. The sample sizes are taken to be 𝑛 = 25, 50 and 100. Mean, variance and 
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mean squared errors (MSEs) of the estimators are computed based on 1000 MC runs. The deficiencies 

(DEFs) of the estimators having the following formula 

𝐷𝐸𝐹 = 𝑀𝑆𝐸(𝜇̂) + 𝑀𝑆𝐸(𝜎̂) 
are also considered to compare the performances of the estimators. As it is clear from its formulation, the 

DEF is a measure of joint efficiency, see for example Kantar and Senoglu [28]. Results of the simulation 

study are tabulated in Table 2. 

 

Table 2. The simulated mean, variance and MSEs of the ML and MML estimators of the location and 

scale parameters of the SM distribution 

𝑞 𝑛 Parameter 
ML MML 

Mean Variance MSE DEF Mean Variance MSE DEF 

0.8 

25 
𝜇 -0.0039 0.1123 0.1123 

0.3529 
0.2625 0.0618 0.1307 

0.2253 
𝜎 1.1686 0.2121 0.2406 0.7936 0.0520 0.0946 

50 
𝜇 0.0006 0.0407 0.0407 

0.1066 
0.1736 0.0293 0.0594 

0.1111 
𝜎 1.0816 0.0592 0.0659 0.8460 0.0280 0.0517 

100 
𝜇 0.0037 0.0204 0.0204 

0.041 
0.1121 0.0155 0.0281 

00533 
𝜎 1.0427 0.0259 0.0277 0.8951 0.0142 0.0252 

1.8 

25 
𝜇 0.0411 0.0608 0.0625 

0.1929 
0.1056 0.0432 0.0544 

0.0953 
𝜎 1.0634 0.1263 0.1304 0.9436 0.0377 0.0409 

50 
𝜇 0.0199 0.0276 0.0280 

0.0745 
0.0644 0.0221 0.0262 

0.0473 
𝜎 1.0203 0.0461 0.0465 0.9559 0.0191 0.0211 

100 
𝜇 0.0153 0.0117 0.0119 

0.0308 
0.0447 0.0106 0.0126 

0.0244 
𝜎 1.0033 0.0189 0.0189 0.9660 0.0106 0.0118 

2.8 

25 
𝜇 0.0379 0.0467 0.0482 

0.1569 
0.0669 0.0366 0.0411 

0.0743 
𝜎 1.0558 0.1056 0.1087 0.9691 0.0322 0.0332 

50 
𝜇 0.0331 0.0220 0.0231 

0.0679 
0.0550 0.0182 0.0212 

0.0387 
𝜎 1.0087 0.0448 0.0448 0.9629 0.0162 0.0175 

100 
𝜇 0.0206 0.0099 0.0103 

0.0286 
0.0360 0.0092 0.0105 

0.0195 
𝜎 0.9987 0.0183 0.0183 0.9762 0.0085 0.0090 

 

Following conclusions can be drawn from Table 2. The ML estimators of 𝜇 is almost unbiased for all values 

of the shape parameter and sample size. The ML estimator of 𝜎 has negligible biases expect 𝑞 = 0.8 and 

𝑛 = 25. On the other hand, the MML estimators of 𝜇 and 𝜎 have larger bias values for small values of 𝑞 

and 𝑛. As the sample size increases the bias of the MML estimator of 𝜇 decreases as expected. It should be 

noticed that the scale parameter is underestimated by the MML method. The variances of the MML 

estimators are smaller than those of the ML estimator for all considered cases. The ML estimator of 𝜇 is 

more prefereable to the MML estimator for 𝑞 = 0.8 and 𝑛 = 25, 50, 100 in terms of MSE criterion. 

However, the MML estimator of 𝜇 gains efficiency for the remaining cases and the MSEs of the ML and 

MML estimators become more or less the same for larger values of the sample size. The MML estimator 

of 𝜎 has smaller MSE values compared to its ML counterpart. This is because of the fact that the variance 

of the MML estimator of 𝜎 is smaller than that of the ML estimator. The DEF values also indicate that the 

MML estimators are more preferable to the ML estimators since the DEF values of the MML estimators 

are much more smaller than those of the ML estimators for majority of the considered cases. Overall, the 

MML estimators of 𝜇 and 𝜎 are more efficient than the corresponding ML estimators even for small sample 

size (𝑛 = 25). These results show that the MML estimators are not only computationally straightforward 

but also as efficient as or better than the ML estimators. We therefore use the MML method for estimating 

the location and the scale parameters of the SM distribution in the rest of paper.  
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4. APPLICATION 

 

In this section, we use the SM distribution to model two data sets taken from Gomez et al. [14] in which 

the SG distribution is used for modelling purposes. The SG distribution includes the location (𝜇), scale (𝜎) 

and shape parameter (𝑞). Therefore, it is compatible with the SM distribution. We refer to Gomez et al. [14] 

for further details about the SG distribution.  

 

The SGR distribution is also considered as an alternative to the SM distribution. As indicated in the 

Introduction, the SM is a submodel of the SGR distribution. It should be noticed that the SGR distribution 

has one scale (𝜎) and two shape parameters (𝛼 and 𝑞) in Iriarte et al. [26]. However, in this part of the 

study, we consider the SGR distribution with an additional location parameter to make a precise 

comparison. 

 

4.1. Maximum Monthly Wind Speed Data 

 

Maximum monthly wind speed data set consists of 246 observations which are measured monthly from 

January, 1984 to December, 2005 in Palm Beach, Florida (USA). The corresponding data set and further 

information about it are available in Gomez et al. [14].  

 

Gomez et al. [14] propose to model this data using the SG distribution since its kurtosis value is large. 

Different from Gomez et al. [14], we use the SM distribution to model maximum wind speed data in this 

study. Since the MML method is employed for estimating the parameters of the SM distribution, the 

plausible value of the shape parameter 𝑞 should be identified using the methodology known as profile 

likelihood. It is an efficient methodology to find the plausible value of the shape parameter 𝑞; see e.g. Acitas 

et al. [36]. The steps of the profile likelihood procedure are given as follows:   

 

Step 1. For a given value of the shape parameter 𝑞 calculate the MML estimates of 𝜇 and 𝜎.  

Step 2. Calculate the ln𝐿 value based on these estimates, i.e. ln𝐿̂, using the following equation:  

ln𝐿̂ = 𝑛ln(2𝑞) − 𝑛ln [Γ (
1

2
)] + 𝑛ln [Γ (

𝑞 + 3

2
)] − (𝑞 + 1)∑

𝑛

𝑖=1

ln𝑧̂𝑖 − 𝑛ln𝜎̂ 

             +∑

𝑛

𝑖=1

ln [𝐺 (𝑧̂𝑖
2;
𝑞 + 3

2
, 1)] 

 where 𝑧̂𝑖 =
𝑥𝑖−𝜇̂𝑀𝑀𝐿

𝜎̂𝑀𝑀𝐿
, 𝑖 = 1,2,… , 𝑛.  

Step 3. Repeat step 1 and 2 for several values of the shape parameter 𝑞.  

Step 4. 𝑞 value maximizing the ln𝐿̂ among the others is taken as a plausible estimate of 𝑞.  

 

The plausible value of 𝑞 is identified as 3.65 at the end of this procedure. Using 𝑞̂ = 3.65 the MML 

estimates of the 𝜇 and 𝜎 are obtained as given in the first row of Table 3. In the remaining rows of Table 3, 

the ML estimates of the parameters of the SG and SGR distributions are also provided. These ML estimates 

are obtained using “fminsearch” function. The ln 𝐿 and Akakike information criterion (AIC) values 

along with the Kolmogorov-Smirnov (KS) test statistic and associated 𝑝 −values are also computed and 

tabulated in Table 3. The smaller AIC and KS test statistic values imply the better fitting performance. It is 

clear from Table 3 that the SM distribution is more preferable than the other considered slash distributions 

in terms of AIC values. However, the SGR distribution is the best according to the KS test statistic. See 

also Figure 3 in which the histogram and fitted densities based on the SM, SG and SGR distributions are 

plotted. It is obvious from Figure 3 that the SM distribution provides a better fitting performance to the 

maximum wind speed data. On the other hand, the SG and SGR distributions present overfitting.   
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Table 3. The estimates of the parameters of the SG, SM and SGR distributions for maximum wind speed 

data 

 𝜇̂ 𝜎̂ 𝑞̂ 𝛼̂ ln𝐿 AIC KS 𝑝 −value 

SM 24.7940 9.8666 3.6500 - -894.3740 1794.7479 0.0724 0.1192 

SG 36.3460 4.5770 4.1220 - -897.0335 1800.0670 0.0690 0.1545 

SGR 11.2314 0.0148 5.0819 7.2315 -894.0409 1796.0819 0.0625 0.2435 

 

Finally, surface plot of the ln 𝐿 of the SM distribution for the maximum wind speed data is given in Figure 

4 to check that the ln 𝐿 function attains its maximum at the MML estimates. It is clear that the MML 

estimates are maximizers of the ln 𝐿 function. 

 
Figure 3. The histogram and the fitted densities for maximum wind speed data 

 

 
Figure 4. The loglikelihood surface of the SM distribution for the maximum wind speed data 
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4.1. Snow Accumulation Data 

 

The snow accumulation data including 60 observations is obtained from the Raleigh– Durham airport, 

North Carolina, for the time period 1948-2000. Full data set can be found in Gomez et al. [14]. In this study, 

the SM distribution along with the SG and SGR distributions are used for modelling purporses. Since the 

MML methodology is used for estimating the parameters of the SM distribution, we should first identify 

the shape parameter 𝑞. The plausible value of 𝑞 is obtained as 1.44 using the profile likelihood method 

explained in the previous subsection. The parameter estimates, ln L, AIC value, KS test statistis and 

associated 𝑝 −values are tabulated in Table 4.  

 

Table 4. The estimates of the parameters of the SG, SM and SGR distributions for snow accumulation 

data 

 𝜇̂ 𝜎̂ 𝑞̂ 𝛼̂ ln𝐿 AIC KS 𝑝 −value 

SM -0.3761 0.8575 1.4400 - -110.9157 227.8314 0.0959 0.5747 

SG 0.8760 0.5570 1.6370 - -116.4960 238.9920 0.1105 0.3964 

SGR -2.6652 8.4871 2.2977 65.9196 -110.0324 228.0648 0.1396 0.1557 

 

Results show that the modelling performance of the SM distribution is substantially better than its rivals in 

terms of the AIC and KS test statistics values. See also Figure 5 in which the fitted densities are plotted. It 

is clear that the SM distribution provides a better fitting. It should be noted that the SM is a submodel of 

the SGR distribution thus the ln 𝐿, and AIC values are close to each other. However, the SM has superiority 

over SGR in terms of KS test statistic value.  

 
Figure 5. The histogram and the fitted densities for snow accumulation data 

 

6. CONCLUSION 

 

Slashing methodology is frequently used in the statistical literature to obtain heavy-tailed distributions so 

that resulting distribution is flexible enough to model the excess kurtosis. We therefore introduce the SM 

distribution. The parameters of the SM distribution are estimated using the MML methodology which is 

computationally straightforward. We conduct a MC simulation study to compare the efficiencies of the ML 

and MML estimators. Results show that the MML estimators are more preferable. The SM distribution is 

also used to model the maximum wind speed and snow accumulation data sets taken from the literature. 

Results and fitted densities demonstrate that the SM distribution has a satisfactory modelling performance.  

 

It should be mentioned that the ML method can also be used for estimating the parameters of the SM 

distribution instead of the MML method in the applications. It is not surprising that the ML and MML 
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estimates and the corresponding AIC values and KS test statistics will be close to each other. Since the 

MML estimators are obtained employing a wise modification on the ML method, the AIC values obtained 

from the ML method may be less than those of the MML method. This is because of the fact that the ML 

estimates are obtained numerically. However, using numerical methods can be problematic in some cases. 

For example, choosing a wrong initial value may lead to wrong or non-convergence of iterations. On the 

other hand, computation of the MML estimates are straightforward and easy since no iterations are required. 

Therefore, the MML estimators can be used as an alternative to the ML estimators if the focus is 

computational ease as well as the efficiency. 
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