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Abstract
We prove the norm inequalities for potential operators and fractional integrals related to
generalized shift operator defined on spaces of homogeneous type. We show that these
operators are bounded from Hp

∆ν
to Hq

∆ν
, for 1

q = 1
p − α

Q , provided 0 < α < 1
2 , and

α < β ≤ 1 and Q
Q+β < p ≤ Q

Q+α . By applying atomic-molecular decomposition of Hp
∆ν

Hardy space, we obtain the boundedness of homogeneous fractional type integrals which
extends the Stein-Weiss and Taibleson-Weiss’s results for the boundedness of the Bn-Riesz
potential operator on Hp

∆ν
Hardy space.
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1. Introduction
The theory of Hardy spaces establish the important part of harmonic analysis. As we

know that the atomic-molecular decomposition of Hardy spaces make the singular integral
operators acting on this spaces very simple. Thus the decompositions of Hardy spaces are
very critical in harmonic analysis. Therefore, many problems in harmonic analysis have
natural formulations as questions of boundedness of singular integral operators defined on
this spaces or distributions.

As the development of singular integral operators, the fractional type operators and their
boundedness theory play important roles in harmonic analysis and other fields. Moving in
the same direction, due to its applications to partial differential equations and differentia-
tion theory, the fractional integrals have attracted many attentions. In many applications,
a crucial step has been to show that these classical operators of harmonic analysis are
bounded on some function spaces. Also, results on weak and strong type inequalities for
this operators of this kind in Lebesgue spaces are classical and can be found for example
[13].

One of the well-known example of fractional integrals, the Riesz potential Iα of order
α(0 < α < n) is defined by

Iαf(x) =
∫
Rn

f(x − y)|y|α−ndy.
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The famous Hardy-Littlewood-Sobolev theorem states that Iα is bounded operator from
usual Lebesgue spaces Lp to Lq when 1 < p < q < ∞, 1/q = 1/p − α/n [13, 14].

Historically, in 1971, Muckenhoupt and Wheeden showed the weighted (Lp, Lq) bound-
edness of the homogeneous fractional integral operator IΩ,α for power weight when 1 <
p < n/α [12]. In 1988, Ding and Lu obtained the weighted (Lp, Lq) boundedness of IΩ,α

for A(p, q) weight [3]. Moreover, for the other conditions of p, the boundedness of IΩ,α

can also be found in [1, 2]. In 1960, Stein and Weiss [15] used the theory of harmonic
functions of several variables to prove that Iα is bounded from H1 to Ln/(n−α). The work
was later generalized to the Hp spaces by Taibleson and Weiss [16].In 1980, using the
molecular characterization of the real Hardy spaces, Taibleson and Weiss proved that Iα

is also bounded from Hp to Lq or Hq, where 0 < p < 1 and 1/q = 1/p − α/n.
In this paper, we will mainly concerned with the boundedness properties of Bn-Riesz

potential with rough kernel Iα
Ω,ν on Hp

∆ν
(Rn

+) Hardy spaces in the settings of ∆ν Laplace-
Bessel operator. For 0 < p < ∞, the Hp

∆ν
Hardy spaces are defined by

Hp
∆ν

= {f ∈ S+ : ||f ||Hp
∆ν

= || sup
t>0

|ϕt ⊗ f |||Lp
ν

< ∞}.

Here, ϕ ∈ S(Rn
+) satisfies

∫
Rn

+
φ(x)xν

ndx = 1. Also, Bn-Riesz potential with rough kernel
Iα

Ω,ν is defined by

(Iα
Ω,νf)(x) =

∫
Rn

+

T yf(x)
(
Ω(y)|y|α−Q

)
yν

ndy,

where 0 < α < Q and T y is the generalized shift operator [5,9,10]. Here, our investigation
are based on the so-called generalized shift operator introduced first by Levitan.

Since the classical Riesz potential operator Iα is essentially the homogeneous fractional
integral operators IΩ,α when Ω = 1, by comparing mapping properties of Iα and Iα

Ω,ν ,
the problem arises to ask whether the homogeneous Bn-Riesz potential Iα

Ω,ν has similar
boundedness on Hp

∆ν
spaces. We would like to point out that our proofs also suit for

Bn-Riesz potential operator with homogeneous characteristic type on Hp
∆ν

Hardy spaces
in terms of atomic-molecular characterization way.

The aim of this paper is to answer this question. Using the atomic-molecular de-
composition of Hp

∆ν
, we showed that Iα

Ω,ν is bounded from Hp
∆ν

to Lp
ν or Hq

∆ν
for some

0 < p ≤ 1.Thus, we verify that Stein-Weiss’s conclusion for p = 1 and Taibleson-Weiss’s
conclusion for some 0 < p < 1 hold also for Iα

Ω,ν .
Now let us first recall some necessary notions and notations. Throughout the whole

paper, C always means a positive constant independent of the main parameters, it may
change from one occurrence to another.

2. Some preliminaries
Let Rn

+ be the part of the Euclidean space Rn of points x = (x1, ..., xn), defined by the
inequality xn > 0. We write x = (x′, xn), x′ = (x1, . . . , xn−1) ∈ Rn−1, B(x, r) = {y ∈
Rn

+ ; |x − y| < r}, B(x, r)c = Rn
+\B(x, r). For any measurable set B ⊂ Rn

+ we define
|B|ν =

∫
B xν

ndx, where ν > 0. Then |B(0, r)|ν = ω(n, ν)rQ, Q = n + ν, where

ω(n, ν) =
∫

B(0,1)
xν

ndx = π
n−1

2 Γ
(ν + 1

2
)(

2Γ
(Q − 2

2
))−1

.

Let S+ = S(Rn
+) be the space of functions which are the restrictions to Rn

+ of the test
functions of the Schwartz that are even with respect to xn, decreasing sufficiently rapidly
at infinity, together with all derivatives of the form

Dγ
ν = Dγ′

x′ B
γn
n = Dγ1

1 ...D
γn−1
n−1 Bγn

n = ∂γ1

∂xγ1
1

...
∂γn−1

∂x
γn−1
n−1

Bγn
n ,
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i.e., for all φ ∈ S+, sup
x∈Rn

+

|xηDγ
ν φ| < ∞, where Bn = ∂2

∂x2
n

+ ν

xn

∂

∂xn
is the Bessel differential

expansion, γ = (γ1, ..., γn) and η = (η1, ..., ηn) are multi-indexes, and xη = xη1
1 . . . xηn

n . For
a fixed parameter ν > 0, let Lp

ν = Lp
ν(Rn

+) be the space of measurable functions with a
finite norm

∥f∥Lp
ν

≡
( ∫

Rn
+

|f(x)|pxν
ndx

)1/p

is denoted by Lp
ν ≡ Lp

ν(Rn
+), 1 ≤ p < ∞. The space of the essentially bounded measurable

function on Rn
+ is denoted by L∞

ν (Rn
+). The space S+ equipped with the usual topology.

We denote by S′
+ ≡ S′

+
(
Rn

+
)

the topological dual of S+ is the collection of all tempered
distributions on Rn

+ equipped with the strong topology.
The mixed Fourier-Bessel transform on S+ has the form

Fνf(x) =
∫
Rn

+

f(y) e−i(x′,y′)j ν−1
2

(xnyn) yν
ndy, (2.1)

where (x′, y′) = x1y1 + . . . + xn−1yn−1, jν , ν > −1/2, is the normalized Bessel function,
and Cn,ν = (2π)n−12ν−1Γ2((ν + 1)/2) = 2

π ω(2, ν). This transform is associated to the
Laplace-Bessel differential operator

∆ν =
n∑

i=1

∂2

∂x2
i

+ ν

xn

∂

∂xn
=

n−1∑
i=1

∂2

∂x2
i

+ Bn, ν > 0,

where Bn = ∂2

∂x2
n

+ ν

xn

∂

∂xn
.

The Fourier-Bessel transform is invertible on S+ and the inverse transform is given by
the relation

F −1
ν f(x) = Cn,νFνf(−x′, xn). (2.2)

The generalized shift operator is defined as follows:

T yf(x) = Cν

∫ π

0
f

(
x′ − y′,

√
x2

n − 2xnyn cos θ + y2
n

)
sinν−1 θdθ, (2.3)

where Cν = π− 1
2 Γ

(
ν+1

2

)
[Γ

(
ν
2

)
]−1 (see [9, 10]). Following [9, 10], let us introduce the

generalized convolution generated by shift (2.3) according to the formula

(f ⊗ g)(x) =
∫
Rn

+

f(y) T yg(x) yν
ndy.

The integrals of the Bn-fractional type with homogeneous characteristic Ω(x) of degree
zero on Rn

+ have the following form:

(Iα
Ω,νf)(x) =

∫
Rn

+

f(y)T y

( Ω(x)
|x|Q−α

)
yν

ndy, 0 < α < Q. (2.4)

It is clear that when Ω = 1, Iα
Ω,ν is the usual Bn-Riesz potential Iα

ν ([5–8,11]).
For the Bn-Riesz potentials the following theorem is valid.

Theorem 2.1 ([7], Corollary 1). Let 0 < α < Q and Ω ∈ Lr
ν(Sn−1

+ ) with r > Q
Q−α be

homogeneous characteristic of degree zero on Rn
+.

i) If 1 < p < Q
α , then the condition 1

p − 1
q = α

Q is necessary and sufficient for the
boundedness of Iα

Ω,ν from Lp
ν(Rn

+) to Lq
ν(Rn

+).
ii) If p = 1, then the condition 1

p − 1
q = α

Q is necessary and sufficient for the bound-
edness of Iα

Ω,ν from L1
ν(Rn

+) to WLq
ν(Rn

+).
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Definition 2.2. Let 0 < p ≤ 1 ≤ q ≤ ∞ with p ̸= q. A (p, q, s)-atom a(x) is a function in
Lq

ν(Rn
+) which satisfies the following properties:
i) supp a ⊂ B,

ii) ||a(x)||Lq
ν

≤ |B|
1
q

− 1
p

ν ,
iii)

∫
B a(x)xλxν

ndx = 0 for all s with |λ| ≤ s, s = [Q
(1

p − 1
)
].

Now we are in a position to state our main results as follows.

Theorem 2.3. Let 0 < α < Q, and let Ω ∈ Lr
ν(Sn−1

+ ) for r > Q
Q−α be homogeneous

characteristic of degree zero on Rn
+. Then there is a constant C > 0 such that

||Iα
Ω,νf ||

L

Q
Q−α
ν

≤ C||f ||H1
∆ν

.

Theorem 2.4. Let 0 < α < 1, Q
Q+α ≤ p < 1, 1

q = 1
p − α

Q and Ω ∈ Lr
ν(Sn−1

+ ) with r > Q
Q−α

be homogeneous characteristic of degree zero on Rn
+. Then there is a constant C > 0 such

that
||Iα

Ω,νf ||Lq
ν

≤ C||f ||Hp
∆ν

.

Theorem 2.3 and 2.4 give the (Hp
∆ν

, Lq
ν) boundedness of Iα

Ω,ν . The following theorem
will give the (Hp

∆ν
, Hq

∆ν
) boundedness of Iα

Ω,ν .

Theorem 2.5. Let 0 < α < 1
2 , 1

q = 1
p − α

Q and let Ω ∈ Lr
ν(Sn−1

+ ) with r > 1
1−2α be

homogeneous characteristic of degree zero on Rn
+. Then for α < β ≤ 1 and Q

Q+β < p ≤
Q

Q+α , there is a constant C > 0 such that

||Iα
Ω,νf ||Hq

∆ν
≤ C||f ||Hp

∆ν
.

3. The proof of main results
This section is devoted to the proofs of the theorems. For an operator, to prove the

boundedness from H1
∆ν

to L1
ν or Hp

∆ν
to Lp

ν , a common method is to take one atom at a
time. It isn’t hard to verify (p, q, s)-atoms are mapped into Lp spaces, uniformly. However,
to study the problem of boundedness of Bn-Riesz potential operator on Hp

∆ν
Hardy spaces,

we need a modification. The method we adopted is similar to the same in [4].
Before we prove our main results, we need to give some necessary facts.

Theorem 3.1 ([11], Theorem 1.1). Let 1 ≤ r ≤ ∞, 0 < α < Q and K(x) be a kernel of
B-fractional type with homogeneous characteristic of degree zero on Rn

+. Then there exists
A, C > 0 such that for all t > 0 (t = 2j) and x ∈ Rn

+( ∫
|x|>A

|T yK(tx) − K(tx)|rxν
ndx

) 1
r

≤ Ct
Q−α

r , |y| < 1
A . (3.1)

Proof of Theorem 2.3 and 2.4. Let us first start to give the proof of Theorem 2.3.
By the atomic decomposition theory of Hardy spaces, it is sufficient to prove that there is
constant C such that for any (1, ℓ, 0)-atom a(x), the inequality

||(Iα
Ω,νa)(x)||Lq

ν
≤ C (3.2)

holds, where ℓ > 1 and q = Q
Q−α . We now take 1 < ℓ1 < ℓ2 < ∞, such that 1

ℓ1
− 1

ℓ2
= α

Q .
For the present investigation of the proof, we consider the function a(x) is (1, ℓ1, 0)-atom
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supported in a ball B = B(0, d) with center at zero and radius d. So we can write

||(Iα
Ω,νa)(x)||Lq

ν
≤

(∫
2B

|(Iα
Ω,νa)(x)|qxν

ndx

) 1
q

+
(∫

(2B)c
|(Iα

Ω,νa)(x)|qxν
ndx

) 1
q

:= I1 + I2.

By applying Hölder’s inequality and Theorem 2.1, we may estimate I1 as follows:

I1 ≤ C||Iα
Ω,νa||

L
ℓ2
ν

|B|
1
q

− 1
ℓ2

ν ≤ C||a||
L

ℓ1
ν

|B|
1
q

− 1
ℓ2

ν ≤ C.

For I2, by the vanishing condition (iii) of a(x), we obtain

I2 =
(∫

(2B)c
|(Iα

Ω,νa)(x)|qxν
ndx

) 1
q

=
(∫

(2B)c

∣∣∣∣∫
Rn

+

T y
(
Kα(x)

)
a(y)yν

ndy

∣∣∣∣qxν
ndx

) 1
q

=
∫

(2B)c
|a(y)|

(∫
Rn

+

∣∣T y
(
Kα(x)

)
− Kα(x)

∣∣qxν
ndx

) 1
q

yν
ndy

≤
∫

(2B)c
|a(y)|

( ∞∑
j=1

∫
2jd≤|x|<2j+1d

∣∣T y
(
Kα(x)

)
− Kα(x)

∣∣qxν
ndx

) 1
q

yν
ndy

(3.3)

where Kα(x) = Ω(x)|x|α−Q. Since r > Q
Q−α = q, by Hölder’s inequality, we obtain

( ∫
2jd≤|x|<2j+1d

∣∣T y
(
Kα(x)

)
− Kα(x)

∣∣qxν
ndx

) 1
q

≤ C(2jd)Q( 1
q

− 1
r

)
( ∫

2jd≤|x|<2j+1d

∣∣T y
(
Kα(x)

)
− Kα(x)

∣∣rxν
ndx

) 1
r

.
(3.4)

Applying Theorem 3.1, we have( ∫
2jd≤|x|<2j+1d

∣∣T y(
Kα(x)

)
− Kα(x)

∣∣rxν
ndx

) 1
r

≤ C(2jd)
Q−α

r . (3.5)

By the inequalities (3.4) and (3.5), we get

∞∑
j=1

( ∫
2jd≤|x|<2j+1d

∣∣T y
(
Kα(x)

)
− Kα(x)

∣∣qxν
ndx

) 1
q

≤ C
∞∑

j=1
(2jd)Q( 1

q
− 1

r
)(2jd)

Q−α
r < ∞.

(3.6)

Therefore, by (3.3) and (3.6) we obtain

I2 ≤ C

∫
B

|a(y)|yν
ndy ≤ C||a||

L
ℓ1
ν

|B|
1

ℓ
′
1

ν ≤ C.

The proof of Theorem 2.3 is finished.
The proof of Theorem 2.4 is similar to Theorem 2.3. Then, we only give the main steps

of the proof by choosing 1 < ℓ1 < ℓ2 < ∞ such that 1
ℓ1

− 1
ℓ2

= 1
p − 1

q = α
Q . Let a(x) be

(p, ℓ1, 0)-atom supported in the ball B(0, d). Here we still need to verify the validity of (3.2)
for the atom a(x). As in the previous proof, we give the similar estimates for I1 and I2,
respectively. We estimate I1 again by using Hölder’s inequality and Theorem 2.1. However,
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using the conditions of Theorem 2.4, if p ≥ Q
Q+α , then we obtain (α + Q) − (Q/p) ≤ 0. In

this case, by the Theorem 2.1, we have
∞∑

j=1

( ∫
2jd≤|x|<2j+1d

∣∣T y(
Kα(x)

)
− Kα(x)

∣∣qxν
ndx

) 1
q

≤ C
∞∑

j=1
(2jd)− Q

q

≤ |B|−1/q
ν < ∞.

Finally, from the discussion above and (3.3) we have

I2 ≤ C|B|−1/q
ν

∫
B

|a(y)|yν
ndy ≤ C|B|−1/q

ν ||a||
L

ℓ1
ν

|B|1/ℓ
′
1

ν ≤ C.

This completes the proof of Theorem 2.4. �

Proof of Theorem 2.5. First, let us state r > Q
Q−α . We can select 1 < ℓ1 < ℓ2 such

that 1
ℓ1

− 1
ℓ2

= 1
p − 1

q = α
Q and Q

Q−α < ℓ2 < r. Take ϵ so that 1
q − 1 < ϵ < β−α

Q ≤ 1−α
Q .

Denote a0 = 1 − 1
q + ϵ, b0 = 1 − 1

ℓ2
+ ϵ and let a(x) be a (p, ℓ1, 0)-atom supported in the

ball B(0, d). By the atomic-molecular decomposition theory of real Hardy spaces [14], it
suffices to show that Iα

Ω,νa is a (q, ℓ2, 0, ϵ)-molecule for proving Theorem 2.5. To prove
this, we still need to verify that (Iα

Ω,νa)(x) satisfies the following conditions:
i) |x|Qb0(Iα

Ω,νa)(x) ∈ Lℓ2
ν ,

ii) Nℓ2
ν (Iα

Ω,νa) := ||Iα
Ω,νa||a0/b0

L
ℓ2
ν

|||.|Qb0(Iα
Ω,νa)(.)||1−a0/b0

L
ℓ2
ν

< ∞,
iii)

∫
B(Iα

Ω,νa)(x)xν
ndx = 0.

Moreover, we also need to prove that there is a constant C > 0, independent of a(x), such
that

Nℓ2
ν (Iα

Ω,νa) ≤ C.

Let us estimate every part. For (i), write

|||.|Qb0(Iα
Ω,νa)(.)||

L
ℓ2
ν

≤ |||.|Qb0(Iα
Ω,νa)(.)χ2B(.)||

L
ℓ2
ν

+
+|||.|Qb0(Iα

Ω,νa)(.)χ(2B)c(.)||Lℓ2
ν

:= J1 + J2.

Observe that Q
Q−α < ℓ2 < r and 1

ℓ1
− 1

ℓ2
= α

Q , by Theorem 2.1, we have

J1 ≤ C|B|b0
ν ||Iα

Ω,νa||
L

ℓ2
ν

≤ C|B|b0
ν ||a||

L
ℓ1
ν

. (3.7)

For J2, by the moment condition of a(x) we obtain

J2 ≤
∫
B

|a(y)|
( ∞∑

j=1

∫
2jd≤|x|<2j+1d

∣∣T y
(
Kα(x)

)
− Kα(x)

∣∣ℓ2 |x|Qb0ℓ2xν
ndx

) 1
ℓ2

yν
ndy. (3.8)

If we apply the Hölder’s inequality and Theorem 3.1, we get(∫
2jd≤|x|<2j+1d

∣∣T y
(
Kα(x)

)
− Kα(x)

∣∣ℓ2 |x|Qb0ℓ2xν
ndx

) 1
ℓ2

≤
(∫

2jd≤|x|<2j+1d

∣∣T y
(
Kα(x)

)
− Kα(x)

∣∣rxν
ndx

) 1
r

×
(∫

2jd≤|x|<2j+1d
|x|Qb0ℓ2(r/ℓ2)′

xν
ndx

) 1
ℓ2(r/ℓ2)′

≤ C(2jd)
Q
r (2jd)Qb0(2jd)Q( 1

ℓ2
− 1

r
) = C(2jd)Q+Qϵ ≤ |B|1+ϵ

ν .
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Thus, by the inequality above (3.8), we have

J2 ≤ C|B|
ϵ+ α

Q
ν

∫
B

|a(y)|yν
ndy ≤ C|B|

ϵ+ α
Q

ν ||a||
L

ℓ1
ν

|B|1/ℓ
′
1

ν . (3.9)

By (3.7) and (3.9), we know that (i) holds and

Nℓ2
ν (Iα

Ω,νa) = ||Iα
Ω,νa||a0/b0

L
ℓ2
ν

|||.|(Q)b0(Iα
Ω,νa)(.)||1−a0/b0

L
ℓ2
ν

≤ C||a||a0/b0

L
ℓ1
ν

|B|
ϵ+ α

Q
(1−a0/b0)

ν ||a||1−a0/b0

L
ℓ1
ν

|B|1−a0/b0(1/ℓ
′
1)

ν ≤ C.

Finally, we need to verify (iii) to complete the proof of Theorem 2.5. To this end, we first
show that (Iα

Ω,νa)(x) ∈ L1
ν(Rn

+). So, we may write∫
Rn

+

|(Iα
Ω,νa)(x)|xν

ndx =
∫

|x|<1

|(Iα
Ω,νa)(x)|xν

ndx +
∫

|x|≥1

|(Iα
Ω,νa)(x)|xν

ndx

:= E1 + E2.

Clearly E1 ≤ C since Iα
Ω,νa(x) ∈ Lℓ2

ν . On the other hand, by b0 − 1/ℓ
′
2 = ϵ > 0 and

|x|Qb0(Iα
Ω,νa)(.) ∈ Lℓ2

ν , again using Hölder’s inequality we obtain

E2 ≤ |||.|Qb0(Iα
Ω,νa)(.)||

L
ℓ2
ν

( ∫
|x|≥1

|x|−Qb0ℓ
′
2xν

ndx

)
< ∞.

Therefore, Fν(Iα
Ω,νa) ∈ C(Rn

+). In order to check∫
(Iα

Ω,νa)(x)xν
ndx = Fν [Iα

Ω,νa](0) = 0,

it is sufficient to show
lim

|ξ|→0
Fν [Iα

Ω,νa](ξ) = 0. (3.10)

It is well known that Fν [Iα
Ω,νa](ξ) = Fν [a](ξ)Fν

[
Kα(x)

]
(ξ), and

Fν
(
Kα(ξ)

)
=

∫
|x|<1

Kα(x)e−i(x′,ξ′)j ν−1
2

(xnξn) xν
ndx

+
∞∑

j=1

∫
2j−1≤|x|<2j

Kα(x)e−i(x′,ξ′)j ν−1
2

(xnξn) xν
ndx,

where Kα(x) = Ω(x)|x|α−Q. Thus, we obtain∣∣∣∣Fν
(
Kα(ξ)

)∣∣∣∣ ≤ C +
∞∑

j=1
|Fν [Kα,χj (ξ)]|,

where Kα,χj (ξ) = Ω(ξ)|ξ|α−Qχ[2j−1,2j)(|ξ|). Here we give an estimate of |Fν [Kα,χj (ξ)]| for
any j ≥ 1 in the study of this problem.

Lemma 3.2. Suppose that 0 < α < 1
2 , and Ω ∈ Lr

ν(Sn−1) with r > 1
1−2α is homogeneous

characteristic on Rn
+. Then there exists C and σ > 0, such that 2α < σ < 1/r

′ ≤ 1 and
for j ≥ 1 ∣∣Fν [Kα,χj (ξ)]

∣∣ ≤ Cn,ν,α2(α−Q/2)j |ξ|−σ/2,

where Cn,ν,α = Γ
(

(n+ν−α)/2
)

Γ
(

α/2
) .
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Proof. First, we shall need the Fourier-Bessel transforms of the function

Fν
(
e−r|x|2)

(ξ) = e− |ξ|2
4r (2r)

−2ν−n
2 r > 0, x, ξ ∈ Rn

+.

By the property < FνKα, φ >=< Kα, Fνφ > of generalized functions, we may write∫
Rn

+

e−r|x|2Fνφ(x)xν
ndx =

∫
Rn

+

φ(x)Fνe− |x|2
4r xν

ndx.

We now integrate both sides of the above with respect to r from 0 to ∞ having multiplied
the equation by r(Q−α)/2−1. We obtain∫

Rn
+

Fνφ(x)
(∫ ∞

0
r(Q−α)/2−1e−r|x|2dr

)
xν

ndx =
∫
Rn

+

φ(x)
(∫ ∞

0
r(Q−α)/2−1(2r)

−2ν−n
2 e− |x|2

4r

)
xν

ndx.

If we calculate the inner integrals, we have

Γ
(
(n + ν − α)/2

)∫
Rn

+

Fνφ(x)Ω(x)|x|α−Qxν
ndx = 2α−Q/2Γ

(
α/2

)∫
Rn

+

φ(x)Ω(x)|x|−αxν
ndx.

Taking the inverse Fourier-Bessel transform and the modulus property, the required in-
equality is obtained. �

Now let us return to the proof of Theorem 2.5. Applying the conclusion of Lemma 3.2,
we obtain

Fν
[
Kα(ξ)

]
≤ Cn,ν,α +

∞∑
j=1

|Fν [Kα,χj (ξ)]|

≤ Cn,ν,α + Cn,ν,α

∞∑
j=1

2(α−Q/2)j |ξ|−σ/2

≤ Cn,ν,α(1 + |ξ|−σ/2).

(3.11)

On the other hand, for Fν [a](ξ) we have∣∣∣∣∫
Rn

+

a(x)e−i(x′,ξ′)j ν−1
2

(xnξn) xν
ndx

∣∣∣∣ =
∣∣∣∣∫

B
a(x)[e−i(x′,ξ′) − 1]j ν−1

2
(xnξn) xν

ndx

∣∣∣∣
≤ Cn,ν,α

∫
B

|a(x)||ξ||x|xν
ndx ≤ Cn,ν,α|ξ|.

(3.12)

Combining (3.11) and (3.12) we obtain∣∣Fν(Iα
Ω,νa)(ξ)

∣∣ ≤ |Fν
(
a(ξ)

)
|
∣∣Fν

(
Kα(ξ)

)∣∣ ≤ Cn,ν,α(|ξ| + |ξ|1−σ/2). (3.13)

By the choice of σ it is known that 1 − σ/2 > 0. So, the required equality (3.10) holds by
(3.13). Hence (Iα

Ω,νa)(x) satisfies the condition (iii) and Theorem 2.5 follows. �
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