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ABSTRACT. The object of the present paper is to classify (k, u)’-almost Ken-
motsu manifolds admitting Cotton tensors. We have characterized (k, pu)’-
almost Kenmotsu manifolds with vanishing and parallel Cotton tensors. Be-
side this, (k, u)’-almost Kenmotsu manifolds satisfying Cotton semisymmetry
and Q(g,C) = 0 are studied. Further, Cotton pseudo-symmetric (k, u)’-almost
Kenmotsu manifolds are classified.

1. INTRODUCTION

On a (2n + 1)-dimensional Riemannian manifold (M?"*+1 g), the (0, 3)-Cotton
tensor C' is defined by [9]

CXY)Z = (VxS)(Y,2)~ (Vy8)(X,2)
- (X)g(Y, 2) ~ (Y1)g(X, 7)) (11)

where S and r denotes Ricci tensor and scalar curvature of M respectively. The
Cotton tensor is skew-symmetric in the first two indices and totally trace free. As
it is well known that a Riemannian manifold (M™,g) is locally conformally flat
if and only if (1) for n > 4 the Weyl tensor vanishes, (2) n = 3 the Cotton ten-
sor vanishes. Moreover for n > 4, if the Weyl tensor vanishes, then the Cotton
tensor vanishes. We also see that when n = 3, the Weyl tensor always vanishes,
but the Cotton tensor does not vanish in general. In [20], Wang studied Cotton
flat almost coKéhler 3-manifolds. In [5], the authors characterize two classes of
almost Kenmotsu manifolds admitting quasi-conformal curvature tensor and ex-
tended quasi-conformal curvature tensor, which are generalization of the conformal
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curvature tensor.

We now define an endomorphism X A4 Y of the vector fields of M by
(XAaYVZ=AY,2)X — A(X,2)Y, (1.2)

where A is a symmetric (0,2)-tensor. Also for a (0, k)-tensor field T, k > 1 and a
(0, 2)-tensor field A on M we define the tensor Q(A,T) by

Q(AvT)(leXZa"vXk;va) = _T((X NA Y)X17X27"7Xk)
S T(X1, Xay o (X AL Y)XR). (13)

A Riemannian manifold M is said to be Ricci pseudo-symmetric [17] if the tensor
fields R-S and Q(g, S) are linearly dependent, i.e., there exist a function Lg : M —
R such that R-S = LsQ(g, S) holds on M. In particular, a Ricci pseudo-symmetric
manifold with Lg = 0 reduces to a Ricci semisymmetric manifold. The notion of
pseudo-symmetry also appears in the theory of plane gravitational waves. In [1],
pseudo-symmetric contact metric manifolds were studied by Arslan et. al. Also
Chaki type pseudo-symmetric lightlike hypersurfaces were studied by Sahin and
Yildiz [16]. Further, pseudo-symmetric Riemannian spaces were studied by Ozen
and Altay [13]. Also Suh et. al. [15] studied Reeb parallel Ricci tensor on real
hypersurfaces in complex two-plane Grassmannians.

&-conformally flat K-contact manifolds have been studied by Zhen et al. [21].
Since at each point p € M?"*! the tangent space T,(M?"*1) can be decomposed
into the direct sum Tp,(M?>" ') = ¢(T,(M*" 1)) @ {€,}, where {¢,} is the one-
dimensional linear subspace of T),(M Int1) generated by §p» the conformal curvature
tensor C is a map

€ Ty (MM 5 T, (M) x T, (M Dat' o( T, (M) & {€,}-

An almost contact metric manifold M?"*! is called &-conformally flat if the pro-
jection of the image of C in {,} is zero.

In 1978, Gray [10] presented a new classes of manifold, namely, manifolds of
Codazzi type Ricci tensor, lies between the class of Ricci symmetric manifolds and
the class of manifolds of constant scalar curvature.

Definition 1.1. A semi-Riemannian manifold M is said to be of Codazzi type Ricci
tensor if, (VxS)(Y,Z) = (VyS)(X, Z) for any vector fields X, Y and Z holds on
M.

The paper is organized as follows:
In Section 2, we give some preliminary ideas on almost Kenmotsu manifolds. Sec-
tion 3 is devoted to study (k,u)-almost Kenmotsu manifolds satisfying Cotton
flatness(C' = 0), Cotton parallelity(VC = 0), Cotton semisymmetry(R - C = 0),
Q(g,C) = 0 and Cotton pseudo-symmetry(R - C = fcQ(g,C)).
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2. PRELIMINARIES

A (2n + 1)-dimensional differentiable manifold M is said to have a (¢,§,n)-
structure or an almost contact structure, if it admits a (1,1) tensor field ¢, a
characteristic vector field £ and a 1-form 7 satisfying ( [2], [3]),

where I denote the identity endomorphism. Here also ¢¢ = 0 and 1 o ¢ = 0; both

can be derived from (2.1) easily.
If a manifold M with a (¢, £, n)-structure admits a Riemannian metric g such that

9(6X,0Y) = g(X,Y) = n(X)n(Y),

for any vector fields X, Y on M, then M is said to be an almost contact metric
manifold. The fundamental 2-form ® on an almost contact metric manifold is
defined by ®(X,Y) = g(X, ¢Y) for any X, Y on M. The condition for an almost
contact metric manifold being normal is equivalent to vanishing of the (1,2)-type
torsion tensor Ny, defined by Ny = [¢, ¢] + 2dn ® &, where [¢, ¢] is the Nijenhuis
tensor of ¢ [2]. Recently in ( [6], [7], [8], [14]), almost contact metric manifold such
that n is closed and d® = 2n A ® are studied and they are called almost Kenmotsu
manifolds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold
[12]. Also Kenmotsu manifolds can be characterized by (Vxo)Y = g(¢X,Y )¢ —
n(Y)¢X, for any vector fields X,Y. It is well known [11] that a Kenmotsu manifold
M?"*1 is Jocally a warped product I x  N?® where N?" is a Kihler manifold, I is
an open interval with coordinate ¢ and the warping function f, defined by f = ce!
for some positive constant c. Let us denote the distribution orthogonal to & by D
and defined by D = Ker(n) = Im(¢). In an almost Kenmotsu manifold, since 7 is
closed, D is an integrable distribution.

Let M?"*! be an almost Kenmotsu manifold. We denote by h = %i’g(b and | =
R(-,€)¢ on M?"+1. The tensor fields | and h are symmetric operators and satisfy
the following relations [14]:

he =0, 1€ =0, tr(h) =0, tr(h¢) =0, ho + ¢h = 0,
Vxé =X —n(X)§ - phX(= Vel = 0), (2:2)
R(X,Y)¢ =n(X)(Y = ¢hY) —n(Y)(X — ¢hX) + (Vydh) X — (Vxoh)Y, (2.3)

for any vector fields X,Y. The (1,1)-type symmetric tensor field ' = ho ¢ is
anti-commuting with ¢ and A'¢ = 0. Also it is clear that ( [6])

h=0&h =0, h?=(k+1)¢*(< h* = (k+1)¢°). (2.4)
In 6], Dileo and Pastore introduced the notion of (k, x)’-nullity distribution, on an
almost Kenmotsu manifold (M?"+1 ¢, & 0, g), which is defined for any p € M and
k,u € R as follows:
Ny(k,p) = {Z€T,(M): R(X,Y)Z = k(9(Y. Z2)X — g(X, Z)Y)
+alg(Y, WX — g(X, Z)W'Y)}. (2.5)



A CLASSIFICATION OF (k,pn)-ALMOST KENMOTSU MANIFOLDS 55

The above notion is called generalized nullity distributions when one allows k, u to
be smooth functions.
Let X € D be the eigen vector of h' corresponding to the eigen value A. Then
from it is clear that A> = —(k 4 1), a constant. Therefore k < —1 and
A = v —k —1. We denote by [\ and [—]]" the corresponding eigen spaces re-
lated to the non-zero eigen value A and —\ of I/, respectively. In [6], it is proved
that in a (k, u)’-almost Kenmotsu manifold M?"+! with b’ # 0, k < —1, u = —2
and Spec(h’) = {0,\, —A}, with 0 as simple eigen value and A = v/—k — 1. The
distributions [£] @ [\’ and [£] @ [-)]" are integrable with totally geodesic leaves.
The distributions [A]" and [—)]" are integrable with totally umbilical leaves. Fur-
thermore, the sectional curvature are given by the following:
(a) K(X,&) =k—2Xif X € [\] and
K(X,§)=k+2Xif X € [N,
(b) K(X,Y)=k—-2\if X,Y € [\;
KX, Y)=k+2Xif X,Y € [-)] and
KX, Y)=—(k+2)if X e[\, Y € [-)],
(c) MZ’H‘1 has constant negative scalar curvature r = 2n(k — 2n).
Also
(Vxh)Y = —g(h X + h?X,Y)¢ —n(Y) (WX + b2 X). (2.6)
In 18], Wang and Liu proved that for a (k, u)’-almost Kenmotsu manifold M?7+1
with k' # 0, the Ricci operator Q of M?"*! is given by

Q = —2nid+2n(k+ 1)n® & — 2nh'. (2.7)
From , we have
R(X,Y)¢ = k(n(Y)X = n(X)Y) + p(n(Y)h'X — n(X)h'Y), (2.8)
where k, 4 € R. Also we get from
R(EX)Y =k(g(X,Y)E = n(Y)X) + p(g(W X, Y)§ —n(Y)H'X). (2.9
Using , we have
(Vxn)Y = g(X,Y) = n(X)n(Y) + g(h'X,Y). (2.10)

3. COTTON TENSOR ON (k, f)'~-ALMOST KENMOTSU MANIFOLDS

In this section, we study Cotton tensor on (k, u)’-almost Kenmotsu manifolds.
Before discussing our main results, we first state the following Lemma:

Lemma 3.1. (Prop. 4.2 of [6]) Let (M?"*1 $.&,n,9) be an almost Kenmotsu
manifold such that h' # 0 and & belonging to the (k, —2)"-nullity distribution. Then
forany X, Yy, Zx € [\ and X_»,Y_x,Z_» € [-A], the Riemann curvature tensor
satisfies:

R(X\,Y\)Z_, =0,
R(X_5,Y_»)Zx =0,
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R(XX,Y_2)Zx = (k+2)g(Xx, Z))Y-x,
R(X\,Y_x)Z-x = —(k+2)g(Yox, Z-X) X,
R(Xx, Y\)Zx = (k—2)N)(g(Yx, Z)) X — g(Xx, Z\)Y)),

R(X_\,Yon)Zox = (k4 2X0)(9(Yox, Zoa) Xox — g(Xox, Z-0)Y- ).

Since the scalar curvature r = 2n(k—2n) = constant on M?"*! then the Cotton
tensor defined in (1.1]) reduces to

C(X,Y)Z=(VxS)(Y,Z)— (VyS)(X, Z). (3.1)
Now from above we can state the following:

Proposition 3.1. The Cotton tensor of a (k, 1)’ -almost Kenmotsu manifolds M>"+1
vanishes if and only if the Ricci tensor is of Codazzi type.

Analogous to the definition of £-conformally flat almost contact metric manifold,
we define {-Cotton flat (k, p)'-almost Kenmotsu manifold as follows:

Definition 3.1. A (k, 1)'-almost Kenmotsu manifold M*"+1 is said to be &-Cotton
flat if the Cotton tensor C satisfies C(X,Y )£ = 0 holds for any vector fields X, Y
on M?"+1,

We now further investigate this as follows:

From , we have
S(X,Y)=—-2ng(X,Y) +2n(k+ 1)n(X)n(Y) — 2ng(h'X,Y) (3.2)

for any vector fields X, Y on M?2n+1,
Taking covariant derivative of (3.2)) along any vector field Z we have

VzS(X,)Y) = —-2nVzg(X,Y)+2n(k+1)(Vzn(X))n(Y)
+2n(k + D)n(X)(Vzn(Y)) = 2nVzg(W X,Y).  (3.3)
Now, we have
(VzS)(X,Y)=VzS(X,Y)-S(VzX,Y) - S(X,VzY).
Using and in the foregoing equation, we obtain

(VzS)(X,Y) = 2n(k+1)(Vzn)X)n(Y) + 2n(k + Ln(X)(Vzn)Y
—2ng((Vzh)X,Y). (3.4)
Now, using and in we obtain
(V2S)(X.Y) = 2n(k+ n(Y)(g(X, 2) —n(X)n(Z)

+9(W' X, Z)) + 2n(k + 1)n(X)(9(Y, Z) — n(Y)n(Z)
+g(W'Y, Z)) + 2ng(h' Z + " Z, X)n(Y)
+2nn(X)g(h'Z + h*2,Y). (3.5)
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Making use of (3.5 in (3.1)) we get after simplification
C(X,Y)Z =2n(k +2)(g(W'X, Z)n(Y) — g(K'Y, Z)n(X)) (3.6)

Now from ({3.6)), we observe that in a (k, u)’-almost Kenmotsu manifolds M7+
the Cotton tensor C satisfies C'(X,Y)¢ = 0 for all vector fields X, Y on M?2"*1,
Thus we state the following:

Proposition 3.2. A (k,u) -almost Kenmotsu manifold is always &-Cotton flat.

Now if the Cotton tensor C vanishes identically on M?"*! then from (1.1)) we
can say that the conformal curvature tensor is harmonic and therefore, from Corol-
lary 3.3 of [19] we get the following;:

Proposition 3.3. A (k, ) -almost Kenmotsu manifold M** 1 is Cotton flat if and
only if it is locally isometric to the Riemannian product of an (n + 1)-dimensional
manifold of constant sectional curvature —4 and a flat n-dimensional manifold.

We now discuss about (k, pt)’-almost Kenmotsu manifolds admitting parallel Cot-
ton tensor, i.e., VC = 0 holds on M?"*1,
Differentiating covariantly along any vector field W, we get
VwC(X,Y)Z = 2n(k+2)(Vwg(W'X, Z))n(Y) + g(W X, Z)Vwn(Y)
—(Vwg(h'Y, Z))n(X) — g(h'Y, Z)Vwn(X)).
Now, using , , and in the above equation, we infer that

(VWC) (X’ Y)Z

VwC(X,Y)Z - C(VwX,Y)Z — C(X,VyY)Z
-C(X,Y)\’VwZ
= 2n(k+2){-n(YV)n(Z)g(W'W.X) + g(W'X, Z)(g(W.Y)
—n(W)n(Y) + g(W'W,Y)) +n(X)n(Z)g(K'W,Y)
—g(h'Y, Z)(g(W, X) — n(W)n(X) + g(K'W, X))
+(k+ 1) (n(Y)n(2)(g(W, X) = n(W)n(X))
+n(X)n(Z)(=g(W,Y) +n(W)n(Y)))}-
Consider VC = 0 and substituting X = Z = £ in the foregoing equation yields
2n(k +2){g(W"'W.Y) — (k+ 1)(g(W.Y) = n(W)n(Y))} = 0,

which implies either £k = —2 or

g(WW,Y) = (k + D)(g(W.Y) = n(W)n(Y)) = 0.

Case 1. If k = —2, then from A\*> = —k — 1 we get A\* = 1. Without loss of
generality we assume that A = —1.
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Now letting X, Y, Z € [A" and noticing that k = —2, A = —1, from Lemma[3.1] we
have

R(X\,Y\)Z\ =0,
and
R(X_\,Y_\)Z x=~4g(Yox, Z_2)X 2 —9(X_x, Z_\)Y_»),

for any X,,Y\,Zy € [\ and X_,,Y_),Z_, € [-)]. Also noticing p = —2 it
follows that K(X,£) = —4 for any X € [-)] and K(X,&) = 0 for any X € [A]".
Again we see that K(X,Y) = —4 for any X,Y € [-)]’ and K(X,Y) = 0 for any
X,Y € [A]'. Asis shown in [6] that the distribution [{] & [A]’ is integrable with
totally geodesic leaves and the distribution [—A]’ is integrable with totally umbilical
leaves by H = —(1 — A)¢, where H is the mean curvature tensor field for the leaves
of [-A)" immersed in M2"*!. Here A = —1, then the two orthogonal distributions
[€] @ [A]" and [—-)])" are both integrable with totally geodesic leaves immersed in
M?" 1 Then we can say that M?"T! is locally isometric to H"™!(—4) x R™,

Case 2. If g(WW,Y) — (k+1)(g(W,Y) —n(W)n(Y)) = 0, then substituting the
value of g(W'W,Y) obtained from (2.7) we get
SW,Y) = =2n(k +2)g(W,Y) + 4n(k + 1)n(W)n(Y). (3.7)

Tracing we get r = 2n(k — 4n — 2nk) and equating it with the given value of
r = 2n(k — 2n) yields k = —1 which is a contradiction to the fact that k < —1 for
a (k, p)'-almost Kenmotsu manifold with A" # 0.

Hence we state the following:

Theorem 3.1. A (k, p1)'-almost Kenmotsu manifold M*" Tt with h' # 0 is Cotton
parallel if and only if M?"1 is locally isometric to the Riemannian product of
an (n + 1)-dimensional manifold of constant sectional curvature —4 and a flat n-
dimensional manifold.

We now define

Definition 3.2. A (k,pu)’-almost Kenmotsu manifolds M*"*1 is said to be Cotton
semisymmetric if the Cotton tensor C satisfies R-C = 0 on M?"*t!, where R is
the Riemann curvature tensor.

Let M?"*! be Cotton semisymmetric. Therefore, (R(X,Y)-C)(U,V)W = 0 for
any vector fields X, Y, U, V and W. Then we have

C(R(X,Y)U,V)W + C(U,R(X,Y)V)W + C(U,V)R(X, Y)W =0.  (3.8)
Using in we obtain
2n(k +2)(g(h'R(X,Y)U,W)n(V) — g(h'V, W)n(R(X,Y)U))
+2n(k +2)(g(WU,W)n(R(X,Y)V) — g(W R(X,Y)V,W)n(U))
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+2n(k +2)(g(W'U, R(X, Y)W)n(V) — g(h'V, R(X, Y)W )n(U))
=0. (3.9)
Substituting U = ¢ in the foregoing equation and using , we obtain
2n(k +2)g(k{n(Y)W'X = n(X)'Y} = 2{n(Y)h*X — n(X)h*Y }, W)n(V)
—2n(k + 2)g(W R(X,Y)V,W) —2n(k + 2)g(h'V, R(X,Y)W) = 0.
Now replacing W by £ in the above equation and using , we infer
2n(k + 2)g(W'V, k{n(Y)X —n(X)Y} = 2{n(Y)h'X —n(X)h'Y}) = 0. (3.10)
Using in and then substituting Y = &, after simplification we have
2n(k +2)(2(k + D{g(X, V) = n(X)n(V)} + kg(h'V, X)) = 0. (3.11)
We now obtain the value of g(h'V, X) from and then using it in we get

2k +2)(~ oSV, X) + (k -+ 2)g(V, X) + (k+ 1)k~ 2n(V)n(X)) = 0, (312)

n

which implies that either £k = —2 or
2n(k + 2 2n(k +1)(k — 2
s(v.x) = 2D gy ) EEDEZD) gy x)

In the first case as discussed earlier in Case 1 of Theorem M?"+1 s locally
isometric to H"t1(—4) x R".

In the second case, tracing the @ we obtain 7 = 22 (k?+2nk+2n—1). Also, ina
(k, )’ -almost Kenmotsu manifold the scalar curvature r is given by r = 2n(k —2n).
Equating these two value of r, we get k = 115". Forn =1,k = *i and as n
increases, the value of k is approaching towards —% and hence —% <k< —i. This
contradicts the fact that k& < —1.

Hence we can state the following:

Theorem 3.2. A (k,p) -almost Kenmotsu manifolds M?"*1 is Cotton semisym-
metric if and only if M**+1 is locally isometric to the Riemannian product of
an (n + 1)-dimensional manifold of constant sectional curvature —4 and a flat n-
dimensional manifold.

Now if the Cotton tensor C satisfies the condition Q(g,C) = 0, then we have
Q(g,C)(U,V,W; X,Y) = 0 for all vector fields U, V, W, X and Y on M?"*!. Thus

we have from (|1.3))

C(( XA VU VIWHCU, (XN YIVIWHCU, V)X N Y)WV =0.
Now using in the foregoing equation yields
gV, U)C(X, VW — g(X,U)C(Y, V)W
+9(Y,V)C(U, X)W — g(X,V)C(U Y)W
+9(Y,W)C(U, V)X — g(X,W)C(U,V)Y =0. (3.13)
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Putting Y = W = £ in the foregoing equation and using (3.6 yields that C(U, V)X =
0 and hence from Prop. we get M2+ is locally isometric to H"1(—4) x R™.
From the above discussion we have the following:

Theorem 3.3. In a (k, p)'-almost Kenmotsu manifolds M*"+1, the Cotton tensor
C satisfies the condition Q(g,C) = 0 if and only if M***1 is locally isometric to
the Riemannian product of an (n + 1)-dimensional manifold of constant sectional
curvature —4 and a flat n-dimensional manifold.

Now as a generalization of the notion of Cotton semisymmetry, we define

Definition 3.3. A (k, ) -almost Kenmotsu manifolds M*" 1 is said to be Cotton
pseudo-symmetric if there exist a smooth function fo : M — R such that R-C =
fcQ(g,C) holds on M>*"+1,

In particular, a Cotton pseudo-symmetric manifold with fo = 0 reduces to a
Cotton semisymmetric manifold. We now characterize Cotton pseudo-symmetric
(k, 1)’-almost Kenmotsu manifolds M2"*1 ie., M?"*! satisfies

(ROX,Y) - O)UVIW = feQg, C) (U V,W; X, Y)
for any vector fields X,Y,U,V and W on M?"+1,
In view of and , it follows from that
2n(k +2)(g(W R(X,Y)U,W)n ( )— gV, Wn(R(X,Y)U))
+2n(k +2)(g(W'U, W)n(R(X,Y)V) — g(W R(X,Y)V,W)n(U))
+2n(k +2)(g(WU, R(X, Y)W) (V) = g(W'V. R(X,Y)W)y(U)
= fe(@(Y,U)C(X, V)W — g(X,U)C(Y,V)W
+9(Y,V)C(U, X)W — g(X,V)C(U, Y)W
+9(Y,W)C(U, V)X — g(X,W)C(U,V)Y).
Substituting W = ¢ in the above equation and using Prop. we obtain
2n(k +2)(g(h'U, R(X,Y)En(V) — g(K'V, R(X,Y)&)n(U))
= fc( Y ) (U, V)X =n(X)C(U,V)Y).
Now using and (| in the foregoing equation we get
2n(k + 2)(9(h'U7 E{n(Y)X —n(X)Y} = 2{n(Y)h'X —n(X)K'Y})n(V)
—g(WV k{n(Y)X —n(X)Y} = 2{n(Y)I'X — n(X)R'Y })n(U))
= fe@n(k+2n(Y){g(h'U, X)n(V) — g(W'V, X)n(U)}
=2n(k + 2)n(X){g(W'U,Y)n(V) = g('V,Y)n(U)}). (3.14)
Setting U = £ in , we obtain
2n(k + 2)(=k{n(Y)g(W'V, X) —n(X)g(K'V,Y)}
+2{n(YV)g(h'V,h' X) = n(X)g(K'V,h'Y)})
= fo(=2n(k+2)n(Y)g(h'V, X) + 2n(k + 2)n(X)g(h'V,Y)).  (3.15)
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Now using in (3.15), we have
2n(k +2)(k = fo)((X)g(R'V,Y) —n(Y)g(h'V, X))
+4n(k + 1)(k +2)(n(X)g(V,Y) = n(Y)g(V, X)) = 0. (3.16)
Replacing X by € in , we get
2n(k +2)(k — fo)g(W'V.Y) + dn(k + 1)(k + 2)(9(V.Y) = n(Y)n(V)) = 0.
Now substituting the value of 2ng(h'V,Y’) from (2.7)), we obtain
(k+2)(=(k = fo)S(V.Y) = {2n(k — fc) —4n(k +1)}g(Y, V)
+2n(k + 1)(k = fo) — 4n(k + 1)}n(Y)n(V)) = 0.
We now discuss it in the following cases.
Case 1. If &k = —2, then as discussed earlier, M?"t! is locally isometric to
H 1 (—4) x R™.
Case 2. If
—(k = fe)S(V,Y) = {2n(k — fo) — 4n(k + 1)}g(Y, V)
+{2n(k + 1)(k — fo) —4n(k+ 1)}n(Y)n(V) =0, (3.17)

then we consider the following two subcases:
(i). If fo =k, then from the above equation we see that

dn(k +1)(g(Y, V) =n(¥Y)n(V)) =0,
which implies £ = —1, a contradiction.
(ii). If fo # k, then from (3.17)) we can write
—2n(k — fc) +4n(k +1)

SV)Y) = V.Y
v.v) fo) 2D v
2n(k+1)(k — fo) —4n(k + 1
k—fc
Tracing the previous equation yields r = kz’}C (k2 +2nk +4n — kfc + 2nfc). Now

equating it with » = 2n(k — 2n) we obtain k = —1, a contradiction. Hence, we are
in a position to state the following:

Theorem 3.4. A (k,u) -almost Kenmotsu manifold M?"+1 is Cotton pseudo-
symmetric if and only if M?*" 1 is locally isometric to the Riemannian product
of an (n + 1)-dimensional manifold of constant sectional curvature —4 and a flat
n-dimensional manifold.

Remark 3.1. If we consider fo = 0 in the above theorem, then we obtain Theorem

[3.2 So, Theorem[3-]] generalizes Theorem[3.2

Example 3.1. In (4], the authors presented an example of a 5-dimensional (k, u)’ -
almost Kenmotsu manifold with k = —2 and p = —2. Since k = =2, from (@ we
can say that the Cotton tensor C vanishes and M? is locally isometric to H3(—4) x
R2. Hence, all the Theorems are trivially satisfied by this example.
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4. CONCLUSION

In this paper, we have studied (k,pu)’-almost Kenmotsu manifolds with Cot-
ton flatness, Cotton Parallelity, Cotton semisymmetry, Q(g,C) = 0 and Cotton
pseudo-symmetry. Finally, we conclude from all the Propositions and Theorems
proved here and Corollary 3.3 of [19] that

In a (k,u)-almost Kenmotsu manifold M?2"*! the following conditions are
equivalent:

(1) M?"*1is Cotton flat,

) The Ricci tensor is of Codazzi type,

) The conformal curvature tensor is harmonic,
4) M?"*+1is Cotton parallel,

) M?"*+1is Cotton semisymmetric,

) M2+ satisfies Q(g,C) =0,
7) M?"*! is Cotton pseudo-symmetric.
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