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Abstract

In the present study, the buckling and postbuckling behaviors of beams having initially small sinusoidal
imperfection with pinned ends subjected to sinusoidal loading are examined by using Euler-Bernoulli beam theory.
The governing differential equations of the geometrically nonlinear problem consisting of the equilibrium
equations, kinematical equations and the constitutive equations are converted into algebraic equations via the finite
differences and solved numerically by using the Newton-Raphson method. The values of buckling loads and
buckling deflections are determined by drawing load-deflection curves. The effect of the initial imperfection on
the buckling values is investigated. It is seen that as the value of the small initial imperfection is increased, the
buckling force is increased and buckling deflection is decreased. Unlike previous studies on the subject, the
diagrams of the deformed shapes of the beam having initially small imperfection as well as the diagrams of the
internal forces at various stages of the deformation including the prebuckling, buckling and postbuckling states
are presented for various values of the initial imperfection.

Keywords: Snap-through instability, initially imperfect beam, nonlinear equation, finite differences method,
buckling.

Siniizoidal Yiik Etkisindeki Kiiciik ilkel Kusurlu Kirislerin Dogrusal
Olmayan Davranisi

Oz

Bu caligmada; siniizoidal yiike maruz, uclari sabit mesnetli, baslangigta kiigiik siniizoidal kusura sahip kirislerin
burkulma ve burkulma sonrasi davraniglar1 Euler-Bernoulli kiris teorisi kullanilarak incelenmistir. Denge
denklemleri, kinematik denklemler ve biinye denklemlerini igeren, geometrik olarak dogrusal olmayan problemin
yonetici diferansiyel denklemleri, sonlu farklar yontemi ile cebirsel denklemlere doniistiiriilmiis ve Newton-
Raphson yontemi kullanilarak sayisal olarak ¢6ziilmiistiir. Burkulma yiikleri ve burkulma ¢ékmelerinin degerleri,
yiik-¢okme egrileri cizilerek belirlenmistir. ilkel kusurun burkulma degerleri iizerindeki etkisi incelenmistir.
Kiigiik ilkel kusurun degeri arttik¢a, boyutsuz burkulma yiikiiniin arttig1 ve boyutsuz burkulma yer degistirmesinin
azaldig1 goriilmiistiir. Konuyla ilgili daha 6nceki ¢aligmalardan farkli olarak; baslangicta siniizoidal ilkel kusurlu
kiriglerin, sekil degistirmenin gesitli asamalarindaki elastik egri diyagramlariin yani sira; burkulma 6ncesindeki,
burkulma sirasindaki ve burkulma sonrasindaki durumlarma karsi gelen kesit tesirlerinin diyagramlar ilkel
kusurun gesitli degerleri i¢in sunulmustur.

Anahtar kelimeler: Vurgu tipi stabilite, ilkel kusurlu kiris, dogrusal olmayan denklem, sonlu farklar yontemi,
burkulma.

1. Introduction

The postbuckling behavior is an important phenomenon to investigate initially imperfect beams (or
curved beams or arches) basing on their snap-through motion. Curved beams which have different
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mechanical behavior than the straight ones can resist both axial compression and bending actions.

They were frequently used in microelectromechanical system (MEMS) devices such as
switches, sensors and actuators. Experimental and numerical results of the snap-through instability in
MEMS based applications were presented in [1-5].

There were numerous studies investigating snap-through buckling for various beam geometries
and loading conditions. For example, Bradford et al. [6] studied analytically in-plane elastic stability of
both pin-ended and fixed circular arches subjected to a central concentrated load; Chen et al. [7] found
exact static and dynamic buckling loads for a pinned sinusoidal arch under a point force at the midpoint;
Moon et al. 2007 [8] examined pinned shallow parabolic arches under a vertically distributed load to
evaluate the buckling load; Hu et al. [9] investigated buckling and postbuckling of parabolic arches
under a uniform vertical load; Fung and Kaplan [10] analyzed the buckling problem of pinned shallow
arches of various initial imperfections (parabolic, half-sine, circular, etc.), and spatial distributions of
the lateral load. Simitses and Hodges [11] gave a model for snapping of shallow pinned arches resting
on an elastic foundation.

There have been a few studies that show the diagrams of the deformed shapes and the internal
forces of the curved beams regarding the prebuckling, buckling and postbuckling states. Luu and Lee
[12] presented a study on the buckling and postbuckling behaviors of elliptical curved beams subjected
to a central concentrated vertical load and illustrated the deformed shapes of the semi-elliptical curved
beam at various stages during the loading. Ning Lui et al. [13] gave a brief study in order to see shap-
through behaviors of toggle frames subjected to various types of thermal and mechanical loads including
localized heating. They showed the deformation process of toggles at various stages during the snhap-
through process. Tsiatas and Babouskos [14] studied the linear and geometrically nonlinear problem of
non-uniform shallow arches under a central concentrated force. They determined the value of the
buckling load for the given parameters and presented the normal displacement, the axial force, the shear
force and the bending moment diagrams corresponding to the loads which were equal, smaller and larger
than the buckling load.

In this study, snap-through analyses of pinned beam having initially sinusoidal small
imperfection under sinusoidal loading are considered. The governing differential equations of the
geometrically nonlinear problem are converted into algebraic equations via the finite differences and
solved numerically by using the Newton Raphson method. The load-deflection curves corresponding to
various amplitudes of the imperfection are drawn and the buckling values are determined. The diagrams
of the deformed shapes and the diagrams of the internal forces of the beam having initially sinusoidal
small imperfection corresponding to the various stages of the loading including the prebuckling,
buckling and postbuckling states are drawn.

2. Formulation of the Problem

Geometric initial imperfections are among the main factors affecting the stability of structural systems
and in fact, no element is perfect. Many structural elements may get initial geometric imperfections
during their manufacturing and/or transporting processes. Therefore, a small geometric imperfection is
initially added to the beam in order to examine the effect of the probable initial imperfection on the
buckling problem of the structural element. In this study, the initially small imperfection is idealized to
be in a sinusoidal form. Figure 1 shows an elastic pin-ended beam having initially small imperfection
subjected to a sinusoidal loading. The initial deflection (imperfection) of any point of the beam is
denoted by,

W, (X) =63in(n—|_xj. 1)

The height of the midpoint of the beam having initially small imperfection before the
deformation is denoted by & . The horizontal distance between the two pinned supports is indicated by
L. The expression of the sinusoidal distributed load is as follows:

q(x) =4, sin(n—l_xj. )

Here, q, indicates the magnitude of the distributed load at x=L/ 2.
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Figure 1. A half-sine pinned beam having initially sinusoidal small imperfection under half-sine loading acting
along the entire span

The Euler-Bernoulli hypothesis is used in this study. According to this hypothesis, the
kinematical equations are as follows:

gxx:go_ZE’ SZZZYXZZO’ (3)

where ¢, is the normal strain at any material point located at point z from the neutral surface, ¢,, is the

strain of the z direction, y,, is the shear strain, €° is the neutral axis strain, & is the change in curvature
which are defined as

€=U, +o(w, ) -2 (w,, ), R=W,. 4)

Here; u is the axial displacement, w shows the final position of the deformed beam in the z
direction, which is composed of two parts, namely, the initial deflection w, owing to the initial

imperfection and the vertical deflection W due to the pure bending. The final rotation angle (p(X) is the

sum of the rotation @, (), due to the initial imperfection, and &(x) caused by the pure bending. The
relationship between deflection and rotation is

P=W,. (5)

The equations of equilibrium can be derived as

-V, +q=0, (6)
-M, +V +N(¢@, +9)=0, (7)
N, =0 (8)

where M is the bending moment, N is the normal force and V is the effective shear force (composed
of the summation of the shear force Q known from the elementary theory, shown in Figure 2, and the
projection of the normal force in the vertical direction, which can be verified through the variational
calculus or though the free body diagram of a deformed element). It can be emphasized that the normal
force N can be assumed to be constant throughout the initially imperfect beam due to being shallow of
the initially imperfect beam and it is equal to the horizontal support reaction H .
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Figure 2. a) Internal forces on a differential arc-element, b) equivalent forces

Assuming that the strains are very small, the constitutive relation is

o, =Ee¢ )

XX XX

where o is the normal stress and E is the modulus of elasticity.
The normal force and the bending moment can be expressed as

N =£GdA, (10)

M =IZGdA, (11)

respectively. Using Egs. (3)-(4), (8)-(10) and considering that horizontal deflections of pinned ended
are zero, u(0)=u(L)=0, the following expression for the normal force can be obtained as

EAG ,
-5 [(63-o)ax=n (12)
where A is the cross-sectional area. Using Egs. (3)-(4), (9), (11), the following constitutive equation
for the bending moment can be obtained as

N

M =—Elg. .
P (13)

where | is the moment of inertia. The boundary conditions for the concerning problem can be
introduced as follows:

v‘v(O):v‘v(L):O, M(O):M(L):O. (14)
For convenience, nondimensional parameters with asterisks can be introduced as
« X o, b L . Wy o« W B
X =—, r =—, =| — ,W =—, W =—, 6 =—,
L AP (nr}P oy r r
4 2 3 2
q*zi L , H*:i(kj ,V*ZL(EJ , M*zﬂ E ,
Elr\n El\=® Elr\ n Elr \ =
w, =8 sin(xX") (0<x <m), q*zq;sin(x*) (0<x <) (15)
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where r is the radius of gyration of the cross section. Egs.(5)-(7), (12)-(13) can be arranged in terms of
the nondimensional parameters, as

. dw
(P = (16)
dx
* dV*
_ , 17
4 =4 A7)
aMm™ . wf
R G (18)
mo=_de (19)
dx
« 1 Foa - *
H Zg _!(@02_@2)dx : (20)
Using Egs.(14), the nondimensional boundary conditions can be rewritten as
W (0)=W (n)=0,
M™(0)=M"(n)=0. (21)

3. Solution Method

The ordinary differential equations given in Egs.(16)-(19) are converted into nonlinear algebraic
equations by means of the finite differences method. For this purpose, equally-spaced n nodes along
the span are used. Thus, the span of the initially imperfect beam is divided equally into (n-1) finite
pieces, where the step size is given as Ax . There are four unknowns at each node i; namely

W ,@,,V, , M, . In addition, horizontal support reaction H" is not known. Thus, when n points are
considered, there are totally (4n —1) unknowns in the system.

In this study, the first-order forward difference formula with respect to x™ is used for each node
i except for the last node:

9 _0u-0 o)
(%jf%m(m) i=1.2,...(n-1) 22)

where g is any unknown of the problem. O denotes the order of the truncation error [15]. The

truncation error can be noted to be decreased as the number of nodes is increased.
Using Eq.(21) for the derivatives in Egs.(16)-(19), the corresponding set of nonlinear algebraic equations
is, then, obtained as

f, =0=AXq, — (W, - W), (23)
f, =0=AXqysin(x )- (Vi -V ), (24)
fy =0=AXH"( + ¢, )+ AV —(M[, - M/ ), (25)
f, =0=MM +(, -3 (26)

for each i where i=1.2,.....,(n—1). Additionally,

oo ax| (@200 )
_0- 9 7209

(#0200, 95,,) | (o7
21 2 2

(827 + 28, 05, )+ (57 + 28505, )+t (B sy’ + 20,0303, )+
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can be written by using Eq.(20) and the trapezoidal rule. The nonlinear algebraic equations, Egs.(23-
27), together with the boundary conditions (21) can be expressed in compact form as

A Ay=b (28)

where A is the Jacobian matrix, Ay is the correction vector, and b is the right hand side vector. The

matrix equation (28) can be solved numerically by using the Newton-Raphson method [16]. The number
of equations can be checked to be equal to the number of unknowns.
Due to the convergence problem known to be occurring in the vicinity of the point where the

slope of the force-deflection curve is zero [17-19], the rotation at the nth point, @,, is chosen to be
removed from the unknown (state) vector and used in the input data, instead of . g, is put into the
state vector as an unknown, in place of @, . If the value of @ is taken to be zero, then the state vector

will be equal to zero vector. If a small increment is given to @, , then the zero vector for the correction
vector becomes a reasonable initial estimate for the Newton-Raphson iterations. While obtaining
solutions for the subsequent increments of @, , the solution vector corresponding to the previous value

of @, is used as the initial estimate. In this way, by using the Newton-Raphson method, convergence

could be achieved for the solution vector corresponding to the various values of @, . The computer
program used in the numerical calculations is generated by the authors.

4. Numerical Results and Interpretation

In this section, the buckling and postbuckling behavior of the beam having initially small sinusoidal
imperfection under sinusoidal loading is analyzed numerically. The value of the sinusoidal external load

at the center of the arch q, , the horizontal support reaction H" | the deflections W, , effective shear
forces V. and bending moments M, at each node i of the initially imperfect beam corresponding to

the selected values of the nondimensional initial imperfection parameter before the deformation §" are
computed.

Comparing the values of the buckling loads determined by the computer program prepared in
the present study for & =3 with those of Mortazavi et al. [20], who considered different sets of
governing equations and boundary conditions (obtained via a variational analysis) and used the finite
difference method and a control algorithm; 81 nodes are seen to be sufficient for correct results. The
equilibrium paths of a sinusoidal initially imperfect beam with & =3 under the sinusoidal loading
corresponding to the present study and Ref. [20], shown in Figure 3, are observed to be very close to
each other. Mortazavi et al. [20] verified their very rigorous study by comparing their results with those
of an analytical study [11].

| A

load

Nondimengonal externa

0.00 Q.20 0.40 0.60 0.80 100 120 140 L60 180 200

Nondimensional apical deflection

Ret. | 200

Present work

Figure 3. Comparison of the equilibrium paths
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Figure 4 shows the typical snap-through behaviors for the values of §° =3 and & =3.6. The
point A corresponds to the initial configuration. The peak point C corresponds to the buckling load, and
the corresponding deflection is called the buckling deflection. As can be seen in the Figure 4a and 4b
by increasing the initial imperfection parameter, the buckling load is increased, but the buckling
deflection is decreased. The equilibrium configurations between A and C are always stable. Once the
load reaches the peak value at C, the system suddenly jumps to the position G [21]. Although the
equilibrium configurations between C and E are unstable, the equilibrium configurations between E and
G indicate to the second stable equilibrium conditions. In the stable regions, the external force is
increased as the midpoint deflection is increased and vice versa in the unstable region. As shown in
Figure 4, in snap-through behavior, under the same load; the apical deflections of C and G (or B, D and
F) are quite different from each other.

"
B |
1+ +]
3
O/
-
\ﬂn('l"‘”’ ﬂf‘1|('ll("f"l] loag

0.0 0.5 1.0 15 2.0

Nondimensional apical deflection

a) b)
Figure 4. The various stages of the equilibrium paths for a) 8 =3, b) § =3.6

Figure 5 demonstrates the nondimensional external load versus the nondimensional horizontal
support reaction. The letters in Figure 5 relate to those shown in Figure 4. The horizontal support reaction
is increased by increasing the external load up to the point C, as indicated. However, after passing the
point E, the horizontal support reaction is decreased as the external force is increased. Figures 5a and
5b show that as the initial imperfection parameter is increased, the support reaction corresponding to the
buckling load is increased.

Nondimersonal extenal load
o By = <
/
\
\*
Nondimensonal external ad
o o a

1.0

14 A E

on
0.0 05 10 15 20 2.5 30 15
0@ A 5 2
o Nondirmensional horizontal support reaction
14 20 25

Nondimensional hodlzootal suppart reaction

a) b)

Figure 5. External load versus horizontal support reaction diagrams for a) 8 =3, b) § =3.6

Figure 6 represents the undeformed and deformed configurations of the initially imperfect beam

corresponding to the various stages of the deformation (shown in Figure 4) for 8 =3 and & =3.6. The
elastic curve indicated by A belongs to the undeformed beam. The elastic curve B corresponds to the
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behavior in the first stable region between A and C, given in Figure 4. The elastic curve C corresponds
to the buckling. The elastic curve D presents the behavior in the unstable region between C and E, shown
in Figure 4. The elastic curve E corresponds to the deflection at the second limit point. The elastic curves
corresponding to the point F and the point G show the behavior in the second stable equilibrium
configurations, respectively.

Figure 6. Initial and deformed shapes at various stages of loading for a) 8 =3, b) § =3.6

Figure 7 demonstrates the bending moment diagrams corresponding to the various stages of the
deformation, stated in Figure 4, for §" =3 and & =3.6. In Figure 7, the absolute values of the bending
moments are increased with the increase in the values of the apical deflections. The absolute values of
the bending moment corresponding to the various stages of the deformation are increased as the initial
imperfection parameter is increased.

Figure 7. The bending moment diagrams corresponding to the various stages of the deformation for a) & =3, b)
8 =36

Figure 8 shows the effective shear force diagrams corresponding to the various stages of the
deformation, stated in Figure 4, for 8" =3 and & =3.6. The effective shear force diagrams overlap on
the C-G and B-D-F stages as the values of external load are same at these stages. Since the loading and
support conditions are symmetrical, the diagrams pass through zero in the mid-span. The absolute values
of the effective shear force corresponding to the various stages of the deformation are increased as the
external force is increased.
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Figure 8. Effective shear force diagrams for the various stages of the deformation for a) 8" =3, b) 8 =3.6

From the results in Figure 9; it is seen that when the value of the nondimensional initial
imperfection parameter, &, is increased, for the same number of nodes, the corresponding buckling
force is increased (Figure 9a), while the computed buckling midpoint deflection is decreased (Figure
9b).
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Figure 9. Influence of the value of the nondimensional initial imperfection parameter on a) the buckling load, b)
the buckling midpoint deflection

Figure 10 represents load-deflection curves for certain values of & . For the given values of &

in Figure 10; as the value of & is increased, the snap-through buckling behavior becomes more
pronounced.
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Figure 10. Load-deflection curves for certain values of initial imperfection
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Figure 11 demonstrates the nondimensional horizontal support reaction versus nondimensional
external load for various values of the initial imperfection. It is seen that the distance between the points
(in the g*- H* diagram) corresponding to the first and second limit points (C and E points in Figure 4,
respectively) is increased as the value of §" is increased.

c - BEM
c_g 6
R
2
a4 S+=22
-
o 3 o*=2.6
23
< &
g 4 o*=3.0
E 3*=3.4
S:1
=

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Nondimensional horizontal support reaction

Figure 11. The nondimensional horizontal support reaction versus the nondimensional external load for various
initial imperfection values

5. Concluding Remarks

In the present paper, the snap-through behavior of the pinned beams having initially sinusoidal
imperfection subjected to the sinusoidal load is examined. The corresponding geometrically nonlinear
problem is solved numerically by using the finite difference and Newton-Raphson methods. The values
of the buckling load and buckling deflection are determined by using the equilibrium paths for various
values of the initial imperfection. The diagrams of the deformed shapes of the beam having initially
small imperfection and the diagrams of the internal forces are presented for the prebuckling, buckling
and postbuckling states.

According to the results obtained, as the value of the initial imperfection parameter is increased,
the corresponding buckling force is increased (Figure 9a) and the snap-through buckling behavior
becomes more pronounced (Figure 10). On the other hand, the computed buckling midpoint deflection
is decreased as the initial imperfection is increased (Figure 9b).

It can be observed from the nondimensional external load versus the nondimensional horizontal
support reaction diagram (see Figure 5) that the slopes of the corresponding curve are zero for the first
and second limit points where the slopes of the force-deflection diagram (see Figure 4) are zero. The
horizontal support reaction is increased by increasing the external load up to the first peak point (C) in
the equilibrium path diagram. After passing the limit point E, second stable equilibrium configuration,
the horizontal support reaction continues to decrease, despite the rise observed in the external load
(Figure 5). Moreover; the distance between the points (in the g*- H* diagram) corresponding to the first
and second limit points (C and E points in Figure 5, respectively) is increased as the value of & is
increased (Figure 11).

The sign of the curvature of the deformed beam is changed at a stage of the deformation between
the first limit point and the second limit point (Figure 6).

The diagrams of the bending moments at various stages of the deformation are symmetrical as
the support and loading conditions are symmetrical. The absolute values of the bending moments are
increased during the snap-through process (Figure 7).

The effective shear force diagrams are seen as parabolic in various stages of the deformation.
The effective shear force diagrams overlap when the values of external load are the same at some stages.

475



A. Tekin Atacan, R.F. Yiikseler / BEU Fen Bilimleri Dergisi 9 (1), 466-477, 2020

At the point where moment diagrams pass from maximum, shear force diagrams pass from zero (Figure
8). The absolute value of the effective shear force is increased as the values of the external force or the
initial imperfection is increased.

Diagrams of elastic curves and internal forces for the different values of §" are drawn, and it is
seen that with the change of &, the corresponding values are changed, but the interpretations remain
similar.

It should be noted that the variation of the value of the span of the beam, L, and the radius of
gyration of the cross section, r (dimensional parameters), do not alter the dimensionless physical
guantities due to their being excluded in the dimensionless boundary value problem (Egs. (16-21)).

In the present study, the buckling and postbuckling behaviors of beams having small sinusoidal
imperfection with pinned ends subjected to sinusoidal loading are investigated. Other types of support
and loading conditions are not within the scope of this study. However, those interested in the effect of
the concerning parameters on the buckling behavior can refer to [22] for the fixed support type and [20]
for the uniform loading.
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