Research Article
BibTex RIS Cite
Year 2022, Volume: 2 Issue: 2, 65 - 70, 23.09.2022
https://doi.org/10.54569/aair.1142519

Abstract

Supporting Institution

ICAIAME 2022

Thanks

USING CLASSIFICATION ALGORITHMS IN DATA MINING IN DIAGNOSING BREAST CANCER” başlıklı makalemizin ICAIAME 2022 konferansı kapsamında değerli bilim kurulu tarafından incelenerek “The journal of Advances in Artificial Intelligence Research (AAIR)” Dergisinde yayınlanmak üzere önerilmesi sebebiyle International Conference on Artificial Intelligence and Applied Mathematics in Engineering2022 (ICAIAME 2022) Konferansında emeği geçen herkese teşekkürlerimi sunuyorum. Ayrıca çalışmalarım süresince hiçbir desteğini esirgemeyen akademik ve mesleki bilgisinin yanı sıra insaniyetinden de çok şey öğrendiğim Düzce Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği bölümü hocalarından çok değerli hocam Dr. Öğretim Üyesi İrem Düzdar Argun'a da teşekkürü borç bilirim.

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492.
  • Jeleń Ł., Krzyżak A., Fevens T. and Jeleń M., “Influence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsies”, Computers in Biology and Medicine, 79 (2016) pp. 80-91.
  • Uzm. Dr. Rengin Türkgüler, [Online]. Available: https://www.drrengin.com/tr/meme-ultranonu (accessed: August 5, 2022).
  • Mittal S. et al. “Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies”, Biosensors and Bioelectronics 88 (2017): 217-231.
  • Law M.H.C., Figueiredo M.A.T. and Jain A.K., “Simultaneous feature selection and clustering using mixture models”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), (2004) pp. 1154-1166.
  • Luukka P. and Leppälampi T., “Similarity classifier with generalized mean applied to medical data,” Computers in Biology and Medicine, 36(9) (2006), pp. 1026-1040.
  • Li D.-C. and Liu C.-W., “A class possibility based kernel to increase classification accuracy for small data sets using support vector machines,” Expert Systems with Applications, 37(4) (2010), pp. 3104-3110.
  • Lavanya D. and Rani K.U., “Performance evaluation of decision tree classifiers on medical datasets,” International Journal of Computer Applications, 26(4) (2011), pp. 1-4.
  • Maldonado S., Weber R. and Basak J., “Simultaneous feature selection and classification using kernel-penalized support vector machines”, Information Sciences, 181(1) (2011), pp. 115-128.
  • Takcı H., “Centroid sınıflayıcılar yardımıyla meme kanseri teşhisi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 31(2), (2016), pp: 323 - 330.
  • Akyol K., “Meme Kanseri Tanısı İçin Özniteliklerin Öneminin Değerlendirilmesi Üzerine Bir Çalışma”, Academic Platform Journal of Engineering and Smart Systems, 6(2), (2018), pp:109-115.
  • Karaci, A. (2020). Predicting Breast Cancer with Deep Neural Networks. In: Hemanth, D., Kose, U. (eds) Artificial Intelligence and Applied Mathematics in Engineering Problems. ICAIAME 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-36178-5_88.
  • Kör, H. “Classification of Breast Cancer by Machine Learning Methods”, 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences, 2019, pp:508-511.
  • Yavuz, E. and Eyüpoğlu C., “Meme Kanseri Teşhisi İçin Yeni Bir Skor Füzyon Yaklaşımı” Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7(3), (2019) pp: 1045-1060.
  • Sevli O., “Göğüslerden gelende farklı makine öğrenme tekniklerinin performans karşılaştırması”, Avrupa Bilim ve Teknoloji Dergisi 16 (2019) pp: 176-185.
  • Cengil E. and Çınar A., “Göğüs Verileri Metrikleri Üzerinden Kanser Sınıflandırılması” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(2), (2020) pp: 513-519.
  • Akcan F. and Sertbaş A., “Topluluk Öğrenmesi Yöntemleri ile Göğüs Kanseri Teşhisi”, Electronic Turkish Studies, 16(2), (2021), pp: 511 - 527.
  • Toraman S. and Turkoglu I., “A new method for classifying colon cancer patients and healthy people from FTIR signals using wavelet transform and machine learning techniques”, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), (2020) pp: 933-942.
  • Breiman L., “Random forests”, Machine Learning, 45 (1) (2001), pp: 5-32.
  • Akkurt A., et al., “Developments in the Turkish banking sector: 1980–1990”, Issues in Banking Structure and Competition in a Changing World, Conference Proceedings. Central Bank of the Republic of Turkey, Ankara, Turkey. 1992.
  • Cortes C., ve Vapnik V., “Support-vector networks”, Machine Learning, 20(3), (1995), pp:273-297.
  • Platt J., “Sequential minimal optimization: A fast algorithm for training support vector machines”, (1998).
  • Louppe G., “Understanding random forests”, Cornell University Library 10 (2014).

Using Classification Algorithms in Data Mining in Diagnosing Breast Cancer

Year 2022, Volume: 2 Issue: 2, 65 - 70, 23.09.2022
https://doi.org/10.54569/aair.1142519

Abstract

Data mining is the process of extracting useful information from large-scale data in an understandable and logical way. According to the main machine learning techniques of data mining; classification and regression, association rules and cluster analysis. Classification and regression are known as predictive models, and clustering and association rules are known as descriptive models. In this study, the classification method was used. With this method, it is aimed to assign a data set to one of the previously determined different classes. The data set used in the study was obtained from the UCIrvine Machine Learning Repository database. The dataset named “Breast cancer” consists of breast cancer data consisting of 699 samples and 10 features collected by William H. at the University of Wisconsin hospital. The data content includes information about the characteristics of some cells analyzed in the detection of breast cancer, cell division, and whether they are benign or malignant. Upon completion of the study, a classification process is performed by determining whether the targeted person has cancerous or non-cancerous cells. In the study carried out in this context; Data mining analyzes were performed using WEKA and Orange programs, SVM (Support Vector Machine), Random Forest algorithms. Along with the analysis results, a comparison was made on the data set, taking into account the previous studies. It is aimed that the conclusions obtained at the end of the study will guide medical professionals working in this field in the diagnosis of breast cancer.

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492.
  • Jeleń Ł., Krzyżak A., Fevens T. and Jeleń M., “Influence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsies”, Computers in Biology and Medicine, 79 (2016) pp. 80-91.
  • Uzm. Dr. Rengin Türkgüler, [Online]. Available: https://www.drrengin.com/tr/meme-ultranonu (accessed: August 5, 2022).
  • Mittal S. et al. “Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies”, Biosensors and Bioelectronics 88 (2017): 217-231.
  • Law M.H.C., Figueiredo M.A.T. and Jain A.K., “Simultaneous feature selection and clustering using mixture models”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), (2004) pp. 1154-1166.
  • Luukka P. and Leppälampi T., “Similarity classifier with generalized mean applied to medical data,” Computers in Biology and Medicine, 36(9) (2006), pp. 1026-1040.
  • Li D.-C. and Liu C.-W., “A class possibility based kernel to increase classification accuracy for small data sets using support vector machines,” Expert Systems with Applications, 37(4) (2010), pp. 3104-3110.
  • Lavanya D. and Rani K.U., “Performance evaluation of decision tree classifiers on medical datasets,” International Journal of Computer Applications, 26(4) (2011), pp. 1-4.
  • Maldonado S., Weber R. and Basak J., “Simultaneous feature selection and classification using kernel-penalized support vector machines”, Information Sciences, 181(1) (2011), pp. 115-128.
  • Takcı H., “Centroid sınıflayıcılar yardımıyla meme kanseri teşhisi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 31(2), (2016), pp: 323 - 330.
  • Akyol K., “Meme Kanseri Tanısı İçin Özniteliklerin Öneminin Değerlendirilmesi Üzerine Bir Çalışma”, Academic Platform Journal of Engineering and Smart Systems, 6(2), (2018), pp:109-115.
  • Karaci, A. (2020). Predicting Breast Cancer with Deep Neural Networks. In: Hemanth, D., Kose, U. (eds) Artificial Intelligence and Applied Mathematics in Engineering Problems. ICAIAME 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-36178-5_88.
  • Kör, H. “Classification of Breast Cancer by Machine Learning Methods”, 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences, 2019, pp:508-511.
  • Yavuz, E. and Eyüpoğlu C., “Meme Kanseri Teşhisi İçin Yeni Bir Skor Füzyon Yaklaşımı” Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7(3), (2019) pp: 1045-1060.
  • Sevli O., “Göğüslerden gelende farklı makine öğrenme tekniklerinin performans karşılaştırması”, Avrupa Bilim ve Teknoloji Dergisi 16 (2019) pp: 176-185.
  • Cengil E. and Çınar A., “Göğüs Verileri Metrikleri Üzerinden Kanser Sınıflandırılması” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(2), (2020) pp: 513-519.
  • Akcan F. and Sertbaş A., “Topluluk Öğrenmesi Yöntemleri ile Göğüs Kanseri Teşhisi”, Electronic Turkish Studies, 16(2), (2021), pp: 511 - 527.
  • Toraman S. and Turkoglu I., “A new method for classifying colon cancer patients and healthy people from FTIR signals using wavelet transform and machine learning techniques”, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), (2020) pp: 933-942.
  • Breiman L., “Random forests”, Machine Learning, 45 (1) (2001), pp: 5-32.
  • Akkurt A., et al., “Developments in the Turkish banking sector: 1980–1990”, Issues in Banking Structure and Competition in a Changing World, Conference Proceedings. Central Bank of the Republic of Turkey, Ankara, Turkey. 1992.
  • Cortes C., ve Vapnik V., “Support-vector networks”, Machine Learning, 20(3), (1995), pp:273-297.
  • Platt J., “Sequential minimal optimization: A fast algorithm for training support vector machines”, (1998).
  • Louppe G., “Understanding random forests”, Cornell University Library 10 (2014).
There are 23 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Research Articles
Authors

İrem Düzdar Argun 0000-0002-7642-8121

Büşranur Nalbant 0000-0003-1567-9565

Early Pub Date September 16, 2022
Publication Date September 23, 2022
Acceptance Date September 14, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite

IEEE İ. Düzdar Argun and B. Nalbant, “Using Classification Algorithms in Data Mining in Diagnosing Breast Cancer”, Adv. Artif. Intell. Res., vol. 2, no. 2, pp. 65–70, 2022, doi: 10.54569/aair.1142519.

88x31.png
Advances in Artificial Intelligence Research is an open access journal which means that the content is freely available without charge to the user or his/her institution. All papers are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which allows users to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as attribution is given to the creator.

Graphic design @ Özden Işıktaş