BibTex RIS Cite

Variation in Cellular Responses to Anti-mitotic Drug-Induced Prolonged Mitotic Arrest

Year 2017, , 134 - 143, 01.09.2017
https://doi.org/10.5505/abantmedj.2017.50103

Abstract

Anti-mitotic drugs, which are successfully used in cancer treatment today, trigger chronic activation of the “Spindle Assembly Checkpoint SAC ” by targeting microtubules. Chronic activation of the SAC induced by anti-mitotic drugs causes a prolonged mitotic arrest in all cancer cell lines tested. However, there is not a single cellular response to the prolonged arrest. In other words, cells can undergo different fates following the prolonged arrest. Therefore, cells from different cancer types, even cells from the same cancer type in different patients may differ greatly by their susceptibilities to anti-mitotic drugs. The variation in cellular responses to these drugs presents a serious problem in cancer treatment. Therefore, understanding the molecular basis of the cell fate determination following the prolonged arrest might provide important information to develop more successful strategies in cancer treatment. Here, we review the SAC as a pathway activated by anti-mitotic drugs as well as its role in cancer. We also discuss the different cell fates following the prolonged arrest induced by these drugs and describe a recently proposed model to explain how cells may commit to a certain cell fate.

References

  • Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007; 17(2):157-62.
  • Stukenberg PT, Burke DJ. Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Chromosoma 2015; 124(4):463-80.
  • Rieder CL, Salmon ED. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 1994; 124(3), 223-233.
  • Li X, Nicklas RB. Mitotic forces control a cell-cycle checkpoint. Nature 1995; 373(6515), 630-632.
  • Draviam VM, Xie S, Sorger PK. Chromosome segregation and genomic stability. Curr Opin Genet Dev 2004; 14(2), 120-125.
  • Basu J, Bousbaa H, Logarinho E, Li Z, Williams BC, Lopes C, Sunkel CE, Goldberg ML. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 1999; 146, 13–28.
  • Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101(6):635-45.
  • Kitagawa R, Rose AM. Components of the spindle-assembly checkpoint are essential in caenorhabditis elegans. Nat Cell Biol 1999; 1(8), 514-521.
  • Gillett ES, Espelin CW, Sorger PK. Spindle checkpoint proteins and chromosome microtubule attachment in budding yeast. J Cell Biol 2004; 164(4), 535-546.
  • van der Vaart B, Akhmanova A, Straube A. Regulation of microtubule dynamic instability. Biochem Soc Trans 2009; 37(Pt 5):1007-13.
  • Kapoor TM, Foley EA. Microtubule attachment and spindle assembly checkpoint at the kinetochore. Nat Rev Mol Cell Biol 2013; 14(1):25-37.
  • Biggins S, Walczak CE. Captivating capture: how microtubules attach to kinetochores. Curr Biol 2003; 13 (11):R449-60.
  • Tanaka TU. Bi-orienting chromosomes: acrobatics on the mitotic spindle. Chromosoma 2008; 117(6):521-33.
  • Weaver BA, Cleveland DW. Does aneuploidy cause cancer? Curr Opin Cell Biol 2006; 18, 658–667.
  • Pinsky BA, Biggins S. The spindle checkpoint: tension versus attachment. Trends Cell Biol 2005; 15(9):486-93.
  • Waters JC, Skibbens RV, Salmon ED. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J Cell Sci 1996; 109 (Pt 12), 2823-2831.
  • King JM, Nicklas RB. Tension on chromosomes increases the number of kinetochore microtubules but only within limits. J of Cell Sci 2000; 113 Pt 21, 3815-3823.
  • Rieder CL, Schultz A, Cole R, Sluder G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 1994; 127(5):1301-10.
  • Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis RL. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci USA 2001; 98(8), 4492-4497.
  • Matson DR, Demirel PB,Stukenberg PT, Burke DJ. A conserved role for COMA/CENP-H/I/N kinetochore proteins in the spindle checkpoint. Genes Dev 2012; 26(6):542-7.
  • Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001; 154(5):925-36.
  • Shen Z. Genomic instability and cancer: an introduction. J Mol Cell Biol 2011; 3(1):1-3.
  • Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392, 300–303.
  • Sotillo R, Hernando E, Díaz-Rodríguez E, Teruya-Feldstein J, Cordon-Cardo C, et al., Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 2007; 11(1):9-23.
  • Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 2004; 23(11): 2016-27.
  • Kops GJ, Foltz DR, Cleveland DW. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA 2004; 101: 8699–8704.
  • Gascoigne KE, Taylor SS. How do anti-mitotic drugs kill cancer cells? J Cell Sci 2009; 122(Pt 15): 2579-85.
  • Stobbe CC, Park SJ, Chapman J.D. The radiation hypersensitivity of cells at mitosis. Int J Radiat Biol 2002; 78(12):1149-57.
  • Hughes A.F. The effect of inhibitory substances on cell division; a study on living cells in tissue cultures. Q J Microsc Sci 1950; 91(3):251-77.
  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4(4): 253-65.
  • Fauzee NJ. Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev 2011; 12(4): 837-51.
  • Kelling J, Sullivan K, Wilson L, Jordan MA. Suppression of centromere dynamics by Taxol in living osteosarcoma cells. Cancer Res 2003; 63, 2794-2801.
  • Rai SS, Wolff J. Localization of the vinblastine-binding site on beta-tubulin. J Biol Chem 1996; 271,14707-14711.
  • Huang HC, Shi J, Orth JD, Mitchison TJ. Cell death when the SAC is out of commission. Cell Cycle 2010; 9(11):2049-50.
  • Minhas KM, Singh B, Jiang WW, Sidransky D, Califano JA. Spindle assembly checkpoint defects and chromosomal instability in head and neck squamous cell carcinoma. Int J Cancer 2003; 107(1):46-52.
  • Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010; 9(10):790-803.
  • Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13(2):275-84.
  • Perez EA. Microtubule inhibitors: Differentiating tubulin- inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 2009; 8(8):2086- 95.
  • Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors. Biochim Biophys Acta 2011; 1816(2):164-71.
  • Giannakakou P1, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 1997; 272(27):17118-25.
  • Kamath K, Wilson L, Cabral F, Jordan MS. βIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 2005;280:12902–7.
  • Pusztai L. Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Ann Oncol 2007;18:xii15–20.
  • Chan KS, Koh CG, Li HY. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis 2012; 3:e411.
  • Gascoigne KE, Taylor SS. Cancer Cells Display Profound intra- and interline variation following Prolonged Exposure to Antimitotic Drugs. Cancer Cell 2008; 14 (2): 111-122.
  • Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, Belmont LD, Kaminker JS, O'Rourke KM, Pujara K, Kohli PB, Johnson AR, Chiu ML, Lill JR, Jackson PK, Fairbrother WJ, Seshagiri S, Ludlam MJ, Leong KG, Dueber EC, Maecker H, Huang DC, Dixit VM. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 2011; 471(7336):110-4.
  • Matson DR, Stukenberg PT. Spindle Poisons and Cell Fate: A Tale of Two Pathways. Mol Interv 2011; 11, 141-150.
  • Page AM, Hieter P. The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 1999; 68:583- 609.
  • Rieder CL, Maiato H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004; 7: 637–651.

Anti-mitotik İlaçla Tetiklenen Uzun Süreli Mitotik Areste Hücresel Yanıtın Çeşitliliği

Year 2017, , 134 - 143, 01.09.2017
https://doi.org/10.5505/abantmedj.2017.50103

Abstract

Günümüzde kanser tedavisinde başarıyla kullanılan anti-mitotik ilaçlar, mikrotübülleri hedef alarak “İğ İpliği Kontrol Noktası İKN ” nın kronik aktivasyonunu tetikler. Anti-mitotik ilaçlarla tetiklenen kronik İKN aktivasyonu, bu güne kadar test edilen tüm hücre hatlarında uzun süreli mitotik-areste yol açmıştır. Ancak, uzun süreli mitotik areste karşı oluşan tek tip bir hücresel cevap bulunmamaktadır. Diğer bir deyişle, hücreler uzun süreli mitotik aresti takiben farklı post-mitotik kaderlere maruz kalabilirler. Bu nedenle, farklı kanser tiplerindeki hücreler, hatta farklı hastalara ait aynı kanser tipindeki hücreler anti-mitotik ilaçlara gösterdikleri hassasiyet açısından büyük farklılıklar gösterebilirler. Bu ilaçlara karşı gösterilen hücresel cevaplardaki çeşitlilik kanser tedavisinde ciddi bir sorun teşkil etmektedir. Bu nedenle, uzun süreli mitotik aresti takiben hangi hücre kaderine teslim olunacağı kararının moleküler temellerinin iyi anlaşılması kanser tedavisinde daha başarılı stratejiler geliştirebilmek için oldukça önemli bilgiler sağlayabilir. Bu derlemede, İKN’yi antimitotik ilaçlarla aktive olan bir sinyal yolağı olarak ve kanserdeki rolü açısından değerlendirdik. Ayrıca, anti-mitotik ilaçlarla tetiklenen uzun süreli mitotik aresti takip eden farklı hücre kaderlerinin neler olduğunu ve bunların arasından hücrelerin nasıl belirli bir kadere teslim olduğunu açıklayan yeni bir modeli tartıştık.

References

  • Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007; 17(2):157-62.
  • Stukenberg PT, Burke DJ. Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Chromosoma 2015; 124(4):463-80.
  • Rieder CL, Salmon ED. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 1994; 124(3), 223-233.
  • Li X, Nicklas RB. Mitotic forces control a cell-cycle checkpoint. Nature 1995; 373(6515), 630-632.
  • Draviam VM, Xie S, Sorger PK. Chromosome segregation and genomic stability. Curr Opin Genet Dev 2004; 14(2), 120-125.
  • Basu J, Bousbaa H, Logarinho E, Li Z, Williams BC, Lopes C, Sunkel CE, Goldberg ML. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 1999; 146, 13–28.
  • Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101(6):635-45.
  • Kitagawa R, Rose AM. Components of the spindle-assembly checkpoint are essential in caenorhabditis elegans. Nat Cell Biol 1999; 1(8), 514-521.
  • Gillett ES, Espelin CW, Sorger PK. Spindle checkpoint proteins and chromosome microtubule attachment in budding yeast. J Cell Biol 2004; 164(4), 535-546.
  • van der Vaart B, Akhmanova A, Straube A. Regulation of microtubule dynamic instability. Biochem Soc Trans 2009; 37(Pt 5):1007-13.
  • Kapoor TM, Foley EA. Microtubule attachment and spindle assembly checkpoint at the kinetochore. Nat Rev Mol Cell Biol 2013; 14(1):25-37.
  • Biggins S, Walczak CE. Captivating capture: how microtubules attach to kinetochores. Curr Biol 2003; 13 (11):R449-60.
  • Tanaka TU. Bi-orienting chromosomes: acrobatics on the mitotic spindle. Chromosoma 2008; 117(6):521-33.
  • Weaver BA, Cleveland DW. Does aneuploidy cause cancer? Curr Opin Cell Biol 2006; 18, 658–667.
  • Pinsky BA, Biggins S. The spindle checkpoint: tension versus attachment. Trends Cell Biol 2005; 15(9):486-93.
  • Waters JC, Skibbens RV, Salmon ED. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J Cell Sci 1996; 109 (Pt 12), 2823-2831.
  • King JM, Nicklas RB. Tension on chromosomes increases the number of kinetochore microtubules but only within limits. J of Cell Sci 2000; 113 Pt 21, 3815-3823.
  • Rieder CL, Schultz A, Cole R, Sluder G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 1994; 127(5):1301-10.
  • Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis RL. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci USA 2001; 98(8), 4492-4497.
  • Matson DR, Demirel PB,Stukenberg PT, Burke DJ. A conserved role for COMA/CENP-H/I/N kinetochore proteins in the spindle checkpoint. Genes Dev 2012; 26(6):542-7.
  • Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001; 154(5):925-36.
  • Shen Z. Genomic instability and cancer: an introduction. J Mol Cell Biol 2011; 3(1):1-3.
  • Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392, 300–303.
  • Sotillo R, Hernando E, Díaz-Rodríguez E, Teruya-Feldstein J, Cordon-Cardo C, et al., Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 2007; 11(1):9-23.
  • Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 2004; 23(11): 2016-27.
  • Kops GJ, Foltz DR, Cleveland DW. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA 2004; 101: 8699–8704.
  • Gascoigne KE, Taylor SS. How do anti-mitotic drugs kill cancer cells? J Cell Sci 2009; 122(Pt 15): 2579-85.
  • Stobbe CC, Park SJ, Chapman J.D. The radiation hypersensitivity of cells at mitosis. Int J Radiat Biol 2002; 78(12):1149-57.
  • Hughes A.F. The effect of inhibitory substances on cell division; a study on living cells in tissue cultures. Q J Microsc Sci 1950; 91(3):251-77.
  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4(4): 253-65.
  • Fauzee NJ. Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev 2011; 12(4): 837-51.
  • Kelling J, Sullivan K, Wilson L, Jordan MA. Suppression of centromere dynamics by Taxol in living osteosarcoma cells. Cancer Res 2003; 63, 2794-2801.
  • Rai SS, Wolff J. Localization of the vinblastine-binding site on beta-tubulin. J Biol Chem 1996; 271,14707-14711.
  • Huang HC, Shi J, Orth JD, Mitchison TJ. Cell death when the SAC is out of commission. Cell Cycle 2010; 9(11):2049-50.
  • Minhas KM, Singh B, Jiang WW, Sidransky D, Califano JA. Spindle assembly checkpoint defects and chromosomal instability in head and neck squamous cell carcinoma. Int J Cancer 2003; 107(1):46-52.
  • Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010; 9(10):790-803.
  • Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13(2):275-84.
  • Perez EA. Microtubule inhibitors: Differentiating tubulin- inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 2009; 8(8):2086- 95.
  • Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors. Biochim Biophys Acta 2011; 1816(2):164-71.
  • Giannakakou P1, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 1997; 272(27):17118-25.
  • Kamath K, Wilson L, Cabral F, Jordan MS. βIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 2005;280:12902–7.
  • Pusztai L. Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Ann Oncol 2007;18:xii15–20.
  • Chan KS, Koh CG, Li HY. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis 2012; 3:e411.
  • Gascoigne KE, Taylor SS. Cancer Cells Display Profound intra- and interline variation following Prolonged Exposure to Antimitotic Drugs. Cancer Cell 2008; 14 (2): 111-122.
  • Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, Belmont LD, Kaminker JS, O'Rourke KM, Pujara K, Kohli PB, Johnson AR, Chiu ML, Lill JR, Jackson PK, Fairbrother WJ, Seshagiri S, Ludlam MJ, Leong KG, Dueber EC, Maecker H, Huang DC, Dixit VM. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 2011; 471(7336):110-4.
  • Matson DR, Stukenberg PT. Spindle Poisons and Cell Fate: A Tale of Two Pathways. Mol Interv 2011; 11, 141-150.
  • Page AM, Hieter P. The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 1999; 68:583- 609.
  • Rieder CL, Maiato H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004; 7: 637–651.
There are 48 citations in total.

Details

Primary Language English
Journal Section Collection
Authors

Pınar Buket Atalay This is me

Ayşenur Aydın This is me

Publication Date September 1, 2017
Published in Issue Year 2017

Cite

APA Atalay, P. B., & Aydın, A. (2017). Variation in Cellular Responses to Anti-mitotic Drug-Induced Prolonged Mitotic Arrest. Abant Medical Journal, 6(3), 134-143. https://doi.org/10.5505/abantmedj.2017.50103
AMA Atalay PB, Aydın A. Variation in Cellular Responses to Anti-mitotic Drug-Induced Prolonged Mitotic Arrest. Abant Med J. September 2017;6(3):134-143. doi:10.5505/abantmedj.2017.50103
Chicago Atalay, Pınar Buket, and Ayşenur Aydın. “Variation in Cellular Responses to Anti-Mitotic Drug-Induced Prolonged Mitotic Arrest”. Abant Medical Journal 6, no. 3 (September 2017): 134-43. https://doi.org/10.5505/abantmedj.2017.50103.
EndNote Atalay PB, Aydın A (September 1, 2017) Variation in Cellular Responses to Anti-mitotic Drug-Induced Prolonged Mitotic Arrest. Abant Medical Journal 6 3 134–143.
IEEE P. B. Atalay and A. Aydın, “Variation in Cellular Responses to Anti-mitotic Drug-Induced Prolonged Mitotic Arrest”, Abant Med J, vol. 6, no. 3, pp. 134–143, 2017, doi: 10.5505/abantmedj.2017.50103.
ISNAD Atalay, Pınar Buket - Aydın, Ayşenur. “Variation in Cellular Responses to Anti-Mitotic Drug-Induced Prolonged Mitotic Arrest”. Abant Medical Journal 6/3 (September 2017), 134-143. https://doi.org/10.5505/abantmedj.2017.50103.
JAMA Atalay PB, Aydın A. Variation in Cellular Responses to Anti-mitotic Drug-Induced Prolonged Mitotic Arrest. Abant Med J. 2017;6:134–143.
MLA Atalay, Pınar Buket and Ayşenur Aydın. “Variation in Cellular Responses to Anti-Mitotic Drug-Induced Prolonged Mitotic Arrest”. Abant Medical Journal, vol. 6, no. 3, 2017, pp. 134-43, doi:10.5505/abantmedj.2017.50103.
Vancouver Atalay PB, Aydın A. Variation in Cellular Responses to Anti-mitotic Drug-Induced Prolonged Mitotic Arrest. Abant Med J. 2017;6(3):134-43.