Research Article
BibTex RIS Cite

CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES

Year 2017, Volume: 1 Issue: 2, 92 - 98, 29.12.2017

Abstract

Fibromyalgia
syndrome (FMS) is a long-term common body pain and a defined chronic pain
syndrome. Fibromyalgia syndrome is a difficult disease to diagnose. For this
reason, after many unnecessary treatments are applied to the patient, the
diagnosis of FMS is usually delayed by clinical examination and evaluation of
the patient's complaints. In this respect, there is a need for a decision
support system that will facilitate the diagnosis of FMS. In this study, by
using the questions asked 351 respondents, 175 FSM patients and 176 healthy
control subjects and experimental data, FMS classification was performed with
Support Vector Machines which is one of machine learning methods and 85%
success was achieved.

References

  • [1] Adler, G.K. Manfredsdottir V.F., and Creskoff K.W. 2002 "Neuroendocrine abnormalities in fibromyalgia".Current pain and headache reports. 6: 289-298.
  • [2] Marcus, DA. A Primary Care Guide to Practical Management. In Chronic Pain pp 15-30. PA Human Pres. Pain Institute, University of Pittsburgh, Pittsburgh.2005 .
  • [3] Yılmaz, H. Uğurlu H., and Sallı A. 2007 "Fibromiyalji Sendromlu Hastalarda Kas Performansı".Romatizma/Rheumatism. 22.
  • [4] McBeth J. and Jones K. 2007 "Epidemiology of chronic musculoskeletal pain".Best practice & research Clinical rheumatology. 21: 403-425.
  • [5] Guleç, H. Sayar K., and Guleç M.Y. 2007 "The Relationship Between Psychological Factors and Health Care-Seeking Behavior in Fibromyalgia Patients".
  • [6] Neumann L. and Buskila D. 2003 "Epidemiology of fibromyalgia".Current pain and headache reports. 7: 362-368.
  • [7] Buskila, D. et al., Familial aggregation in the fihromyalgia syndrome, in Seminars in arthritis and rheumatism. Elsevier, 1996 605-611.
  • [8] Kato, K. et al. 2006 "Importance of genetic influences on chronic widespread pain".Arthritis & Rheumatology. 54: 1682-1686.
  • [9] Robinson, M.E. et al. 2015 "Comparison of machine classification algorithms for fibromyalgia: neuroimages versus self-report".The Journal of Pain. 16: 472-477.
  • [10] Sevel, L. et al. 2016 "MRI based classification of chronic fatigue, fibromyalgia patients and healthy controls using machine learning algorithms: a comparison study". The Journal of Pain. 17: S60.
  • [11] Katz, J.D. et al. 2010 "Gender bias in diagnosing fibromyalgia".Gender medicine. 7: 19-27.
  • [12] Stringer, E. et al. 2013 "Daily cytokine fluctuations distinguish high pain from low pain days in women with fibromyalgia". The Journal of Pain. 14: S50.

DESTEK VEKTÖR MAKİNELERİ İLE FİBROMİYALJİ SENDROMU SINIFLAMASI

Year 2017, Volume: 1 Issue: 2, 92 - 98, 29.12.2017

Abstract

Fibromiyalji sendromu (FMS), uzun süreli yaygın vücut
ağrısı ve tanımlanmış kronik bir ağrı sendromudur. Fibromiyalji Sendromu tanısı
konulması zor bir hastalıktır. Bu sebeple, genellikle FMS tanısı, hastaya
gereksiz birçok tedavi uygulandıktan sonra, klinik muayene ve hastanın
yakınmalarının değerlendirilmesi ile geçikmeli olarak konulur. Bu açıdan FMS
teşhisini kolaylaştıracak bir karar destek sistemine ihtiyaç vardır. Bu
çalışmada, 175 FSM hastası ve 176 sağlıklı kontrol bireyi olmak üzere toplam
351 bireye sorulan sorular ve deneysel veriler kullanılarak makine öğrenmesi
yöntemlerinden Destek Vektör Makineleri ile FMS sınıflaması yapılmış ve yüzde
85 başarı elde edilmiştir.

References

  • [1] Adler, G.K. Manfredsdottir V.F., and Creskoff K.W. 2002 "Neuroendocrine abnormalities in fibromyalgia".Current pain and headache reports. 6: 289-298.
  • [2] Marcus, DA. A Primary Care Guide to Practical Management. In Chronic Pain pp 15-30. PA Human Pres. Pain Institute, University of Pittsburgh, Pittsburgh.2005 .
  • [3] Yılmaz, H. Uğurlu H., and Sallı A. 2007 "Fibromiyalji Sendromlu Hastalarda Kas Performansı".Romatizma/Rheumatism. 22.
  • [4] McBeth J. and Jones K. 2007 "Epidemiology of chronic musculoskeletal pain".Best practice & research Clinical rheumatology. 21: 403-425.
  • [5] Guleç, H. Sayar K., and Guleç M.Y. 2007 "The Relationship Between Psychological Factors and Health Care-Seeking Behavior in Fibromyalgia Patients".
  • [6] Neumann L. and Buskila D. 2003 "Epidemiology of fibromyalgia".Current pain and headache reports. 7: 362-368.
  • [7] Buskila, D. et al., Familial aggregation in the fihromyalgia syndrome, in Seminars in arthritis and rheumatism. Elsevier, 1996 605-611.
  • [8] Kato, K. et al. 2006 "Importance of genetic influences on chronic widespread pain".Arthritis & Rheumatology. 54: 1682-1686.
  • [9] Robinson, M.E. et al. 2015 "Comparison of machine classification algorithms for fibromyalgia: neuroimages versus self-report".The Journal of Pain. 16: 472-477.
  • [10] Sevel, L. et al. 2016 "MRI based classification of chronic fatigue, fibromyalgia patients and healthy controls using machine learning algorithms: a comparison study". The Journal of Pain. 17: S60.
  • [11] Katz, J.D. et al. 2010 "Gender bias in diagnosing fibromyalgia".Gender medicine. 7: 19-27.
  • [12] Stringer, E. et al. 2013 "Daily cytokine fluctuations distinguish high pain from low pain days in women with fibromyalgia". The Journal of Pain. 14: S50.
There are 12 citations in total.

Details

Journal Section Makaleler
Authors

Cemile Zontul This is me

Emrullah Hayta

Metin Zontul

Ayça Taş

Yavuz Siliğ

Publication Date December 29, 2017
Submission Date November 23, 2017
Published in Issue Year 2017 Volume: 1 Issue: 2

Cite

APA Zontul, C., Hayta, E., Zontul, M., Taş, A., et al. (2017). CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES. Acta Infologica, 1(2), 92-98.
AMA Zontul C, Hayta E, Zontul M, Taş A, Siliğ Y. CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES. ACIN. December 2017;1(2):92-98.
Chicago Zontul, Cemile, Emrullah Hayta, Metin Zontul, Ayça Taş, and Yavuz Siliğ. “CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES”. Acta Infologica 1, no. 2 (December 2017): 92-98.
EndNote Zontul C, Hayta E, Zontul M, Taş A, Siliğ Y (December 1, 2017) CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES. Acta Infologica 1 2 92–98.
IEEE C. Zontul, E. Hayta, M. Zontul, A. Taş, and Y. Siliğ, “CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES”, ACIN, vol. 1, no. 2, pp. 92–98, 2017.
ISNAD Zontul, Cemile et al. “CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES”. Acta Infologica 1/2 (December 2017), 92-98.
JAMA Zontul C, Hayta E, Zontul M, Taş A, Siliğ Y. CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES. ACIN. 2017;1:92–98.
MLA Zontul, Cemile et al. “CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES”. Acta Infologica, vol. 1, no. 2, 2017, pp. 92-98.
Vancouver Zontul C, Hayta E, Zontul M, Taş A, Siliğ Y. CLASSIFICATION OF FIBROMYALGIA SYNDROME WITH SUPPORT VECTOR MACHINES. ACIN. 2017;1(2):92-8.