Research Article
BibTex RIS Cite

Can artificial intelligence algorithms recognize knee arthroplasty implants from X-ray radiographs?

Year 2023, Volume: 5 Issue: 4, 479 - 483, 27.10.2023
https://doi.org/10.38053/acmj.1356979

Abstract

Aims: This study aimed to investigate the use of a convolutional neural network (CNN) deep learning approach to accurately identify total knee arthroplasty (TKA) implants from X-ray radiographs.
Methods: This retrospective study employed a deep learning CNN system to analyze pre-revision and post-operative knee X-rays from TKA patients. We excluded cases involving unicondylar and revision knee replacements, as well as low-quality or unavailable X-ray images and those with other implants. Ten cruciate-retaining TKA replacement models were assessed from various manufacturers. The training set comprised 69% of the data, with the remaining 31% in the test set, augmented due to limited images. Evaluation metrics included accuracy and F1 score, and we developed the software in Python using the TensorFlow library for the CNN method. A computer scientist with AI expertise managed data processing and testing, calculating specificity, sensitivity, and accuracy to assess CNN performance.
Results: In this study, a total of 282 AP and lateral X-rays from 141 patients were examined, encompassing 10 distinct knee prosthesis models from various manufacturers, each with varying X-ray counts. The CNN technique exhibited flawless accuracy, achieving a 100% identification rate for both the manufacturer and model of TKA across all 10 different models. Furthermore, the CNN method demonstrated exceptional specificity and sensitivity, consistently reaching 100% for each individual implant model.
Conclusion: This study underscores the impressive capacity of deep learning AI algorithms to precisely identify knee arthroplasty implants from X-ray radiographs. It highlights AI’s ability to detect subtle changes imperceptible to humans, execute precise computations, and handle extensive data. The accurate recognition of knee replacement implants using AI algorithms prior to revision surgeries promises to enhance procedure efficiency and outcomes.

Ethical Statement

The current study was carried out with the permission of the Fırat University Medical Faculty Ethics Committee (Date: 29.12.2022, Decision No: 16-21).

References

  • Sloan M, Premkumar A, Sheth NP. Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg Am. 2018;100(17):1455-1460.
  • Postler A, Lützner C, Beyer F, Tille E, Lützner J. Analysis of total knee arthroplasty revision causes. BMC Musculoskelet Disord. 2018;19(1):55.
  • Delanois RE, Mistry JB, Gwam CU, Mohamed NS, Choksi US, Mont MA. Current epidemiology of revision total knee arthroplasty in the United States. J Arthroplasty. 2017;32(9):2663-2668.
  • Wilson N, Broatch J, Jehn M, Davis C, 3rd. National projections of time, cost and failure in implantable device identification: Consideration of unique device identification use. Healthc (Amst). 2015;3(4):196-201.
  • Wilson NA, Jehn M, York S, Davis CM, 3rd. Revision total hip and knee arthroplasty implant identification: implications for use of Unique Device Identification 2012 AAHKS member survey results. J Arthroplasty. 2014;29(2):251-5.
  • Wang J, Liu S. Visual information computing and processing model based on artificial neural network. Comput Intell Neurosci. 2022;2022:4713311.
  • Rohde S, Münnich N. Artificial intelligence in orthopaedic and trauma surgery imaging. Orthopadie (Heidelb). 2022;51(9):748-756.
  • Lisacek-Kiosoglous AB, Powling AS, Fontalis A, Gabr A, Mazomenos E, Haddad FS. Artificial intelligence in orthopaedic surgery. Bone Joint Res. 2023;12(7):447-454.
  • Murphy M, Killen C, Burnham R, Sarvari F, Wu K, Brown N. Artificial intelligence accurately identifies total hip arthroplasty implants: a tool for revision surgery. Hip Int. 2022;32(6):766-770.
  • Karnuta JM, Luu BC, Roth AL, et al. Artificial intelligence to identify arthroplasty implants from radiographs of the knee. J Arthroplasty. 2021;36(3):935-940.
  • Yi PH, Wei J, Kim TK, et al. Automated detection & classification of knee arthroplasty using deep learning. Knee. 2020;27(2):535-542.
  • Gurung B, Liu P, Harris PDR, et al. Artificial intelligence for image analysis in total hip and total knee arthroplasty: a scoping review. Bone Joint J. 2022;104-B(8):929-937.
  • Nich C, Behr J, Crenn V, Normand N, Mouchère H, d’Assignies G. Applications of artificial intelligence and machine learning for the hip and knee surgeon: current state and implications for the future. Int Orthop. 2022;46(5):937-944.
  • von Eisenhart-Rothe R, Hinterwimmer F, Graichen H, Hirschmann MT. Artificial intelligence and robotics in TKA surgery: promising options for improved outcomes?. Knee Surg Sports Traumatol Arthrosc. 2022;30(8):2535-2537.
  • Lakhani P. Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities. J Digit Imaging. 2017;30(4):460-468.
  • Lee H, Mansouri M, Tajmir S, Lev MH, Do S. A deep-learning system for fully-automated peripherally inserted central catheter (PICC) tip detection. J Digit Imaging. 2018;31(4):393-402.
  • Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574-582.
  • Klemt C, Uzosike AC, Cohen-Levy WB, Harvey MJ, Subih MA, Kwon YM. The ability of deep learning models to identify total hip and knee arthroplasty implant design from plain radiographs. J Am Acad Orthop Surg. 2022;30(9):409-415.
  • Purnomo G, Yeo SJ, Liow MHL. Artificial intelligence in arthroplasty. Arthroplasty. 2021;3(1):37.
  • Clement ND, Simpson A. Artificial intelligence in orthopaedics. Bone Joint Res. 2023;12(8):494-496.
  • Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial intelligence in medicine: where are we now? Acad Radiol. 2020; 27(1):62-70.
  • Myers TG, Ramkumar PN, Ricciardi BF, Urish KL, Kipper J, Ketonis C. Artificial intelligence and orthopaedics: an introduction for clinicians. J Bone Joint Surg Am. 2020;102(9):830-840.
  • Lenguerrand E, Whitehouse MR, Kunutsor SK, et al. Mortality and re-revision following single-stage and two-stage revision surgery for the management of infected primary knee arthroplasty in England and Wales: evidence from the National Joint Registry. Bone Joint Res. 2022;11(10):690-699.
Year 2023, Volume: 5 Issue: 4, 479 - 483, 27.10.2023
https://doi.org/10.38053/acmj.1356979

Abstract

References

  • Sloan M, Premkumar A, Sheth NP. Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg Am. 2018;100(17):1455-1460.
  • Postler A, Lützner C, Beyer F, Tille E, Lützner J. Analysis of total knee arthroplasty revision causes. BMC Musculoskelet Disord. 2018;19(1):55.
  • Delanois RE, Mistry JB, Gwam CU, Mohamed NS, Choksi US, Mont MA. Current epidemiology of revision total knee arthroplasty in the United States. J Arthroplasty. 2017;32(9):2663-2668.
  • Wilson N, Broatch J, Jehn M, Davis C, 3rd. National projections of time, cost and failure in implantable device identification: Consideration of unique device identification use. Healthc (Amst). 2015;3(4):196-201.
  • Wilson NA, Jehn M, York S, Davis CM, 3rd. Revision total hip and knee arthroplasty implant identification: implications for use of Unique Device Identification 2012 AAHKS member survey results. J Arthroplasty. 2014;29(2):251-5.
  • Wang J, Liu S. Visual information computing and processing model based on artificial neural network. Comput Intell Neurosci. 2022;2022:4713311.
  • Rohde S, Münnich N. Artificial intelligence in orthopaedic and trauma surgery imaging. Orthopadie (Heidelb). 2022;51(9):748-756.
  • Lisacek-Kiosoglous AB, Powling AS, Fontalis A, Gabr A, Mazomenos E, Haddad FS. Artificial intelligence in orthopaedic surgery. Bone Joint Res. 2023;12(7):447-454.
  • Murphy M, Killen C, Burnham R, Sarvari F, Wu K, Brown N. Artificial intelligence accurately identifies total hip arthroplasty implants: a tool for revision surgery. Hip Int. 2022;32(6):766-770.
  • Karnuta JM, Luu BC, Roth AL, et al. Artificial intelligence to identify arthroplasty implants from radiographs of the knee. J Arthroplasty. 2021;36(3):935-940.
  • Yi PH, Wei J, Kim TK, et al. Automated detection & classification of knee arthroplasty using deep learning. Knee. 2020;27(2):535-542.
  • Gurung B, Liu P, Harris PDR, et al. Artificial intelligence for image analysis in total hip and total knee arthroplasty: a scoping review. Bone Joint J. 2022;104-B(8):929-937.
  • Nich C, Behr J, Crenn V, Normand N, Mouchère H, d’Assignies G. Applications of artificial intelligence and machine learning for the hip and knee surgeon: current state and implications for the future. Int Orthop. 2022;46(5):937-944.
  • von Eisenhart-Rothe R, Hinterwimmer F, Graichen H, Hirschmann MT. Artificial intelligence and robotics in TKA surgery: promising options for improved outcomes?. Knee Surg Sports Traumatol Arthrosc. 2022;30(8):2535-2537.
  • Lakhani P. Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities. J Digit Imaging. 2017;30(4):460-468.
  • Lee H, Mansouri M, Tajmir S, Lev MH, Do S. A deep-learning system for fully-automated peripherally inserted central catheter (PICC) tip detection. J Digit Imaging. 2018;31(4):393-402.
  • Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574-582.
  • Klemt C, Uzosike AC, Cohen-Levy WB, Harvey MJ, Subih MA, Kwon YM. The ability of deep learning models to identify total hip and knee arthroplasty implant design from plain radiographs. J Am Acad Orthop Surg. 2022;30(9):409-415.
  • Purnomo G, Yeo SJ, Liow MHL. Artificial intelligence in arthroplasty. Arthroplasty. 2021;3(1):37.
  • Clement ND, Simpson A. Artificial intelligence in orthopaedics. Bone Joint Res. 2023;12(8):494-496.
  • Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial intelligence in medicine: where are we now? Acad Radiol. 2020; 27(1):62-70.
  • Myers TG, Ramkumar PN, Ricciardi BF, Urish KL, Kipper J, Ketonis C. Artificial intelligence and orthopaedics: an introduction for clinicians. J Bone Joint Surg Am. 2020;102(9):830-840.
  • Lenguerrand E, Whitehouse MR, Kunutsor SK, et al. Mortality and re-revision following single-stage and two-stage revision surgery for the management of infected primary knee arthroplasty in England and Wales: evidence from the National Joint Registry. Bone Joint Res. 2022;11(10):690-699.
There are 23 citations in total.

Details

Primary Language English
Subjects Orthopaedics
Journal Section Research Articles
Authors

Fatih Gölgelioğlu 0000-0002-1715-3471

Aydoğan Aşkın 0000-0003-2144-3647

Mehmet Cihat Gündoğdu 0009-0006-2655-9058

Mehmet Fatih Uzun 0000-0003-2327-5536

Bige Kağan Dedetürk 0000-0002-8026-5003

Mustafa Yalın 0000-0001-8281-9885

Early Pub Date October 26, 2023
Publication Date October 27, 2023
Published in Issue Year 2023 Volume: 5 Issue: 4

Cite

AMA Gölgelioğlu F, Aşkın A, Gündoğdu MC, Uzun MF, Dedetürk BK, Yalın M. Can artificial intelligence algorithms recognize knee arthroplasty implants from X-ray radiographs?. Anatolian Curr Med J / ACMJ / acmj. October 2023;5(4):479-483. doi:10.38053/acmj.1356979

TR DİZİN ULAKBİM and International Indexes (1b)

Interuniversity Board (UAK) Equivalency:  Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/3449/file/4924/show

Journal Indexes and Platforms: 

TR Dizin ULAKBİM, Google Scholar, Crossref, Worldcat (OCLC), DRJI, EuroPub, OpenAIRE, Turkiye Citation Index, Turk Medline, ROAD, ICI World of Journal's, Index Copernicus, ASOS Index, General Impact Factor, Scilit.


The indexes of the journal's are;

18596


asos-index.png

f9ab67f.png

WorldCat_Logo_H_Color.png

      logo-large-explore.png

images?q=tbn:ANd9GcQgDnBwx0yUPRKuetgIurtELxYERFv20CPAUcPe4jYrrJiwXzac8rGXlzd57gl8iikb1Tk&usqp=CAU

index_copernicus.jpg


84039476_619085835534619_7808805634291269632_n.jpg





The platforms of the journal's are;

COPE.jpg

images?q=tbn:ANd9GcTbq2FM8NTdXECzlOUCeKQ1dvrISFL-LhxhC7zy1ZQeJk-GGKSx2XkWQvrsHxcfhtfHWxM&usqp=CAUicmje_1_orig.png

cc.logo.large.png

ncbi.png

ORCID_logo.pngimages?q=tbn:ANd9GcQlwX77nfpy3Bu9mpMBZa0miWT2sRt2zjAPJKg2V69ODTrjZM1nT1BbhWzTVPsTNKJMZzQ&usqp=CAU


images?q=tbn:ANd9GcTaWSousoprPWGwE-qxwxGH2y0ByZ_zdLMN-Oq93MsZpBVFOTfxi9uXV7tdr39qvyE-U0I&usqp=CAU






The
 
indexes/platforms of the journal are;

TR Dizin Ulakbim, Crossref (DOI), Google Scholar, EuroPub, Directory of Research Journal İndexing (DRJI), Worldcat (OCLC), OpenAIRE, ASOS Index, ROAD, Turkiye Citation Index, ICI World of Journal's, Index Copernicus, Turk Medline, General Impact Factor, Scilit 


EBSCO, DOAJ, OAJI is under evaluation.

Journal articles are evaluated as "Double-Blind Peer Review"