Conference Paper
BibTex RIS Cite

The Philosophy of Laser Imaging

Year 2020, Volume: 4 Issue: 4, 1 - 7, 23.10.2020

Abstract

The philosophy of laser imaging first thought by the idea of visualizing the photon trajectories which are even seen by naked eyes when anybody looks inside to the photon diffusing object. If white light beams onto the imaging tissue, blood vessels can be seen by the naked eye from the tissue surface, roughly. One of the important biomedical molecular macroscopic imaging technique is the laser imaging. Most of the works cover research infrastructures, laboratories, and hospitals for diffuse optic laser imaging. Naturally, in most of the clinical applications, near infrared (NIR) laser is being used, since the main motivation trial is the cancer case, obviously. NIR laser helps to figure out hemoglobin content which uses the blood absorption maxima wavelength, hence in most of diffuse optic tomography (DOT) research, NIR laser is used. Most of the diffuse optic laser imaging technique are using low energy incident collimated isotropic un-polarized gaussian beam which is generated by semiconductor laser diode. Applied power is usually less than 10 mW/cm2. At the beginning of the laser diffuse optic imaging (DOI) research era, most of the researchers have jumped into the research without reading and understanding the limitations of the modality. Low energy light has some restrictions, the most important is the scattering nature of the light depend on the tissue type. However, some tissue types such as cerebrospinal fluid has low optic scattering coefficients. Another important factor besides the scattering, caused by low energy, hence photons are penetrating only superficially. Photons are scattering much and penetrating only superficially. On the other hand, if x-ray bremsstrahlung photons were used, it would go deeper tissue layers, nevertheless it becomes ionized radiative light. The philosophy of laser diffuse macroscopic molecular imaging modality is covering scattering of light, therefore device concept should be thought according to this phenomenon, source and detector placement should be arranged based on this truth. In this review paper, the philosophical concept will be evaluated for laser imaging.

References

  • [1] Cutler M. “Transillumination as an aid in the diagnosis of breast lesions”. Surg. Gynecol. Obstet. 48:721-8, 1929.
  • [2] S.R. Arridge, Optical tomography in medical imaging, Inverse Probl., 15, 41–93, 1999. DOI:10.1088/0266-5611/15/2/022.
  • [3] S.R. Arridge, J.C. Hebden, Optical imaging in medicine: II. Modelling and reconstruction, Phys. Med. Biol. 1997. 42, 841–853.
  • [4] D.A. Boas, D.H. Brooks, E.L. Miller, C.A. DiMarzio, M. Kilmer, R.J. Gaudette, Q. Zhang, Imaging the body with diffuse optical tomography, IEEE Signal Process. Mag. 18, 2001. 57–75. DOI:10.1109/79.962278.
  • [5] J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A.G. Yodh, Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging, Med. Phys., 2003. 30, 235–247. DOI:10.1118/1.1534109.
  • [6] B.W. Pogue, S.C. Davis, X. Song, B.A. Brooksby, H. Dehghani, K.D. Paulsen, Image analysis methods for diffuse optical tomography. J. Biomed. Opt., 2006. 11, 033 001–033 016. DOI:10.1117/1.2209908.
  • [7] Culver J.P. “Statistical analysis of high density diffuse optical tomography”. NeuroImage, 85:01, 2013.
  • [8] B.J. Tromberg, B.W. Pogue, K.D. Paulsen, A.G. Yodh, D.A. Boas, A.E. Cerussi, Assessing the future of diffuse optical imaging technologies for breast cancer management. Med. Phys., 2008. 35, 2443–2451. DOI:10.1118/1.2919078.
  • [9] Xiaofeng Zhang, Instrumentation in Diffuse Optical Imaging. Photonics. 2014; 1(1): 9–32.
  • [10] Boas DA, Dale AM, Franceschini MA. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage. 2004;23(Suppl 1):S275–288.
  • [11] Intes X, Chance B. Non-PET functional imaging techniques: optical. Radiologic Clinics of North America. 2005;43:221–234.
  • [12] Hielscher AH. Optical tomographic imaging of small animals. Curr Opin Biotechnol. 2005;16:79–88.
  • [13] Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys Med Biol. 2005;50:R1–43.
  • [14] Zhao H, Gao F, Tanikawa Y, Yamada Y. Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging. J Biomed Opt. 2007;12:062107.
  • [15] Dehghani H, Srinivasan S, Pogue BW, Gibson A. Numerical modelling and image reconstruction in diffuse optical tomography. Philos Transact A Math Phys Eng Sci. 2009;367:3073–3093.
  • [16] Leblond F, Davis SC, Valdes PA, Pogue BW. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B. 2010;98:77–94.
  • [17] Brown JQ, Bydlon TM, Richards LM, Yu B, Kennedy SA, Geradts J, Wilke LG, Junker M, Gallagher J, Barry W, Ramanujam N. Optical assessment of tumor resection margins in the breast. IEEE Journal of Selected Topics in Quantum Electronics. 2010;16:530–544.
  • [18] Arridge SR. Methods in diffuse optical imaging. Philosophical Transactions Series A. 2011;369:4558–4576.
  • [19] O’Sullivan TD, Cerussi AE, Cuccia DJ, Tromberg BJ. Diffuse optical imaging using spatially and temporally modulated light. J Biomed Opt. 2012;17:071311.
  • [20] Busch DR, Choe R, Durduran T, Yodh AG. Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics. PET Clinics. 2013;8:345–356.
  • [21] Boas DA, Gaudette T, Strangman G, Cheng X, Marota JJ, Mandeville JB. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage. 2001;13:76–90.
  • [22] Zhang X, Toronov V, Webb A. Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain. Opt Express. 2005;13:5513–5521.
  • [23] Gratton E, Toronov V, Wolf U, Wolf M, Webb A. Measurement of brain activity by near-infrared light. J Biomed Opt. 2005;10:11008.
  • [24] Intes X, Ripoll J, Chen Y, Nioka S, Yodh AG, Chance B. In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med Phys. 2003;30:1039–1047.
  • [25] Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys. 2008;35:2443–2451.
  • [26] Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N. Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res. 2009;69:2919–2926.
  • [27] McGinily SJ, Abram RH, Riis E, Ferguson AI. Efficient coupling of several broad area laser diodes into an optical fiber. Rev Sci Instru. 2006;77:116101.
  • [28] Jiang H, Xu Y, Iftimia N. Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data. Opt Express. 2000;7:204–209.
  • [29] Franceschini MA, Toronov V, Filiaci M, Gratton E, Fantini S. On-line optical imaging of the human brain with 160-ms temporal resolution. Opt Express. 2000;6:49–57.
  • [30] McBride TO, Pogue BW, Jiang S, Osterberg UL, Paulsen KD. A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo. Rev Sci Instrum. 2001;72:1817–1824.
  • [31] Fu HL, Yu B, Lo JY, Palmer GM, Kuech TF, Ramanujam N. A low-cost, portable, and quantitative spectral imaging system for application to biological tissues. Opt Express. 2010;18:12630–12645.
  • [32] S R Arridge and M Schweiger, Image reconstruction in optical tomography. Philos Trans R Soc Lond B Biol Sci. 1997 Jun 29; 352(1354): 717–726.
  • [33] Arridge SR, Hebden JC. Optical imaging in medicine: II. Modelling and reconstruction. Phys Med Biol. 1997 May;42(5):841–853.
  • [34] Arridge SR, Cope M, Delpy DT. The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys Med Biol. 1992 Jul;37(7):1531–1560.
  • [35] Arridge SR, Hiraoka M, Schweiger M. Statistical basis for the determination of optical pathlength in tissue. Phys Med Biol. 1995 Sep;40(9):1539–1558.
  • [36] Arridge SR, Schweiger M, Hiraoka M, Delpy DT. A finite element approach for modeling photon transport in tissue. Med Phys. 1993 Mar-Apr;20(2 Pt 1):299–309.
  • [37] Boas DA, O'Leary MA, Chance B, Yodh AG. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4887–4891.
  • [38] Cope M, Delpy DT. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988 May;26(3):289–294.
  • [39] Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol. 1988 Dec;33(12):1433–1442.
  • [40] Firbank M, Arridge SR, Schweiger M, Delpy DT. An investigation of light transport through scattering bodies with non-scattering regions. Phys Med Biol. 1996 Apr;41(4):767–783.
  • [41] Hebden JC, Arridge SR, Delpy DT. Optical imaging in medicine: I. Experimental techniques. Phys Med Biol. 1997 May;42(5):825–840.
  • [42] Henderson RP, Webster JG. An impedance camera for spatially specific measurements of the thorax. IEEE Trans Biomed Eng. 1978 May;25(3):250–254.
  • [43] Pogue BW, Patterson MS, Jiang H, Paulsen KD. Initial assessment of a simple system for frequency domain diffuse optical tomography. Phys Med Biol. 1995 Oct;40(10):1709–1729.
  • [44] Schweiger M, Arridge SR, Hiraoka M, Delpy DT. The finite element method for the propagation of light in scattering media: boundary and source conditions. Med Phys. 1995 Nov;22(11 Pt 1):1779–1792.
  • [45] Singer JR, Grünbaum FA, Kohn P, Zubelli JP. Image reconstruction of the interior of bodies that diffuse radiation. Science. 1990 May 25;248(4958):990–993.
Year 2020, Volume: 4 Issue: 4, 1 - 7, 23.10.2020

Abstract

References

  • [1] Cutler M. “Transillumination as an aid in the diagnosis of breast lesions”. Surg. Gynecol. Obstet. 48:721-8, 1929.
  • [2] S.R. Arridge, Optical tomography in medical imaging, Inverse Probl., 15, 41–93, 1999. DOI:10.1088/0266-5611/15/2/022.
  • [3] S.R. Arridge, J.C. Hebden, Optical imaging in medicine: II. Modelling and reconstruction, Phys. Med. Biol. 1997. 42, 841–853.
  • [4] D.A. Boas, D.H. Brooks, E.L. Miller, C.A. DiMarzio, M. Kilmer, R.J. Gaudette, Q. Zhang, Imaging the body with diffuse optical tomography, IEEE Signal Process. Mag. 18, 2001. 57–75. DOI:10.1109/79.962278.
  • [5] J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A.G. Yodh, Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging, Med. Phys., 2003. 30, 235–247. DOI:10.1118/1.1534109.
  • [6] B.W. Pogue, S.C. Davis, X. Song, B.A. Brooksby, H. Dehghani, K.D. Paulsen, Image analysis methods for diffuse optical tomography. J. Biomed. Opt., 2006. 11, 033 001–033 016. DOI:10.1117/1.2209908.
  • [7] Culver J.P. “Statistical analysis of high density diffuse optical tomography”. NeuroImage, 85:01, 2013.
  • [8] B.J. Tromberg, B.W. Pogue, K.D. Paulsen, A.G. Yodh, D.A. Boas, A.E. Cerussi, Assessing the future of diffuse optical imaging technologies for breast cancer management. Med. Phys., 2008. 35, 2443–2451. DOI:10.1118/1.2919078.
  • [9] Xiaofeng Zhang, Instrumentation in Diffuse Optical Imaging. Photonics. 2014; 1(1): 9–32.
  • [10] Boas DA, Dale AM, Franceschini MA. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage. 2004;23(Suppl 1):S275–288.
  • [11] Intes X, Chance B. Non-PET functional imaging techniques: optical. Radiologic Clinics of North America. 2005;43:221–234.
  • [12] Hielscher AH. Optical tomographic imaging of small animals. Curr Opin Biotechnol. 2005;16:79–88.
  • [13] Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys Med Biol. 2005;50:R1–43.
  • [14] Zhao H, Gao F, Tanikawa Y, Yamada Y. Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging. J Biomed Opt. 2007;12:062107.
  • [15] Dehghani H, Srinivasan S, Pogue BW, Gibson A. Numerical modelling and image reconstruction in diffuse optical tomography. Philos Transact A Math Phys Eng Sci. 2009;367:3073–3093.
  • [16] Leblond F, Davis SC, Valdes PA, Pogue BW. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B. 2010;98:77–94.
  • [17] Brown JQ, Bydlon TM, Richards LM, Yu B, Kennedy SA, Geradts J, Wilke LG, Junker M, Gallagher J, Barry W, Ramanujam N. Optical assessment of tumor resection margins in the breast. IEEE Journal of Selected Topics in Quantum Electronics. 2010;16:530–544.
  • [18] Arridge SR. Methods in diffuse optical imaging. Philosophical Transactions Series A. 2011;369:4558–4576.
  • [19] O’Sullivan TD, Cerussi AE, Cuccia DJ, Tromberg BJ. Diffuse optical imaging using spatially and temporally modulated light. J Biomed Opt. 2012;17:071311.
  • [20] Busch DR, Choe R, Durduran T, Yodh AG. Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics. PET Clinics. 2013;8:345–356.
  • [21] Boas DA, Gaudette T, Strangman G, Cheng X, Marota JJ, Mandeville JB. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage. 2001;13:76–90.
  • [22] Zhang X, Toronov V, Webb A. Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain. Opt Express. 2005;13:5513–5521.
  • [23] Gratton E, Toronov V, Wolf U, Wolf M, Webb A. Measurement of brain activity by near-infrared light. J Biomed Opt. 2005;10:11008.
  • [24] Intes X, Ripoll J, Chen Y, Nioka S, Yodh AG, Chance B. In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med Phys. 2003;30:1039–1047.
  • [25] Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys. 2008;35:2443–2451.
  • [26] Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N. Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res. 2009;69:2919–2926.
  • [27] McGinily SJ, Abram RH, Riis E, Ferguson AI. Efficient coupling of several broad area laser diodes into an optical fiber. Rev Sci Instru. 2006;77:116101.
  • [28] Jiang H, Xu Y, Iftimia N. Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data. Opt Express. 2000;7:204–209.
  • [29] Franceschini MA, Toronov V, Filiaci M, Gratton E, Fantini S. On-line optical imaging of the human brain with 160-ms temporal resolution. Opt Express. 2000;6:49–57.
  • [30] McBride TO, Pogue BW, Jiang S, Osterberg UL, Paulsen KD. A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo. Rev Sci Instrum. 2001;72:1817–1824.
  • [31] Fu HL, Yu B, Lo JY, Palmer GM, Kuech TF, Ramanujam N. A low-cost, portable, and quantitative spectral imaging system for application to biological tissues. Opt Express. 2010;18:12630–12645.
  • [32] S R Arridge and M Schweiger, Image reconstruction in optical tomography. Philos Trans R Soc Lond B Biol Sci. 1997 Jun 29; 352(1354): 717–726.
  • [33] Arridge SR, Hebden JC. Optical imaging in medicine: II. Modelling and reconstruction. Phys Med Biol. 1997 May;42(5):841–853.
  • [34] Arridge SR, Cope M, Delpy DT. The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys Med Biol. 1992 Jul;37(7):1531–1560.
  • [35] Arridge SR, Hiraoka M, Schweiger M. Statistical basis for the determination of optical pathlength in tissue. Phys Med Biol. 1995 Sep;40(9):1539–1558.
  • [36] Arridge SR, Schweiger M, Hiraoka M, Delpy DT. A finite element approach for modeling photon transport in tissue. Med Phys. 1993 Mar-Apr;20(2 Pt 1):299–309.
  • [37] Boas DA, O'Leary MA, Chance B, Yodh AG. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4887–4891.
  • [38] Cope M, Delpy DT. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988 May;26(3):289–294.
  • [39] Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol. 1988 Dec;33(12):1433–1442.
  • [40] Firbank M, Arridge SR, Schweiger M, Delpy DT. An investigation of light transport through scattering bodies with non-scattering regions. Phys Med Biol. 1996 Apr;41(4):767–783.
  • [41] Hebden JC, Arridge SR, Delpy DT. Optical imaging in medicine: I. Experimental techniques. Phys Med Biol. 1997 May;42(5):825–840.
  • [42] Henderson RP, Webster JG. An impedance camera for spatially specific measurements of the thorax. IEEE Trans Biomed Eng. 1978 May;25(3):250–254.
  • [43] Pogue BW, Patterson MS, Jiang H, Paulsen KD. Initial assessment of a simple system for frequency domain diffuse optical tomography. Phys Med Biol. 1995 Oct;40(10):1709–1729.
  • [44] Schweiger M, Arridge SR, Hiraoka M, Delpy DT. The finite element method for the propagation of light in scattering media: boundary and source conditions. Med Phys. 1995 Nov;22(11 Pt 1):1779–1792.
  • [45] Singer JR, Grünbaum FA, Kohn P, Zubelli JP. Image reconstruction of the interior of bodies that diffuse radiation. Science. 1990 May 25;248(4958):990–993.
There are 45 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Huseyin Ozgur Kazanci 0000-0003-0036-7657

Publication Date October 23, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

APA Kazanci, H. O. (2020). The Philosophy of Laser Imaging. Acta Materialia Turcica, 4(4), 1-7.
AMA Kazanci HO. The Philosophy of Laser Imaging. ACTAMAT. October 2020;4(4):1-7.
Chicago Kazanci, Huseyin Ozgur. “The Philosophy of Laser Imaging”. Acta Materialia Turcica 4, no. 4 (October 2020): 1-7.
EndNote Kazanci HO (October 1, 2020) The Philosophy of Laser Imaging. Acta Materialia Turcica 4 4 1–7.
IEEE H. O. Kazanci, “The Philosophy of Laser Imaging”, ACTAMAT, vol. 4, no. 4, pp. 1–7, 2020.
ISNAD Kazanci, Huseyin Ozgur. “The Philosophy of Laser Imaging”. Acta Materialia Turcica 4/4 (October 2020), 1-7.
JAMA Kazanci HO. The Philosophy of Laser Imaging. ACTAMAT. 2020;4:1–7.
MLA Kazanci, Huseyin Ozgur. “The Philosophy of Laser Imaging”. Acta Materialia Turcica, vol. 4, no. 4, 2020, pp. 1-7.
Vancouver Kazanci HO. The Philosophy of Laser Imaging. ACTAMAT. 2020;4(4):1-7.