PLASMA STUDIES IN TÜBİTAK NATIONAL METROLOGY INSTITUTE
Year 2021,
Volume: 5 Issue: 1, 24 - 29, 03.09.2021
Hacı Ahmedov
,
Beste Korutlu
,
Recep Orhan
,
Esra Okumuş
,
Arif Demir
Abstract
Over the past few decades, low-temperature plasma researches have gained momentum as they lie at the core of numerous applications in industry, environment and medicine. Recently, metrology community has also begun to take advantage of the unusual properties of plasma to develop new advanced measurement techniques and new measuring devices. In accordance with this purpose, in 2019, the Plasma Laboratory was installed in TÜBİTAK National Metrology Institute (UME) within the scope of infrastructure research and development program founded by Industry Ministry of Turkey for contributing to the ongoing worldwide research on plasma studies. In this work, the current advances in Plasma Laboratory of UME will be introduced. We present the installed experimental set-up for low-temperature and low-pressure gas discharge plasma. We present our preliminary measurement results in determining electron temperature by Langmuir probe and optical emission spectrometer.
Supporting Institution
TÜBİTAK UME
Project Number
G2ED-E1-02-I
Thanks
This research is founded by TÜBİTAK UME with Project No: G2ED-E1-02-I
References
- I. Langmuir, Oscillations in ionized gases, Proc. Natl. Acad. Sci. 14, 627–637 (1928).
- P. I. John, Plasma Sciences and the Creation of Wealth, Tata McGraw-Hill Pub., New York (2005).
- R. d'Agostino, P. Favia, C. Oehr, M. R. Wertheimer, Low Temperature Plasma Processing of Materials: Past, Present, and Future, PlasmaProcess. Polym. 2, 7-15 (2005). DOI: https://doi.org/10.1002/ppap.200400074
- N. Khan, N. Abas, Comparative study of energy saving light sources, Renewable Sustainable Energy Rev. 15, 296-309 (2011). DOI: https://doi.org/10.1016/j.rser.2010.07.072
- N. T. Kalyani, S. J. Dhoble, Organic light emitting diodes: Energy saving lighting technology-A review, Renewable Sustainable Energy Rev. 16, 2696-2723 (2012). DOI: 10.1016/j.rser.2012.02.021
- E. M. Liston, L. Martinu, M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, J. Adhes. Sci. Technol. 7, 1091-1127 (1993). DOI: https://doi.org/10.1163/156856193X00600
- B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing, IEEE Trans. Plasma Sci. 19, 1063-1077 (1991). DOI: 10.1109/27.125031
- B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, J.-S. Chang, Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment, Ind. Eng. Chem. Res. 45, 882-905 (2006). DOI: https://doi.org/10.1021/ie050981u
- H.-H. Kim, Nonthermal Plasma Processing for Air Pollution Control: A Historical Review, Current Issues, and Future Prospects, Plasma Process. Polym. 1, 91-110 (2004). DOI: https://doi.org/10.1002/ppap.200400028
- W. Siemens, Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten, Ann. Phys., 178, 66 (1857). DOI: https://doi.org/10.1002/andp.18571780905
- A. Sakudo, H. Shintani, Sterilization and Disinfection by Plasma: Sterilization Mechanisms, Biological and Medical Applications (Medical Devices and Equipment); Nova Science Publishers: Tokyo (2010).
- M. A. Sobolewski, Real-time, noninvasive monitoring of ion energy and ion current at a wafer surface during plasma etching, J. Vac. Sci. & Technol. A 24, 1892-1905, (2006). DOI: https://doi.org/10.1116/1.2335862.
- M. A. Sobolewski, J.-H. Kim, The effects of radio-frequency bias on electron density in an inductively coupled plasma reactor, J. Appl. Phys. 102, 113302 (2007). DOI: https://doi.org/10.1063/1.2815674
- R. Silwal, E. Takacs, J. M. Dreiling, J. D. Gillaspy, Y. Ralchenko, Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium, Atoms , 5, 30 (2017). DOI: https://doi.org/10.3390/atoms5030030
- J. S. E. Wieslander, M. Hult, G. Bonheure, D. Arnold, H. Dombrowski, J. Gasparro, G. Marissens, M. Laubenstein, G. Marissens, P. Vermaercke, Low-level gamma-ray spectrometry for analysing fusion plasma conditions, Nucl. Instr. and Meth. A 591 383-393 (2008).
- R. González de Orduña, M. Hult, G. Bonheure, D. Arnold, H. Dombrowski, M. Laubenstein, J. S. E. Wieslander, T. Vidmar, P. Vermaercke, Angular distribution of proton leakage from a fusion plasma using ultra low-level gamma-ray spectrometry, Appl. Radiat. Isot. 68, 1226-1230 (2010). DOI: https://doi.org/10.1016/j.apradiso.2009.11.019
- “9th edition of the SI Brochure”. BIPM (2019). https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf
- J. Fischer, Low uncertainty Boltzmann constant determinations and the kelvin redefinition”, Phil. Trans. R. Soc. A 374, 20150038 (2016). DOI: https://doi.org/10.1098/rsta.2015.0038
- D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood and Z. Zhang, The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia 55, L13–L16 (2018). DOI: 10.1088/1681-7575/aa950a
- M. Stock, R. Davis, E. de Mirandés, M. J. T. Milton, The revision of the SI—the result of three decades of progress in metrology, Metrologia 56 022001 (2019). DOI: 10.1088/1681-7575/ab28a8.
- NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database
- X.-M. Zhu, Y.-K. Pu, Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method, J. Phys. D: Appl. Phys. 43 403001 (2010). DOI: 10.1088/0022-3727/43/40/403001
Year 2021,
Volume: 5 Issue: 1, 24 - 29, 03.09.2021
Hacı Ahmedov
,
Beste Korutlu
,
Recep Orhan
,
Esra Okumuş
,
Arif Demir
Project Number
G2ED-E1-02-I
References
- I. Langmuir, Oscillations in ionized gases, Proc. Natl. Acad. Sci. 14, 627–637 (1928).
- P. I. John, Plasma Sciences and the Creation of Wealth, Tata McGraw-Hill Pub., New York (2005).
- R. d'Agostino, P. Favia, C. Oehr, M. R. Wertheimer, Low Temperature Plasma Processing of Materials: Past, Present, and Future, PlasmaProcess. Polym. 2, 7-15 (2005). DOI: https://doi.org/10.1002/ppap.200400074
- N. Khan, N. Abas, Comparative study of energy saving light sources, Renewable Sustainable Energy Rev. 15, 296-309 (2011). DOI: https://doi.org/10.1016/j.rser.2010.07.072
- N. T. Kalyani, S. J. Dhoble, Organic light emitting diodes: Energy saving lighting technology-A review, Renewable Sustainable Energy Rev. 16, 2696-2723 (2012). DOI: 10.1016/j.rser.2012.02.021
- E. M. Liston, L. Martinu, M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, J. Adhes. Sci. Technol. 7, 1091-1127 (1993). DOI: https://doi.org/10.1163/156856193X00600
- B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing, IEEE Trans. Plasma Sci. 19, 1063-1077 (1991). DOI: 10.1109/27.125031
- B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, J.-S. Chang, Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment, Ind. Eng. Chem. Res. 45, 882-905 (2006). DOI: https://doi.org/10.1021/ie050981u
- H.-H. Kim, Nonthermal Plasma Processing for Air Pollution Control: A Historical Review, Current Issues, and Future Prospects, Plasma Process. Polym. 1, 91-110 (2004). DOI: https://doi.org/10.1002/ppap.200400028
- W. Siemens, Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten, Ann. Phys., 178, 66 (1857). DOI: https://doi.org/10.1002/andp.18571780905
- A. Sakudo, H. Shintani, Sterilization and Disinfection by Plasma: Sterilization Mechanisms, Biological and Medical Applications (Medical Devices and Equipment); Nova Science Publishers: Tokyo (2010).
- M. A. Sobolewski, Real-time, noninvasive monitoring of ion energy and ion current at a wafer surface during plasma etching, J. Vac. Sci. & Technol. A 24, 1892-1905, (2006). DOI: https://doi.org/10.1116/1.2335862.
- M. A. Sobolewski, J.-H. Kim, The effects of radio-frequency bias on electron density in an inductively coupled plasma reactor, J. Appl. Phys. 102, 113302 (2007). DOI: https://doi.org/10.1063/1.2815674
- R. Silwal, E. Takacs, J. M. Dreiling, J. D. Gillaspy, Y. Ralchenko, Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium, Atoms , 5, 30 (2017). DOI: https://doi.org/10.3390/atoms5030030
- J. S. E. Wieslander, M. Hult, G. Bonheure, D. Arnold, H. Dombrowski, J. Gasparro, G. Marissens, M. Laubenstein, G. Marissens, P. Vermaercke, Low-level gamma-ray spectrometry for analysing fusion plasma conditions, Nucl. Instr. and Meth. A 591 383-393 (2008).
- R. González de Orduña, M. Hult, G. Bonheure, D. Arnold, H. Dombrowski, M. Laubenstein, J. S. E. Wieslander, T. Vidmar, P. Vermaercke, Angular distribution of proton leakage from a fusion plasma using ultra low-level gamma-ray spectrometry, Appl. Radiat. Isot. 68, 1226-1230 (2010). DOI: https://doi.org/10.1016/j.apradiso.2009.11.019
- “9th edition of the SI Brochure”. BIPM (2019). https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf
- J. Fischer, Low uncertainty Boltzmann constant determinations and the kelvin redefinition”, Phil. Trans. R. Soc. A 374, 20150038 (2016). DOI: https://doi.org/10.1098/rsta.2015.0038
- D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood and Z. Zhang, The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia 55, L13–L16 (2018). DOI: 10.1088/1681-7575/aa950a
- M. Stock, R. Davis, E. de Mirandés, M. J. T. Milton, The revision of the SI—the result of three decades of progress in metrology, Metrologia 56 022001 (2019). DOI: 10.1088/1681-7575/ab28a8.
- NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database
- X.-M. Zhu, Y.-K. Pu, Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method, J. Phys. D: Appl. Phys. 43 403001 (2010). DOI: 10.1088/0022-3727/43/40/403001