Anxiety and Association with COVID-19 Vaccination-Related Headache Symptoms
Year 2023,
, 269 - 275, 30.06.2023
Zeynep Tuncer
,
Oğuzhan Kılınçel
,
Şenay Kılınçel
,
Pelin Göksel
,
Miraç Barış Usta
Abstract
Objective: In order to prevent the pandemic, widespread vaccination work has gradually begun in Turkey. We aimed to determine the level of pain, headache and anxiety among the neuropsychiatric symptoms after the vaccination was given to the healthcare workers.
Methods: Healthcare workers who have recieved the COVID-19 vaccine were given a questionnaire via the internet after the second dose of the vaccination. A form consisting of 34 questionnaire questions about their demographic characteristics, whether they experienced pain or headache after vaccination and the Beck Anxiety scale was to be filled.
Results: In our study, the data of 484 participants was examined. 31.1% of the participants reported experiencing a headache after the vaccination. In the univariable model, mild anxiety symptoms were 2.6 times higher, moderate anxiety symptoms 4.5 times, and severe anxiety symptoms 7.2 times higher risk for headache. Similarly, it was observed that patients with previous headache were 2 times higher risk in the univariable model than those without.
Conclusion: We suggest that the assessment of anxiety level during vaccination after COVID-19 vaccination can be an important indicator in predicting the development of headache. Further studies on this will be important in optimizing vaccination programs and ensuring social immunity.
Supporting Institution
N/A
References
- 1. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767-783. doi:10.1016/S1474-4422(20)30221-0
- 2. Tancheva L, Petralia MC, Miteva S, et al. Emerging Neurological and Psychobiological Aspects of COVID-19 Infection. Brain Sci. 2020;10(11):852. doi:10.3390/brainsci10110852
- 3. Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995-998. doi:10.1021/acschemneuro.0c00122
- 4. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-58. doi:10.1016/j.ijid.2020.03.062
- 5. Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702. doi:10.1002/jmv.25915
- 6. Achar A, Ghosh C. COVID-19-Associated Neurological Disorders: The Potential Route of CNS Invasion and Blood-Brain Relevance. Cells. 2020;9(11). doi:10.3390/cells9112360
- 7. Tregoning JS, Brown ES, Cheeseman HM, et al. Vaccines for COVID-19. Clin Exp Immunol. 2020;202(2):162-192. doi:10.1111/cei.13517
- 8. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77-81. doi:10.1126/science.abc1932
- 9. Zhang Y-J, Zeng G, Pan H-X, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet . 2021;21(2).doi:10.1016/S1473-3099(20)30843-4
- 10. Riad A, Sagiroglu D, Ustun B, et al. Prevalence and Risk Factors of CoronaVac Side Effects: An Independent Cross-Sectional Study among Healthcare Workers in Turkey. J Clin Med. 2021;10(12):2629. doi:ARTN 2629.10.3390/jcm10122629
- 11. Sekiguchi K, Watanabe N, Miyazaki N, et al. Incidence of headache after COVID-19 vaccination in patients with history of headache: A cross-sectional study. Cephalalgia. 2022;42(3):266-272. doi:10.1177/03331024211038654
- 12. Gobel CH, Heinze A, Karstedt S, et al. Clinical characteristics of headache after vaccination against COVID-19 (coronavirus SARS-CoV-2) with the BNT162b2 mRNA vaccine: a multicentre observational cohort study. Brain Commun. 2021;3(3):fcab169. doi:10.1093/braincomms/fcab169
- 13. Bohmwald K, Galvez NMS, Rios M, et al. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci. 2018;12(386). doi:10.3389/fncel.2018.00386
- 14. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552-555, doi:10.1002/jmv.25728
- 15. Danielski LG, Della Giustina A, Badawy M, et al. Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Mol Neurobio. 2018;55(2):1045-1053. doi:10.1007/s12035-016-0356-7
- 16. Hu B, Huang S, Yin L. The cytokine storm and COVID‐19. J Med Virol. 2021;93(1):250-256
- 17. Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behave Immun. 2020;87:34-39. doi:10.1016/j.bbi.2020.04.027
- 18. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psych. 2020;7(7):611-627. doi:10.1016/S2215-0366(20)30203-0
- 19. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-690. doi:10.1001/jamaneurol.2020.1127
- 20. Whittaker A, Anson M, Harky A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol Scand. 2020;142(1):14-22. doi:10.1111/ane.13266
- 21. Le TT, Cramer JP, Chen R, et al. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(10):667-668.doi:10.1038/d41573-020-00151-8
- 22. Canedo-Marroquin G, Saavedra F, Andrade CA, et al. SARS-CoV-2: Immune Response Elicited by Infection and Development of Vaccines and Treatments. Front Immunol. 2020;11(569760. doi:10.3389/fimmu.2020.569760
- 23. Gee J, Marquez P, Su J, et al. First Month of COVID-19 Vaccine Safety Monitoring - United States, December 14, 2020-January 13, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(8):283-288. doi:10.15585/mmwr.mm7008e3
- 24. Maury A, Lyoubi A, Peiffer-Smadja N, et al. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev Neurol. 2021;177(1-2):51-64.
doi:10.1016/j.neurol.2020.10.001
- 25. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-2615. doi:10.1056/NEJMoa2034577
- 26. Chu L, McPhee R, Huang W, et al. A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine. 2021;39(20):2791-2799, doi:10.1016/j.vaccine.2021.02.007.
- 27. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854. doi:10.1016/S0140-6736(20)31208-3
- 28. Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887-897, doi:10.1016/S0140-6736(20)31866-3.
- 29. Jayadevan R, Shenoy RS, Anithadevi T. Survey of symptoms following COVID-19 vaccination in India. MedRxiv 2021. doi:10.1101/2021.02.08.21251366
- 30. Li LQ, Huang T, Wang YQ, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577-583. doi:10.1002/jmv.25757
- 31. Zhu J, Ji P, Pang J, et al. Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J Med Virol. 2020;92(10):1902-1914. doi:10.1002/jmv.25884
- 32. Madison AA, Shrout MR, Renna ME, et al. Psychological and Behavioral Predictors of Vaccine Efficacy: Considerations for COVID-19. Perspect Psychol Sci. 2021;16(2):191-203, doi:10.1177/1745691621989243
- 33. Glaser R, Kiecolt-Glaser JK, Malarkey WB, et al. The influence of psychological stress on the immune response to vaccines. Ann N Y Acad Sci. 1998;840(1):649-655., doi:10.1111/j.1749-6632.1998.tb09603.x
- 34. Glaser R, Robles TF, Sheridan J, et al. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch Gen Psych. 2003;60(10):1009-1014. doi:10.1001/archpsyc.60.10.1009
- 35. Cohen S, Miller GE, Rabin BS. Psychological stress and antibody response to immunization: a critical review of the human literature. Psychosom Med. 2001;63(1):7-18. doi:10.1097/00006842-200101000-00002
- 36. Szmyd B, Bartoszek A, Karuga FF, et al. Medical Students and SARS-CoV-2 Vaccination: Attitude and Behaviors. Vaccines. 2021;9(2). doi:10.3390/vaccines9020128
- 37. Zarobkiewicz MK, Zimecka A, Zuzak , et al. Vaccination among Polish university students. Knowledge, beliefs and anti-vaccination attitudes. Hum Vaccin Immunother.
2017;13(11):2654-2658. doi:10.1080/21645515.2017.1365994
Anxiety and Association with COVID-19 Vaccination-Related Headache Symptoms
Year 2023,
, 269 - 275, 30.06.2023
Zeynep Tuncer
,
Oğuzhan Kılınçel
,
Şenay Kılınçel
,
Pelin Göksel
,
Miraç Barış Usta
Abstract
Objective: In order to prevent the pandemic, widespread vaccination work has gradually begun in Turkey. We aimed to determine the level of pain, headache and anxiety among the neuropsychiatric symptoms after the vaccination was given to the healthcare workers.
Methods: Healthcare workers who have recieved the COVID-19 vaccine were given a questionnaire via the internet after the second dose of the vaccination. A form consisting of 34 questionnaire questions about their demographic characteristics, whether they experienced pain or headache after vaccination and the Beck Anxiety scale was to be filled.
Results: In our study, the data of 484 participants was examined. 31.1% of the participants reported experiencing a headache after the vaccination. In the univariable model, mild anxiety symptoms were 2.6 times higher, moderate anxiety symptoms 4.5 times, and severe anxiety symptoms 7.2 times higher risk for headache. Similarly, it was observed that patients with previous headache were 2 times higher risk in the univariable model than those without.
Conclusion: We suggest that the assessment of anxiety level during vaccination after COVID-19 vaccination can be an important indicator in predicting the development of headache. Further studies on this will be important in optimizing vaccination programs and ensuring social immunity.
References
- 1. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767-783. doi:10.1016/S1474-4422(20)30221-0
- 2. Tancheva L, Petralia MC, Miteva S, et al. Emerging Neurological and Psychobiological Aspects of COVID-19 Infection. Brain Sci. 2020;10(11):852. doi:10.3390/brainsci10110852
- 3. Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995-998. doi:10.1021/acschemneuro.0c00122
- 4. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-58. doi:10.1016/j.ijid.2020.03.062
- 5. Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702. doi:10.1002/jmv.25915
- 6. Achar A, Ghosh C. COVID-19-Associated Neurological Disorders: The Potential Route of CNS Invasion and Blood-Brain Relevance. Cells. 2020;9(11). doi:10.3390/cells9112360
- 7. Tregoning JS, Brown ES, Cheeseman HM, et al. Vaccines for COVID-19. Clin Exp Immunol. 2020;202(2):162-192. doi:10.1111/cei.13517
- 8. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77-81. doi:10.1126/science.abc1932
- 9. Zhang Y-J, Zeng G, Pan H-X, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet . 2021;21(2).doi:10.1016/S1473-3099(20)30843-4
- 10. Riad A, Sagiroglu D, Ustun B, et al. Prevalence and Risk Factors of CoronaVac Side Effects: An Independent Cross-Sectional Study among Healthcare Workers in Turkey. J Clin Med. 2021;10(12):2629. doi:ARTN 2629.10.3390/jcm10122629
- 11. Sekiguchi K, Watanabe N, Miyazaki N, et al. Incidence of headache after COVID-19 vaccination in patients with history of headache: A cross-sectional study. Cephalalgia. 2022;42(3):266-272. doi:10.1177/03331024211038654
- 12. Gobel CH, Heinze A, Karstedt S, et al. Clinical characteristics of headache after vaccination against COVID-19 (coronavirus SARS-CoV-2) with the BNT162b2 mRNA vaccine: a multicentre observational cohort study. Brain Commun. 2021;3(3):fcab169. doi:10.1093/braincomms/fcab169
- 13. Bohmwald K, Galvez NMS, Rios M, et al. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci. 2018;12(386). doi:10.3389/fncel.2018.00386
- 14. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552-555, doi:10.1002/jmv.25728
- 15. Danielski LG, Della Giustina A, Badawy M, et al. Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Mol Neurobio. 2018;55(2):1045-1053. doi:10.1007/s12035-016-0356-7
- 16. Hu B, Huang S, Yin L. The cytokine storm and COVID‐19. J Med Virol. 2021;93(1):250-256
- 17. Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behave Immun. 2020;87:34-39. doi:10.1016/j.bbi.2020.04.027
- 18. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psych. 2020;7(7):611-627. doi:10.1016/S2215-0366(20)30203-0
- 19. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-690. doi:10.1001/jamaneurol.2020.1127
- 20. Whittaker A, Anson M, Harky A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol Scand. 2020;142(1):14-22. doi:10.1111/ane.13266
- 21. Le TT, Cramer JP, Chen R, et al. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(10):667-668.doi:10.1038/d41573-020-00151-8
- 22. Canedo-Marroquin G, Saavedra F, Andrade CA, et al. SARS-CoV-2: Immune Response Elicited by Infection and Development of Vaccines and Treatments. Front Immunol. 2020;11(569760. doi:10.3389/fimmu.2020.569760
- 23. Gee J, Marquez P, Su J, et al. First Month of COVID-19 Vaccine Safety Monitoring - United States, December 14, 2020-January 13, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(8):283-288. doi:10.15585/mmwr.mm7008e3
- 24. Maury A, Lyoubi A, Peiffer-Smadja N, et al. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev Neurol. 2021;177(1-2):51-64.
doi:10.1016/j.neurol.2020.10.001
- 25. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-2615. doi:10.1056/NEJMoa2034577
- 26. Chu L, McPhee R, Huang W, et al. A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine. 2021;39(20):2791-2799, doi:10.1016/j.vaccine.2021.02.007.
- 27. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854. doi:10.1016/S0140-6736(20)31208-3
- 28. Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887-897, doi:10.1016/S0140-6736(20)31866-3.
- 29. Jayadevan R, Shenoy RS, Anithadevi T. Survey of symptoms following COVID-19 vaccination in India. MedRxiv 2021. doi:10.1101/2021.02.08.21251366
- 30. Li LQ, Huang T, Wang YQ, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577-583. doi:10.1002/jmv.25757
- 31. Zhu J, Ji P, Pang J, et al. Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J Med Virol. 2020;92(10):1902-1914. doi:10.1002/jmv.25884
- 32. Madison AA, Shrout MR, Renna ME, et al. Psychological and Behavioral Predictors of Vaccine Efficacy: Considerations for COVID-19. Perspect Psychol Sci. 2021;16(2):191-203, doi:10.1177/1745691621989243
- 33. Glaser R, Kiecolt-Glaser JK, Malarkey WB, et al. The influence of psychological stress on the immune response to vaccines. Ann N Y Acad Sci. 1998;840(1):649-655., doi:10.1111/j.1749-6632.1998.tb09603.x
- 34. Glaser R, Robles TF, Sheridan J, et al. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch Gen Psych. 2003;60(10):1009-1014. doi:10.1001/archpsyc.60.10.1009
- 35. Cohen S, Miller GE, Rabin BS. Psychological stress and antibody response to immunization: a critical review of the human literature. Psychosom Med. 2001;63(1):7-18. doi:10.1097/00006842-200101000-00002
- 36. Szmyd B, Bartoszek A, Karuga FF, et al. Medical Students and SARS-CoV-2 Vaccination: Attitude and Behaviors. Vaccines. 2021;9(2). doi:10.3390/vaccines9020128
- 37. Zarobkiewicz MK, Zimecka A, Zuzak , et al. Vaccination among Polish university students. Knowledge, beliefs and anti-vaccination attitudes. Hum Vaccin Immunother.
2017;13(11):2654-2658. doi:10.1080/21645515.2017.1365994