Research Article
BibTex RIS Cite

EVALUATION OF CARDIAC AUTONOMIC DYSFUNCTION AND THE RISK OF ARRHYTHMIA IN CHILDREN WITH MITRAL VALVE PROLAPSE

Year 2023, , 290 - 296, 30.06.2023
https://doi.org/10.53446/actamednicomedia.1292677

Abstract

Objective: The occurrence of symptoms in patients with mitral valve prolapse (MVP) is linked to autonomic dysfunction and neuroendocrine causes rather than progressive mitral valve insufficiency. The goal was to assess the risk of autonomic dysfunction and arrhythmia in patients with MVP.
Methods: The study included 63 patients with primary MVP and a control group of 64 children of similar age and gender. Following a physical examination, all patients' histories were taken, and 12-lead ECGs, autonomic function tests, echocardiography, and 24-hour Holter rhythm studies were performed.
Results: The patient group had a higher mean resting heart rate than the control group. Orthostatic hypotension was found in 8 patients (12.6%) and 4 children (6.2%) in the control group. When compared to the control group, patients with MVP had higher QTc dispersion, frontal QRS-T angle, Tp-e interval, and Tp-e/QTc ratio. There was no significant difference between the two groups in terms of conventional measurements of heart rate variability in the Holter ECG, as well as no significant difference in HRDC.
Conclusion: Although cases with pathological findings in the initial ECG were excluded from our study, we believe that the high frontal QRS-T angle observed in MVP patients is a novel and significant finding. Furthermore, it has been discovered that HRDC, a new and understudied parameter in children, does not show a significant difference in patients with MVP.

Supporting Institution

None

Project Number

-

Thanks

-

References

  • 1. Freed LA, Levy D, Levine RA, et al. Prevalence and clinical outcome of mitral-valve prolapse. New England Journal of Medicine. 1999;341(1):1-7.
  • 2. Davies AO, Mares A, Pool JL, Taylor AA. Mitral valve prolapse with symptoms of beta-adrenergic hypersensitivity: Beta2-adrenergic receptor supercoupling with desensitization on isoproterenol exposure. The American Journal of Medicine. 1987;82(2):193-201.
  • 3. Hickey A, Wilcken D. Age and the clinical profile of idiopathic mitral valve prolapse. Heart. 1986;55(6):582-586.
  • 4. Yeo T, Lim M, Cheng K, ML ST, WL N, Choo M. Clinical and echocardiographic features of mitral valve prolapse patients in a local population. Singapore Medical Journal. 1996;37(2):143-146.
  • 5. Gandevia SC, Burke DC, Anthony M. Science and Practice in Clinical Neurology. CUP Archive; 1993.
  • 6. Davignon A, Rautaharju P, Boisselle E, Soumis F, Mégélas M, Choquette A. Normal ECG standards for infants and children. Pediatric Cardiology. 1980;1(2):123-131.
  • 7. Cetinkaya M, Semizel E, Bostan O, Cil E. Risk of vasovagal syncope and cardiac arrhythmias in children with mitral valve prolapse. Acta Cardiologica. 2008;63(3):395-398.
  • 8. Bazett H. An analysis of the time‐relations of electrocardiograms. Annals of Noninvasive Electrocardiology. 1997;2(2):177-194.
  • 9. Dillon WC, Segar DS. Echocardiographic findings of mitral valve prolapse. ACC Current Journal Review. 1998;4(7):73-76.
  • 10. Lown B, Wolf M. Approaches to sudden death from coronary heart disease. Circulation. 1971;44(1):130-142.
  • 11. Çetinkaya M, Semizel E, Ergün Ç. Mitral Valv Prolapsusu. Güncel Pediatri. 2005;3(1):29-32.
  • 12. Arfken CL, Schulman P, McLaren MJ, Lachman AS. Mitral valve prolapse and body habitus in children. Pediatric Cardiology. 1993;14(1):33-36.
  • 13. Kligfield P, Levy D, Devereux RB, Savage DD. Arrhythmias and sudden death in mitral valve prolapse. American Heart Journal. 1987;113(5):1298-1307.
  • 14. Micieli G, Cavallini A, Melzi d'Eril G, et al. Haemodynamic and neurohormonal responsiveness to different stress tests in mitral valve prolapse. Clinical Autonomic Research. 1991;1(4):323-327.
  • 15. da Silva EP, Mendes Pedro M, Varela MG, et al. Heart rate and blood pressure in mitral valve prolapse patients: divergent effects of long-term propranolol therapy and correlations with catecholamines. The Anatolian Journal of Cardiology. 2007;7(Suppl 1):107-109.
  • 16. Boudoulas H, Kolibash Jr AJ, Baker P, King BD, Wooley CF. Mitral valve prolapse and the mitral valve prolapse syndrome: a diagnostic classification and pathogenesis of symptoms. American Heart Journal. 1989;118(4):796-818.
  • 17. Çağlayan U, Ramoğlu MG, Atalay S, Uçar T, Tutar E. Echocardiographic screening for mitral valve prolapse in Turkish school children. The International Journal of Cardiovascular Imaging. 2021;37(5):1649-1657.
  • 18. Ulgen MS, Biyik I, Karadede A, Temamogullari AV, Alan S, Toprak N. Relation between QT dispersion and ventricular arrhythmias in uncomplicated isolated mitral valve prolapse. Japanese Circulation Journal. 1999;63(12):929-933.
  • 19. Kulan K, Komsuoğlu B, Tuncer C, Kulan C. Significance of QT dispersion on ventricular arrhythmias in mitral valve prolapse. International Journal of Cardiology. 1996;54(3):251-257.
  • 20. Kautzner J, Malik M. QT interval dispersion and its clinical utility. Pacing and Clinical Electrophysiology. 1997;20(10):2625-2640.
  • 21. Demirol M, Karadeniz C, Ozdemir R, et al. Prolonged Tp–e interval and Tp–e/QT ratio in children with mitral valve prolapse. Pediatric Cardiology. 2016;37(6):1169-1174.
  • 22. Oehler A, Feldman T, Henrikson CA, Tereshchenko LG. QRS‐T angle: a review. Annals of Noninvasive Electrocardiology. 2014;19(6):534-542.
  • 23. Aro AL, Huikuri HV, Tikkanen JT, et al. QRS-T angle as a predictor of sudden cardiac death in a middle-aged general population. Europace. 2012;14(6):872-876.
  • 24. May O, Graversen CB, Johansen MØ, Arildsen H. A large frontal QRS-T angle is a strong predictor of the long-term risk of myocardial infarction and all-cause mortality in the diabetic population. Journal of Diabetes and its Complications. 2017;31(3):551-555.
  • 25. Kors JA, van Eck HJR, van Herpen G. The meaning of the Tp-Te interval and its diagnostic value. Journal of electrocardiology. 2008;41(6):575-580.
  • 26. Panikkath R, Reinier K, Uy-Evanado A, et al. Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circulation: Arrhythmia and Electrophysiology. 2011;4(4):441-447.
  • 27. Gupta P, Patel C, Patel H, et al. Tp-e/QT ratio as an index of arrhythmogenesis. Journal of Electrocardiology. 2008;41(6):567-574.
  • 28. Yontar OC, Karaagac K, Tenekecioglu E, Tutuncu A, Demir M, Melek M. Assessment of ventricular repolarization inhomogeneity in patients with mitral valve prolapse: value of T wave peak to end interval. International Journal of Clinical and Experimental Medicine. 2014;7(8):2173.
  • 29. Electrophysiology TFotESoCtNASoP. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043-1065.
  • 30. Kochiadakis GE, Parthenakis FI, Zuridakis EG, Rombola AT, Chrysostomakis SI, Vardas PE. Is there increased sympathetic activity in patients with mitral valve prolapse? Pacing and Clinical Electrophysiology. 1996;19(11):1872-1876.
  • 31. Han L, Ho TF, Yip WC, Chan KY. Heart rate variability of children with mitral valve prolapse. Journal of Electrocardiology. 2000;33(3):219-224.
  • 32. Babaoglu K, Altun G, Binnetoğlu K. P-wave dispersion and heart rate variability in children with mitral valve prolapse. Pediatric Cardiology. 2011;32(4):449-454.
  • 33. Huikuri HV, Perkiömäki JS, Maestri R, Pinna GD. Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009;367(1892):1223-1238.
  • 34. Kisohara M, Stein PK, Yoshida Y, et al. Multi-scale heart rate dynamics detected by phase-rectified signal averaging predicts mortality after acute myocardial infarction. Europace. 2013;15(3):437-443.
  • 35. Lin T-T, Yang W-S, Hsieh M-Y, Wu C-C, Lin L-Y. Deterioration of deceleration capacity of heart rate is associated with left ventricular hypertrophy in end-stage renal disease population. Acta Cardiologica Sinica. 2018;34(3):242.
  • 36. Lu Y, Guo Y, Si F, et al. Predictive value of heart rate deceleration capacity on coronary artery lesion in acute phase of Kawasaki disease. Scientific Reports. 2020;10(1):1-6.

MİTRAL KAPAK PROLAPSUSU OLAN ÇOCUKLARDA KARDİYAK OTONOMİK DİSFONKSİYONUN VE ARİTMİ RİSKİNİN DEĞERLENDİRİLMESİ

Year 2023, , 290 - 296, 30.06.2023
https://doi.org/10.53446/actamednicomedia.1292677

Abstract

Amaç: Mitral kapak prolapsusu (MKP) saptanan olgularda yakınmaların ortaya çıkışı ilerleyici mitral kapak yetersizliğinden çok otonomik işlev bozukluğu ve nöroendokrin nedenlere bağlıdır. Bu çalışmada MKP tanısı ile izlenen çocukların otonomik disfonksiyon ve aritmi riski açısından değerlendirilmesi amaçlanmıştır.
Yöntem: Çalışmaya primer MKP tanılı 63 hasta ve benzer yaş ve cinsiyetteki 64 çocuktan oluşan kontrol grubu dahil edildi. Tüm hastaların öyküleri alındı, fizik muayeneleri yapıldıktan sonra; 12 derivasyonlu EKG’leri, otonom işlev testleri, ekokardiyografi 24-saatlik ritim Holter incelemeleri gerçekleştirildi.
Bulgular: Ortalama dinlenme kalp hızı, hasta grubunda kontrol grubuna göre daha yüksek bulundu. Ortostatik hipotansiyon hasta grubunda 8 çocukta (%12,6), kontrol grubunda ise 4 çocukta (%6,2) saptandı. Yüzeyel EKG’de QTc dispersiyonu, frontal QRS-T açısı, Tp-e aralığı ve Tp-e/QTc oranı MKP’li hastalarda kontrol grubuna göre yüksek saptandı. Holter EKG’de kalp hızı değişkenliğini gösteren konvansiyonel ölçümler açısından iki grup arasında anlamlı fark saptanmadığı gibi HRDC açısından da iki grup arasında anlamlı fark saptanmadı.
Sonuç: Çalışmamıza başlangıç EKG'sinde patolojik bulgusu olan olgular dâhil edilmemesine rağmen MKP'li hastalarda yüksek frontal QRS-T açısının tespit edilmiş olmasının yeni ve önemli bir bulgu olduğunu düşünmekteyiz. Ayrıca yeni ve çocuklarda az çalışılmış bir parametre olan HRDC’nin MKP’ li hastalarda anlamlı farklılık göstermediği ortaya çıkmış olup bununla ilgili daha fazla çalışmaya ihtiyaç vardır.

Project Number

-

References

  • 1. Freed LA, Levy D, Levine RA, et al. Prevalence and clinical outcome of mitral-valve prolapse. New England Journal of Medicine. 1999;341(1):1-7.
  • 2. Davies AO, Mares A, Pool JL, Taylor AA. Mitral valve prolapse with symptoms of beta-adrenergic hypersensitivity: Beta2-adrenergic receptor supercoupling with desensitization on isoproterenol exposure. The American Journal of Medicine. 1987;82(2):193-201.
  • 3. Hickey A, Wilcken D. Age and the clinical profile of idiopathic mitral valve prolapse. Heart. 1986;55(6):582-586.
  • 4. Yeo T, Lim M, Cheng K, ML ST, WL N, Choo M. Clinical and echocardiographic features of mitral valve prolapse patients in a local population. Singapore Medical Journal. 1996;37(2):143-146.
  • 5. Gandevia SC, Burke DC, Anthony M. Science and Practice in Clinical Neurology. CUP Archive; 1993.
  • 6. Davignon A, Rautaharju P, Boisselle E, Soumis F, Mégélas M, Choquette A. Normal ECG standards for infants and children. Pediatric Cardiology. 1980;1(2):123-131.
  • 7. Cetinkaya M, Semizel E, Bostan O, Cil E. Risk of vasovagal syncope and cardiac arrhythmias in children with mitral valve prolapse. Acta Cardiologica. 2008;63(3):395-398.
  • 8. Bazett H. An analysis of the time‐relations of electrocardiograms. Annals of Noninvasive Electrocardiology. 1997;2(2):177-194.
  • 9. Dillon WC, Segar DS. Echocardiographic findings of mitral valve prolapse. ACC Current Journal Review. 1998;4(7):73-76.
  • 10. Lown B, Wolf M. Approaches to sudden death from coronary heart disease. Circulation. 1971;44(1):130-142.
  • 11. Çetinkaya M, Semizel E, Ergün Ç. Mitral Valv Prolapsusu. Güncel Pediatri. 2005;3(1):29-32.
  • 12. Arfken CL, Schulman P, McLaren MJ, Lachman AS. Mitral valve prolapse and body habitus in children. Pediatric Cardiology. 1993;14(1):33-36.
  • 13. Kligfield P, Levy D, Devereux RB, Savage DD. Arrhythmias and sudden death in mitral valve prolapse. American Heart Journal. 1987;113(5):1298-1307.
  • 14. Micieli G, Cavallini A, Melzi d'Eril G, et al. Haemodynamic and neurohormonal responsiveness to different stress tests in mitral valve prolapse. Clinical Autonomic Research. 1991;1(4):323-327.
  • 15. da Silva EP, Mendes Pedro M, Varela MG, et al. Heart rate and blood pressure in mitral valve prolapse patients: divergent effects of long-term propranolol therapy and correlations with catecholamines. The Anatolian Journal of Cardiology. 2007;7(Suppl 1):107-109.
  • 16. Boudoulas H, Kolibash Jr AJ, Baker P, King BD, Wooley CF. Mitral valve prolapse and the mitral valve prolapse syndrome: a diagnostic classification and pathogenesis of symptoms. American Heart Journal. 1989;118(4):796-818.
  • 17. Çağlayan U, Ramoğlu MG, Atalay S, Uçar T, Tutar E. Echocardiographic screening for mitral valve prolapse in Turkish school children. The International Journal of Cardiovascular Imaging. 2021;37(5):1649-1657.
  • 18. Ulgen MS, Biyik I, Karadede A, Temamogullari AV, Alan S, Toprak N. Relation between QT dispersion and ventricular arrhythmias in uncomplicated isolated mitral valve prolapse. Japanese Circulation Journal. 1999;63(12):929-933.
  • 19. Kulan K, Komsuoğlu B, Tuncer C, Kulan C. Significance of QT dispersion on ventricular arrhythmias in mitral valve prolapse. International Journal of Cardiology. 1996;54(3):251-257.
  • 20. Kautzner J, Malik M. QT interval dispersion and its clinical utility. Pacing and Clinical Electrophysiology. 1997;20(10):2625-2640.
  • 21. Demirol M, Karadeniz C, Ozdemir R, et al. Prolonged Tp–e interval and Tp–e/QT ratio in children with mitral valve prolapse. Pediatric Cardiology. 2016;37(6):1169-1174.
  • 22. Oehler A, Feldman T, Henrikson CA, Tereshchenko LG. QRS‐T angle: a review. Annals of Noninvasive Electrocardiology. 2014;19(6):534-542.
  • 23. Aro AL, Huikuri HV, Tikkanen JT, et al. QRS-T angle as a predictor of sudden cardiac death in a middle-aged general population. Europace. 2012;14(6):872-876.
  • 24. May O, Graversen CB, Johansen MØ, Arildsen H. A large frontal QRS-T angle is a strong predictor of the long-term risk of myocardial infarction and all-cause mortality in the diabetic population. Journal of Diabetes and its Complications. 2017;31(3):551-555.
  • 25. Kors JA, van Eck HJR, van Herpen G. The meaning of the Tp-Te interval and its diagnostic value. Journal of electrocardiology. 2008;41(6):575-580.
  • 26. Panikkath R, Reinier K, Uy-Evanado A, et al. Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circulation: Arrhythmia and Electrophysiology. 2011;4(4):441-447.
  • 27. Gupta P, Patel C, Patel H, et al. Tp-e/QT ratio as an index of arrhythmogenesis. Journal of Electrocardiology. 2008;41(6):567-574.
  • 28. Yontar OC, Karaagac K, Tenekecioglu E, Tutuncu A, Demir M, Melek M. Assessment of ventricular repolarization inhomogeneity in patients with mitral valve prolapse: value of T wave peak to end interval. International Journal of Clinical and Experimental Medicine. 2014;7(8):2173.
  • 29. Electrophysiology TFotESoCtNASoP. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043-1065.
  • 30. Kochiadakis GE, Parthenakis FI, Zuridakis EG, Rombola AT, Chrysostomakis SI, Vardas PE. Is there increased sympathetic activity in patients with mitral valve prolapse? Pacing and Clinical Electrophysiology. 1996;19(11):1872-1876.
  • 31. Han L, Ho TF, Yip WC, Chan KY. Heart rate variability of children with mitral valve prolapse. Journal of Electrocardiology. 2000;33(3):219-224.
  • 32. Babaoglu K, Altun G, Binnetoğlu K. P-wave dispersion and heart rate variability in children with mitral valve prolapse. Pediatric Cardiology. 2011;32(4):449-454.
  • 33. Huikuri HV, Perkiömäki JS, Maestri R, Pinna GD. Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009;367(1892):1223-1238.
  • 34. Kisohara M, Stein PK, Yoshida Y, et al. Multi-scale heart rate dynamics detected by phase-rectified signal averaging predicts mortality after acute myocardial infarction. Europace. 2013;15(3):437-443.
  • 35. Lin T-T, Yang W-S, Hsieh M-Y, Wu C-C, Lin L-Y. Deterioration of deceleration capacity of heart rate is associated with left ventricular hypertrophy in end-stage renal disease population. Acta Cardiologica Sinica. 2018;34(3):242.
  • 36. Lu Y, Guo Y, Si F, et al. Predictive value of heart rate deceleration capacity on coronary artery lesion in acute phase of Kawasaki disease. Scientific Reports. 2020;10(1):1-6.
There are 36 citations in total.

Details

Primary Language English
Subjects Paediatrics
Journal Section Research Articles
Authors

Abdullah Bindal 0000-0003-0241-3063

Murat Deveci 0000-0001-6246-671X

Project Number -
Publication Date June 30, 2023
Submission Date May 4, 2023
Acceptance Date June 10, 2023
Published in Issue Year 2023

Cite

AMA Bindal A, Deveci M. EVALUATION OF CARDIAC AUTONOMIC DYSFUNCTION AND THE RISK OF ARRHYTHMIA IN CHILDREN WITH MITRAL VALVE PROLAPSE. Acta Med Nicomedia. June 2023;6(2):290-296. doi:10.53446/actamednicomedia.1292677

images?q=tbn:ANd9GcSZGi2xIvqKAAwnJ5TSwN7g4cYXkrLAiHoAURHIjzbYqI5bffXt&s

"Acta Medica Nicomedia" Tıp dergisinde https://dergipark.org.tr/tr/pub/actamednicomedia adresinden yayımlanan makaleler açık erişime sahip olup Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı (CC BY SA 4.0) ile lisanslanmıştır.