Morphological Evaluation of Corpus Callosum Atrophy Over Time in Relapsing Remitting Multiple Sclerosis
Year 2024,
, 332 - 338, 27.10.2024
Buket Kılıç
,
Ayla Tekin
,
Sena Destan Bünül
,
Hüsnü Efendi
,
Özgür Çakır
,
Tuncay Çolak
,
Sibel Balcı
Abstract
Objective: Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease that generally affects young adults and is marked by inflammation, demyelination, and neurodegeneration. Magnetic resonance imaging (MRI) is widely used diagnosis tool for relapsing remitting MS (RRMS). Corpus callosum (CC), the largest commissural tract in brain which is associated with both cognitive and physical impairment by atrophy in MS. Our study aimed to evaluate CC in RRMS patients using MR images and compare it to measurements from healthy controls within the same age.
Methods: We manually measured changes in CC thickness in T1 brain MR images of RRMS patients in 2017, 2019, and 2022.
Results: Our results showed that control group had greater thickness, length, and index values in all CC sections compared to patient group. Additionally, a significant difference was observed in thickness of genu and splenium sections and CC index between patient and control groups. However, no significant difference was detected in truncus part of CC or overall CC length. CC measurements in patient group decreased over time, with 1st MRI showing greater values than 2nd and 3rd MRI scans. Furthermore, there was a statistically significant difference in thickness of truncus part of CC and volume values of subcortical areas between 2nd-3rd and 1st-3rd MRI measurements.
Conclusion: As a result of these findings, our study provides important information about changes in CC measurements for MS patients.
References
- 1. Zißler, J., Rothhammer, V., & Linnerbauer, M. (2024). Gut-Brain Interactions and Their Impact on Astrocytes in the Context of Multiple Sclerosis and Beyond. Cells, 13(6), 497.
- 2. Efendi, H., Karabudak, R., Kantarci, O., & Siva, A. (2015). Understanding multiple sclerosis better in 2014 –Environmental factors, remyelination, diagnostic techni-ques, treatment decisions and the future focus of multiple sclerosis treatment. Europ. Neurol. Rev., 10(2), 148-156, 2015.
- 3. Cerdán Cerdá, A., Toschi, N., Treaba, C. A., Barletta, V., Herranz, E., Mehndiratta, A., Gomez-Sanchez, J. A., Mainero, C., & De Santis, S. (2024). A translational MRI approach to validate acute axonal damage detection as an early event in multiple sclerosis. eLife, 13, e79169.
- 4. Portaccio, E., Bellinvia, A., Fonderico, M., Pastò, L., Razzolini, L., Totaro, R., Spitaleri, D., Lugaresi, A., Cocco, E., Onofrj, M., Di Palma, F., Patti, F., Maimone, D., Valentino, P., Confalonieri, P., Protti, A., Sola, P., Lus, G., Maniscalco, G. T., Brescia Morra, V., … Amato, M. P. (2022). Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain: a journal of neurology, 145(8), 2796–2805.
- 5. McGinley, M. P., Goldschmidt, C. H., & Rae-Grant, A. D. (2021). Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA, 325(8), 765–779.
- 6. Repovic P. (2019). Management of Multiple Sclerosis Relaps-es. Continuum (Minneapolis, Minn.), 25(3), 655–669.
- 7. Inglese, M., & Petracca, M. (2018). MRI in multiple sclerosis: clinical and research update. Current opinion in neurology, 31(3), 249–255.
- 8. Wattjes, M. P., Ciccarelli, O., Reich, D. S., Banwell, B., de Stefano, N., Enzinger, C., Fazekas, F., Filippi, M., Frederiksen, J., Gasperini, C., Hacohen, Y., Kappos, L., Li, D. K. B., Mankad, K., Montalban, X., Newsome, S. D., Oh, J., Palace, J., Rocca, M. A., Sastre-Garriga, J., … North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group (2021). 2021 MAGNIMS-CMSC-NAIMS consensus recom-mendations on the use of MRI in patients with multiple sclerosis. The Lancet. Neurology, 20(8), 653–670.
- 9. Granberg, T., Bergendal, G., Shams, S., Aspelin, P., Kristoffersen-Wiberg, M., Fredrikson, S., & Martola, J. (2015). MRI-Defined Corpus Callosal Atrophy in Multiple Sclerosis: A Comparison of Volumetric Measurements, Corpus Callosum Area and Index. Journal of neuroimaging: official journal of the American Society of Neuroimaging, 25(6), 996–1001.
- 10. Platten, M., Ouellette, R., Herranz, E., Barletta, V., Treaba, C. A., Mainero, C., & Granberg, T. (2022). Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis. Journal of neuroimaging: official journal of the American Society of Neuroimaging, 32(3), 471–479.
- 11. Barkhane, Z., Elmadi, J., Satish Kumar, L., Pugalenthi, L. S., Ahmad, M., & Reddy, S. (2022). Multiple Sclerosis and Autoimmunity: A Veiled Relationship. Cureus, 14(4), e24294.
- 12. Zhang, L. J., Tian, D. C., Yang, L., Shi, K., Liu, Y., Wang, Y., & Shi, F. D. (2023). White matter disease derived from vascular and demyelinating origins. Stroke and vascular neurology, svn-2023-002791. Advance online publication.
- 13. Cortes-Figueiredo, F., Asseyer, S., Chien, C., Zimmermann, H. G., Ruprecht, K., Schmitz-Hübsch, T., Bellmann-Strobl, J., Paul, F., & Morais, V. A. (2024). CD4+ T cell mitochondrial genotype in Multiple Sclerosis: a cross-sectional and longitudinal analysis. Scientific reports, 14(1), 7507.
- 14. Miller, D. H., Barkhof, F., Frank, J. A., Parker, G. J., & Thompson, A. J. (2002). Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain: a journal of neurology, 125(Pt 8), 1676–1695.
- 15. Noteboom, S., van Nederpelt, D. R., Bajrami, A., Moraal, B., Caan, M. W. A., Barkhof, F., Calabrese, M., Vrenken, H., Strijbis, E. M. M., Steenwijk, M. D., & Schoonheim, M. M. (2023). Feasibility of detecting atrophy relevant for disability and cognition in multiple sclerosis using 3D-FLAIR. Journal of neurology, 270(11), 5201–5210.
- 16. Mooshagian E. (2008). Anatomy of the corpus callosum reveals its function. The Journal of neuroscience: the official journal of the Society for Neuroscience, 28(7), 1535–1536.
- 17. Evangelou, N., Konz, D., Esiri, M. M., Smith, S., Palace, J., & Matthews, P. M. (2000). Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain : a journal of neurology, 123 ( Pt 9), 1845–1849.
- 18. Martola, J., Stawiarz, L., Fredrikson, S., Hillert, J., Bergström, J., Flodmark, O., & Kristoffersen Wiberg, M. (2007). Progression of non-age-related callosal brain atrophy in mu-ltiple sclerosis: a 9-year longitudinal MRI study representing four decades of disease development. Journal of neurology, neurosurgery, and psychiatry, 78(4), 375–380.
- 19. Degraeve, B., Sequeira, H., Mecheri, H., & Lenne, B. (2023). Corpus callosum damage to account for cognitive, affective, and social-cognitive dysfunctions in multiple sclerosis: A model of callosal disconnection syndrome?. Multiple sclerosis (Houndmills, Basingstoke, England), 29(2), 160–168.
- 20. Huang, S. Y., Fan, Q., Machado, N., Eloyan, A., Bireley, J. D., Russo, A. W., Tobyne, S. M., Patel, K. R., Brewer, K., Rapaport, S. F., Nummenmaa, A., Witzel, T., Sherman, J. C., Wald, L. L., & Klawiter, E. C. (2019). Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Annals of clinical and translational neurology, 6(5), 882–892.
- 21. Shepherd, T. M., Kirov, I. I., Charlson, E., Bruno, M., Babb, J., Sodickson, D. K., & Ben-Eliezer, N. (2017). New rapid, accurate T2 quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients. NeuroImage. Clinical, 14, 363–370.
Relapsing Remitting Multiple Sklerozda Korpus Kallozum Atrofisinin Zaman İçinde Morfolojik Değerlendirmesi
Year 2024,
, 332 - 338, 27.10.2024
Buket Kılıç
,
Ayla Tekin
,
Sena Destan Bünül
,
Hüsnü Efendi
,
Özgür Çakır
,
Tuncay Çolak
,
Sibel Balcı
Abstract
Amaç: Multiple skleroz (MS), genellikle genç yetişkinleri etkileyen ve inflamasyon, demiyelinizasyon ve nörodejenerasyon ile kendini gösteren kronik bir merkezi sinir sistemi (MSS) hastalığıdır. Manyetik rezonans görüntüleme (MRG), relapsing remitting MS (RRMS) için yaygın olarak kullanılan bir tanı aracıdır. Beyindeki en büyük komissural kanal olan korpus kallozum (KK) MS'te atrofiye uğrayarak hem bilişsel hem de fiziksel bozulma ile ilişkilendirilmektedir. Çalışmamızın amacı, MR görüntüleri kullanarak RRMS hastalarında KK'yi değerlendirmek ve aynı yaştaki sağlıklı kontrollerden elde edilen ölçümlerle karşılaştırmaktır.
Yöntem: RRMS hastalarının 2017, 2019 ve 2022 yıllarındaki T1 beyin MR görüntülerinde KK kalınlığındaki değişiklikleri manuel olarak ölçtük.
Bulgular: Sonuçlarımız, kontrol grubunun hasta grubuna kıyasla tüm KK bölümlerinde daha fazla kalınlık, uzunluk ve indeks değerlerine sahip olduğunu gösterdi. Ayrıca, genu ve splenium bölümlerinin kalınlığında ve KK indeksinde hasta ve kontrol grupları arasında anlamlı bir fark gözlendi. Ancak, KK'nin trunkus kısmında veya toplam KK uzunluğunda anlamlı bir fark saptanmadı. Hasta grubundaki CC ölçümleri zaman içinde azaldı ve 1. MRG, 2. ve 3. MRG taramalarından daha yüksek değerler gösterdi. Ayrıca, KK'nin trunkus kısmının kalınlığında ve subkortikal alanların hacim değerlerinde 2.-3. ve 1.-3. MRG ölçümleri arasında istatistiksel olarak anlamlı bir fark vardı.
Sonuç: Elde ettiğimiz bulgular neticesinde araştırmamız MS hastaları için KK ölçümlerindeki değişiklikler hakkında önemli bilgiler sunmaktadır.
References
- 1. Zißler, J., Rothhammer, V., & Linnerbauer, M. (2024). Gut-Brain Interactions and Their Impact on Astrocytes in the Context of Multiple Sclerosis and Beyond. Cells, 13(6), 497.
- 2. Efendi, H., Karabudak, R., Kantarci, O., & Siva, A. (2015). Understanding multiple sclerosis better in 2014 –Environmental factors, remyelination, diagnostic techni-ques, treatment decisions and the future focus of multiple sclerosis treatment. Europ. Neurol. Rev., 10(2), 148-156, 2015.
- 3. Cerdán Cerdá, A., Toschi, N., Treaba, C. A., Barletta, V., Herranz, E., Mehndiratta, A., Gomez-Sanchez, J. A., Mainero, C., & De Santis, S. (2024). A translational MRI approach to validate acute axonal damage detection as an early event in multiple sclerosis. eLife, 13, e79169.
- 4. Portaccio, E., Bellinvia, A., Fonderico, M., Pastò, L., Razzolini, L., Totaro, R., Spitaleri, D., Lugaresi, A., Cocco, E., Onofrj, M., Di Palma, F., Patti, F., Maimone, D., Valentino, P., Confalonieri, P., Protti, A., Sola, P., Lus, G., Maniscalco, G. T., Brescia Morra, V., … Amato, M. P. (2022). Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain: a journal of neurology, 145(8), 2796–2805.
- 5. McGinley, M. P., Goldschmidt, C. H., & Rae-Grant, A. D. (2021). Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA, 325(8), 765–779.
- 6. Repovic P. (2019). Management of Multiple Sclerosis Relaps-es. Continuum (Minneapolis, Minn.), 25(3), 655–669.
- 7. Inglese, M., & Petracca, M. (2018). MRI in multiple sclerosis: clinical and research update. Current opinion in neurology, 31(3), 249–255.
- 8. Wattjes, M. P., Ciccarelli, O., Reich, D. S., Banwell, B., de Stefano, N., Enzinger, C., Fazekas, F., Filippi, M., Frederiksen, J., Gasperini, C., Hacohen, Y., Kappos, L., Li, D. K. B., Mankad, K., Montalban, X., Newsome, S. D., Oh, J., Palace, J., Rocca, M. A., Sastre-Garriga, J., … North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group (2021). 2021 MAGNIMS-CMSC-NAIMS consensus recom-mendations on the use of MRI in patients with multiple sclerosis. The Lancet. Neurology, 20(8), 653–670.
- 9. Granberg, T., Bergendal, G., Shams, S., Aspelin, P., Kristoffersen-Wiberg, M., Fredrikson, S., & Martola, J. (2015). MRI-Defined Corpus Callosal Atrophy in Multiple Sclerosis: A Comparison of Volumetric Measurements, Corpus Callosum Area and Index. Journal of neuroimaging: official journal of the American Society of Neuroimaging, 25(6), 996–1001.
- 10. Platten, M., Ouellette, R., Herranz, E., Barletta, V., Treaba, C. A., Mainero, C., & Granberg, T. (2022). Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis. Journal of neuroimaging: official journal of the American Society of Neuroimaging, 32(3), 471–479.
- 11. Barkhane, Z., Elmadi, J., Satish Kumar, L., Pugalenthi, L. S., Ahmad, M., & Reddy, S. (2022). Multiple Sclerosis and Autoimmunity: A Veiled Relationship. Cureus, 14(4), e24294.
- 12. Zhang, L. J., Tian, D. C., Yang, L., Shi, K., Liu, Y., Wang, Y., & Shi, F. D. (2023). White matter disease derived from vascular and demyelinating origins. Stroke and vascular neurology, svn-2023-002791. Advance online publication.
- 13. Cortes-Figueiredo, F., Asseyer, S., Chien, C., Zimmermann, H. G., Ruprecht, K., Schmitz-Hübsch, T., Bellmann-Strobl, J., Paul, F., & Morais, V. A. (2024). CD4+ T cell mitochondrial genotype in Multiple Sclerosis: a cross-sectional and longitudinal analysis. Scientific reports, 14(1), 7507.
- 14. Miller, D. H., Barkhof, F., Frank, J. A., Parker, G. J., & Thompson, A. J. (2002). Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain: a journal of neurology, 125(Pt 8), 1676–1695.
- 15. Noteboom, S., van Nederpelt, D. R., Bajrami, A., Moraal, B., Caan, M. W. A., Barkhof, F., Calabrese, M., Vrenken, H., Strijbis, E. M. M., Steenwijk, M. D., & Schoonheim, M. M. (2023). Feasibility of detecting atrophy relevant for disability and cognition in multiple sclerosis using 3D-FLAIR. Journal of neurology, 270(11), 5201–5210.
- 16. Mooshagian E. (2008). Anatomy of the corpus callosum reveals its function. The Journal of neuroscience: the official journal of the Society for Neuroscience, 28(7), 1535–1536.
- 17. Evangelou, N., Konz, D., Esiri, M. M., Smith, S., Palace, J., & Matthews, P. M. (2000). Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain : a journal of neurology, 123 ( Pt 9), 1845–1849.
- 18. Martola, J., Stawiarz, L., Fredrikson, S., Hillert, J., Bergström, J., Flodmark, O., & Kristoffersen Wiberg, M. (2007). Progression of non-age-related callosal brain atrophy in mu-ltiple sclerosis: a 9-year longitudinal MRI study representing four decades of disease development. Journal of neurology, neurosurgery, and psychiatry, 78(4), 375–380.
- 19. Degraeve, B., Sequeira, H., Mecheri, H., & Lenne, B. (2023). Corpus callosum damage to account for cognitive, affective, and social-cognitive dysfunctions in multiple sclerosis: A model of callosal disconnection syndrome?. Multiple sclerosis (Houndmills, Basingstoke, England), 29(2), 160–168.
- 20. Huang, S. Y., Fan, Q., Machado, N., Eloyan, A., Bireley, J. D., Russo, A. W., Tobyne, S. M., Patel, K. R., Brewer, K., Rapaport, S. F., Nummenmaa, A., Witzel, T., Sherman, J. C., Wald, L. L., & Klawiter, E. C. (2019). Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Annals of clinical and translational neurology, 6(5), 882–892.
- 21. Shepherd, T. M., Kirov, I. I., Charlson, E., Bruno, M., Babb, J., Sodickson, D. K., & Ben-Eliezer, N. (2017). New rapid, accurate T2 quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients. NeuroImage. Clinical, 14, 363–370.