Research Article
BibTex RIS Cite

Effect of Short Multiwalled Carbon Nanotubes on Escherichia coli K-12 Strain

Year 2022, Volume: 5 Issue: 2, 43 - 48, 27.06.2022

Abstract

Objective: Multi-walled carbon nanotubes (MWNTs), obtained by the graphene structure forming multi-walled cylindrical structures, find wide usage areas in different areas with their large surface areas, hydrophobic structures, and high electron conductivity. Although their drug transport properties are evaluated, they are used in biosensors and in synthesizing antibacterial materials with polymers. There are many data on the toxicities of MWNTs with different physicochemical properties. In addition to these, evaluation of antibacterial effects has become very important in recent years. In this study, it was aimed to evaluate the antibacterial effect of MDNTs on E. coli K12 strain, which are shorter than most of the MWNTs in the literature, which we have previously applied to different cell lines, nematodes and which have a very limited toxic effect up to high concentrations.
Methods: Different concentrations ranging from 20 to 1000 µg/ml were prepared from MDNTs and applied to E. coli K12 strain. Colony count, bacterial optical density and microscopic images were evaluated.
Results: Compared with the control, it was observed that it affected the proliferation at every concentration from 10 µg/ml to 100 µg/ml, and the antibacterial effect was most pronounced at 50 and 100 µg/ml concentrations. There was no significant difference in inhibition dose between 10 and 20 µg/ml. Growth inhibition was observed to be greater than 20% after 90 minutes at high doses.
Conclusion: Bacteria grown in liquid and solid agar revealed different inhibition properties at low and high concentrations. Depending on the concentration, it was determined that the absorbance and viability values of E. coli cells decreased in both experiments. In addition, decreases in bacterial colonies, and in bacterial activity performed with DAPI staining and image analyzes are quite evident.

Project Number

37475

References

  • Le, T.T.A., J. McEvoy, and E. Khan, The effect of single-walled carbon nanotubes on Escherichia coli: multiple indicators of viability. Journal of Nanoparticle Research, 2015. 17(1): p. 1-9.
  • Kang, S., et al., Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 2008. 24(13): p. 6409-6413.
  • Yan, L., et al., Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011. 3(2): p. 362-382.
  • Parasuraman, P., et al., Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus. Photochemical & Photobiological Sciences, 2019. 18(2): p. 563-576.
  • Mohammed, M.K., et al. Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.
  • Dehaghani, M.Z., et al., Dynamics of Antimicrobial Peptide Encapsulation in Carbon Nanotubes: The Role of Hydroxylation. International Journal of Nanomedicine, 2022. 17: p. 125.
  • Mohan, R., A. Shanmugharaj, and R. Sung Hun, An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 96(1): p. 119-126.
  • ZHANG, Y.-L., et al., Bactericidal Effects of Single-walled Carbon Nanotubes on E. coli. DEStech Transactions on Biology and Health, 2017(mshh).
  • Bandaru, P.R., Electrical properties and applications of carbon nanotube structures. Journal of nanoscience and nanotechnology, 2007. 7(4-5): p. 1239-1267.
  • Dinç, B., A. Ünlü, and M. Bektaş, Characterization of short-length multi-walled carbon nanotubes and cytotoxicity on MDA-MB-231 and HUVEC cell lines. Carbon Letters, 2020. 30(2): p. 143-153.
  • Üstünsoy, R., B. Dinç, and M. Bektaş, Purification use and toxicity of paramagnetic short multi-walled carbon nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures, 2021: p. 1-10.
  • Dinc, B. and E. Sen, Toxicity of short multi-walled carbon nanotubes in Caenorhabditis elegans. Fullerenes, Nanotubes and Carbon Nanostructures, 2021: p. 1-11.
  • 2022; Available from: https://nanografi.com/carbon-nanotubes/cooh-functionalized-short-length-multi-walled-carbon-nanotubes-purity-96-outside-diameter-4-16-nm/.
  • Weber, D.J., et al., Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. American journal of infection control, 2010. 38(5): p. S25-S33.
  • Laganà, P., et al., Is the Antibacterial Activity of Multi-Walled Carbon Nanotubes (MWCNTs) Related to Antibiotic Resistance? An Assessment in Clinical Isolates. International journal of environmental research and public health, 2021. 18(17): p. 9310.
  • Chen, H., et al., Broad‐spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small, 2013. 9(16): p. 2735-2746.
  • 2022 [cited 2022 01.04]; Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.
  • Kubley, A., et al., Smart textiles and wearable technology innovation with carbon nanotube technology, in Nanotube Superfiber Materials. 2019, Elsevier. p. 263-311.
  • Breuer, O. and U. Sundararaj, Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer composites, 2004. 25(6): p. 630-645.
  • Lehman, J.H., et al., Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011. 49(8): p. 2581-2602.
  • Zardini, H.Z., et al., Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids and Surfaces B: Biointerfaces, 2012. 92: p. 196-202.
  • Gurunathan, S., et al., Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International journal of nanomedicine, 2012. 7: p. 5901.
  • Shvedova, A.A., et al., Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicology and applied pharmacology, 2012. 261(2): p. 121-133.
  • Manke, A., L. Wang, and Y. Rojanasakul, Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed research international, 2013. 2013.
  • Yang, C., et al., Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir, 2010. 26(20): p. 16013-16019.
  • Jiang, T., et al., Toxicity of single-walled carbon nanotubes (SWCNTs): Effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environmental Science: Nano, 2020. 7(5): p. 1348-1364.
  • Sivaraj, D. and K. Vijayalakshmi, Preferential killing of bacterial cells by hybrid carbon nanotube-MnO2 nanocomposite synthesized by novel microwave assisted processing. Materials Science and Engineering: C, 2017. 81: p. 469-477.
  • Saleemi, M.A., et al., Elucidation of antimicrobial activity of non-covalently dispersed carbon nanotubes. Materials, 2020. 13(7): p. 1676.
  • Xin, Q., et al., Antibacterial carbon‐based nanomaterials. Advanced Materials, 2019. 31(45): p. 1804838.
  • Kang, S., et al., Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007. 23(17): p. 8670-8673.
  • Hartono, M.R., et al., Probing the toxicity mechanism of multiwalled carbon nanotubes on bacteria. Environmental Science and Pollution Research, 2018. 25(5): p. 5003-5012.
  • Sirotkin, A.S., L.Y. Koshkina, and K.G. Ippolitov, The BAC-process for treatment of waste water containing non-ionogenic synthetic surfactants. Water Research, 2001. 35(13): p. 3265-3271.
  • Arias, L.R. and L. Yang, Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir, 2009. 25(5): p. 3003-3012.

Kısa Çok Duvarlı Karbon Nanotüplerin Escherichia coli K-12 ‘ye Etkisi

Year 2022, Volume: 5 Issue: 2, 43 - 48, 27.06.2022

Abstract

Amaç: Grafen yapının iç içe silindirler oluşturması ile elde edilen çok duvarlı karbon nanotüpler (ÇDNT), geniş yüzey alanları, hidrofobik yapıları, yüksek elektron iletkenlikleri ile geniş kullanım alanı bulmaktadırlar. İlaç taşıma özellikleri değerlendirilmekle birlikte, biyosensörlerde ve polimerlerle birlikte antibakteriyel malzeme sentezlenmesinde kullanılmaktadırlar. Farklı fizikokimyasal özelliklere sahip ÇDNT’lerin toksisitelerine dair çok sayıda veri vardır. Bunların yanında son yıllarda antibakteriyel etkilerinin değerlendirilmesi oldukça önemli hale gelmiştir. Buradaki araştırmada daha önce farklı hücre soylarına ve yuvarlak solucanlara uyguladığımız; yüksek konsantrasyonlara kadar oldukça sınırlı bir toksik etkiye sahip olduğunu bildiğimiz, literatürde bulunan ÇDNT çeşitlerinin çoğuna göre daha kısa ÇDNT’ lerin, E. coli K12 üzerindeki anti bakteriyel etkisi değerlendirilmek istenmiştir.
Yöntem: ÇDNT’ lerden 20 - 100 µg/ml aralığında değişen farklı konsantrasyonlar hazırlanmış ve E. coli K12’ye uygulanmıştır. Koloni sayımı, bakteriyel konsantrasyon ve mikroskobik görüntüler değerlendirilmiştir.
Bulgular: Kontrol ile karşılaştırıldığında 10 µg/ml’den 100 µg/ml’ye, her konsantrasyonda ÇDNT’lerin bakterilerin çoğalmasını etkilediği, 50 ve 100 µg/ml konsantrasyonlarda en çok antibakteriyel etkinin ortaya çıktığı görülmüştür. 10 ve 20 µg/ml arasında, inhibisyon dozu olarak belirgin bir fark izlenmemiştir. Yüksek dozlarda 90. dakikadan sonra çoğalma inhibisyonunun %20'den fazla olduğu görülmüştür.
Sonuç: Sıvı ve katı besiyerinde çoğaltılan bakteriler düşük ve yüksek konsantrasyonlarda farklı inhibisyon özellikleri ortaya çıkarmıştır. Konsantrasyona bağlı olarak E. coli K-12’nin absorbans ve canlılık değerlerinde azalma olduğu her iki deneyde de tespit edilmiştir. Ayrıca DAPI boyama ile ÇDNT uygulanan bakteri aktivitesinde ve mikroskopta yapılan görüntü analizlerinde de, nanotüp miktarındaki artışa bağlı olarak bakteri kolonilerindeki azalmalar oldukça belirgindir.

Supporting Institution

İstanbul Üniversitesi Bilimsel Araştırmalar Projeleri Birimi

Project Number

37475

Thanks

Değerli katkılarından ötürü MSc. Recep ÜSTÜNSOY'a teşekkür ederiz.

References

  • Le, T.T.A., J. McEvoy, and E. Khan, The effect of single-walled carbon nanotubes on Escherichia coli: multiple indicators of viability. Journal of Nanoparticle Research, 2015. 17(1): p. 1-9.
  • Kang, S., et al., Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 2008. 24(13): p. 6409-6413.
  • Yan, L., et al., Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011. 3(2): p. 362-382.
  • Parasuraman, P., et al., Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus. Photochemical & Photobiological Sciences, 2019. 18(2): p. 563-576.
  • Mohammed, M.K., et al. Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.
  • Dehaghani, M.Z., et al., Dynamics of Antimicrobial Peptide Encapsulation in Carbon Nanotubes: The Role of Hydroxylation. International Journal of Nanomedicine, 2022. 17: p. 125.
  • Mohan, R., A. Shanmugharaj, and R. Sung Hun, An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 96(1): p. 119-126.
  • ZHANG, Y.-L., et al., Bactericidal Effects of Single-walled Carbon Nanotubes on E. coli. DEStech Transactions on Biology and Health, 2017(mshh).
  • Bandaru, P.R., Electrical properties and applications of carbon nanotube structures. Journal of nanoscience and nanotechnology, 2007. 7(4-5): p. 1239-1267.
  • Dinç, B., A. Ünlü, and M. Bektaş, Characterization of short-length multi-walled carbon nanotubes and cytotoxicity on MDA-MB-231 and HUVEC cell lines. Carbon Letters, 2020. 30(2): p. 143-153.
  • Üstünsoy, R., B. Dinç, and M. Bektaş, Purification use and toxicity of paramagnetic short multi-walled carbon nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures, 2021: p. 1-10.
  • Dinc, B. and E. Sen, Toxicity of short multi-walled carbon nanotubes in Caenorhabditis elegans. Fullerenes, Nanotubes and Carbon Nanostructures, 2021: p. 1-11.
  • 2022; Available from: https://nanografi.com/carbon-nanotubes/cooh-functionalized-short-length-multi-walled-carbon-nanotubes-purity-96-outside-diameter-4-16-nm/.
  • Weber, D.J., et al., Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. American journal of infection control, 2010. 38(5): p. S25-S33.
  • Laganà, P., et al., Is the Antibacterial Activity of Multi-Walled Carbon Nanotubes (MWCNTs) Related to Antibiotic Resistance? An Assessment in Clinical Isolates. International journal of environmental research and public health, 2021. 18(17): p. 9310.
  • Chen, H., et al., Broad‐spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small, 2013. 9(16): p. 2735-2746.
  • 2022 [cited 2022 01.04]; Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.
  • Kubley, A., et al., Smart textiles and wearable technology innovation with carbon nanotube technology, in Nanotube Superfiber Materials. 2019, Elsevier. p. 263-311.
  • Breuer, O. and U. Sundararaj, Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer composites, 2004. 25(6): p. 630-645.
  • Lehman, J.H., et al., Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011. 49(8): p. 2581-2602.
  • Zardini, H.Z., et al., Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids and Surfaces B: Biointerfaces, 2012. 92: p. 196-202.
  • Gurunathan, S., et al., Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International journal of nanomedicine, 2012. 7: p. 5901.
  • Shvedova, A.A., et al., Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicology and applied pharmacology, 2012. 261(2): p. 121-133.
  • Manke, A., L. Wang, and Y. Rojanasakul, Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed research international, 2013. 2013.
  • Yang, C., et al., Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir, 2010. 26(20): p. 16013-16019.
  • Jiang, T., et al., Toxicity of single-walled carbon nanotubes (SWCNTs): Effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environmental Science: Nano, 2020. 7(5): p. 1348-1364.
  • Sivaraj, D. and K. Vijayalakshmi, Preferential killing of bacterial cells by hybrid carbon nanotube-MnO2 nanocomposite synthesized by novel microwave assisted processing. Materials Science and Engineering: C, 2017. 81: p. 469-477.
  • Saleemi, M.A., et al., Elucidation of antimicrobial activity of non-covalently dispersed carbon nanotubes. Materials, 2020. 13(7): p. 1676.
  • Xin, Q., et al., Antibacterial carbon‐based nanomaterials. Advanced Materials, 2019. 31(45): p. 1804838.
  • Kang, S., et al., Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007. 23(17): p. 8670-8673.
  • Hartono, M.R., et al., Probing the toxicity mechanism of multiwalled carbon nanotubes on bacteria. Environmental Science and Pollution Research, 2018. 25(5): p. 5003-5012.
  • Sirotkin, A.S., L.Y. Koshkina, and K.G. Ippolitov, The BAC-process for treatment of waste water containing non-ionogenic synthetic surfactants. Water Research, 2001. 35(13): p. 3265-3271.
  • Arias, L.R. and L. Yang, Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir, 2009. 25(5): p. 3003-3012.
There are 33 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Medical Microbiology, Medical and Biological Physics
Journal Section Research Articles
Authors

Tahsin Ertaş 0000-0002-1572-1383

Bircan Dinç 0000-0002-9717-6410

Project Number 37475
Publication Date June 27, 2022
Submission Date April 8, 2022
Acceptance Date May 17, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

AMA Ertaş T, Dinç B. Effect of Short Multiwalled Carbon Nanotubes on Escherichia coli K-12 Strain. Acta Med Nicomedia. June 2022;5(2):43-48. doi:10.53446/actamednicomedia.1099944

images?q=tbn:ANd9GcSZGi2xIvqKAAwnJ5TSwN7g4cYXkrLAiHoAURHIjzbYqI5bffXt&s

The articles in the Journal of "Acta Medica Nicomedia" are open access articles licensed under a Creative Commons Attribution-ShareAlike 4.0 International License at the web address https://dergipark.org.tr/tr/pub/actamednicomedia