BAŞ BOYUN KANSERLERİNDE ONKOGENLER VE TÜMÖR BASKILAYICI GENLER
Year 2024,
Volume: 7 Issue: 3, 362 - 367, 27.10.2024
Günel Bayramova
,
Baris Ertugrul
,
Göksu Kaşarcı
,
Sinem Bireller
,
Bedia Çakmakoğlu
Abstract
Baş ve boyun kanserleri (BBK), ağız boşluğu, farenks, gırtlak, burun boşluğu ve tükürük bezleri gibi baş ve boyun çevresindeki anatomik bölgelerden kaynaklanan çeşitli malignite gruplarını kapsar. Bu kanserlerin gelişimi ve ilerleyişi, özellikle tümör baskılayıcı genler ve onkogenleri içeren genetik ve/veya epigenetik değişikliklerle karmaşık bir şekilde bağlantılıdır. Tümör baskılayıcı genler, hücre döngüsü regülasyonu, genomik stabilitenin korunması ve tümör oluşumunun önlenmesi gibi mekanizmalarda kritik rol oynarlar. Bu genlerin inaktivasyonu kontrolsüz hücre çoğalması ve kanser gelişimi ile sonuçlanabilmektedir. Öte yandan, onkogenler ise hücre büyümesini ve bölünmesini destekleyen ve proto-onkogen olarak adlandırılan normal genlerin mutasyona uğramış veya aşırı eksprese edilmiş versiyonlarıdır. BBK’nde onkogenlerin aktivasyonu, malign dönüşümü ve tümör büyümesini uyarmaktadır. Bu genlerin rollerinin anlaşılması, BBK de dahil olmak üzere tüm kanser türlerinde altta yatan moleküler mekanizmaların aydınlatılması ve kişiye özel tedavi stratejilerinin geliştirilmesinde bu mekanizmaların hedeflenerek daha spesifik bir tedavi uygulanması açısından önem taşımaktadır.
Ethical Statement
Çalışmamız baş boyun kanserlerinde tümör baskılayıcı genler ve onkogenlere dair bir derleme yazısı olduğundan çalışma kapsamında insan veya hayvan materyali kullanılmamış olup etik beyan gerektirmemektedir.
Supporting Institution
Herhangi bir kurumdan destek alınmamıştır.
References
- Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J. 2022;233(9):780-786. doi:10.1038/s41415-022-5166-x
- Siegel RL, Miller KD, Sandeep N, et al. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17-48. doi:10.3322/caac.21763
- Chow LQM. Head and Neck Cancer. Longo DL, ed. N Engl J Med. 2020;382(1):60-72. doi:10.1056/NEJMRA1715715
- Arboleda LPA, de Carvalho GB, Santos-Silva AR, et al. Squamous Cell Carcinoma of the Oral Cavity, Oropharynx, and Larynx: A Scoping Review of Treatment Guidelines Worldwide. Cancers (Basel). 2023;15(17). doi:10.3390/cancers15174405
- Petti S. Lifestyle risk factors for oral cancer. Oral Oncol. 2009;45(4-5):340-350. doi:10.1016/J.ORALONCOLOGY.2008.05.018
- Yazar H, Karaca İR. Oral Kanserin Risk Faktörleri. ADO Klin Bilim Derg. 2018;9(1):1609-1616.
- Leemans CR, Braakhuis BJM, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer 2011 111. 2011;11(1):9-22. doi:10.1038/nrc2982
- Jing F, Zhu L, Bai J, et al. A prognostic model built on amino acid metabolism patterns in HPV-associated head and neck squamous cell carcinoma. Arch Oral Biol. 2024;163. doi:10.1016/J.ARCHORALBIO.2024.105975
- Williams J, Kostiuk M, Biron VL. Molecular Detection Methods in HPV-Related Cancers. Front Oncol. 2022;12(864820). doi:10.3389/FONC.2022.864820
- Gameiro SF, Evans AM, Mymryk JS. The tumor immune microenvironments of HPV+ and HPV− head and neck cancers. WIREs Mech Dis. 2022;14(2):e1539. doi:10.1002/WSBM.1539
- Pierotti M, Frattini M, Molinari F, Sozzi G, Croce C. Oncogenes. In: Holland-Frei Cancer Medicine. ; 2017:1-22. doi:10.1002/9781119000822.hfcm004
- Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol Biochem. 2019;51(6):2647-2693. doi:10.1159/000495956
- Gleich LL, Salamone FN. Molecular Genetics of Head and Neck Cancer. 2002;9(5):369-378. doi:10.1177/107327480200900502
- Bireller İplik ES, Çakmakoğlu B. Onkogenler. İçinde: Baran Y (ed). Kanser Moleküler Biyolojisi. 2. Baskı, Ankara, Hipokrat Yayınevi; 2018:162-171.
- Deuel TF, Huang JS, Huang SS, Stroobant P, Waterfield MD. Expression of a Platelet-Derived Growth Factor-Like Protein in Simian Sarcoma Virus Transformed Cells. Science (80- ). 1983;221(4618):1348-1350. doi:10.1126/SCIENCE.6310754
- Heldin CH. Autocrine PDGF stimulation in malignancies. Ups J Med Sci. 2012;117:83-91. doi:10.3109/03009734.2012.658119
- Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 2012 126. 2012;12(6):387-400. doi:10.1038/nrc3277
- Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24(17):2666-2672. doi:10.1200/JCO.2005.04.8306/ASSET/IMAGES/ZLJ0170634180002.JPEG
- Almadori G, Cadoni G, Galli J, et al. Epidermal growth factor receptor expression in primary laryngeal cancer: an independent prognostic factor of neck node relapse - CORE Reader. Int J Cancer. 1999;84(2):188-191. Accessed June 21, 2024. https://core.ac.uk/reader/53834269?utm_source=linkout
- Şimşek H, Han Ü, Önal B, Şimşek G. The expression of EGFR, cerbB2, p16, and p53 and their relationship with conventional parameters in squamous cell carcinoma of the larynx. Turk J Med Sci. 2014;44(3):411-416.
- Sok JC, Coppelli FM, Thomas SM, et al. Mutant Epidermal Growth Factor Receptor (EGFRvIII) Contributes to Head and Neck Cancer Growth and Resistance to EGFR Targeting. Clin Cancer Res. 2006;12(17):5064-5073. doi:10.1158/1078-0432.CCR-06-0913
- Jares P, Fernández PL, Campo E, et al. PRAD-1/cyclin D1 gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res. 1994;54(17):4813-4817.
- Yoo J, Robinson RA. ras Gene Mutations in Salivary Gland Tumors. Arch Pathol Lab Med. 2000;124(6):836-839. doi:10.5858/2000-124-0836-RGMISG
- Lorenzo-Martín LF, Fernández-Parejo N, Menacho-Márquez M, et al. VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma. Nat Commun 2020 111. 2020;11(1):1-21. doi:10.1038/s41467-020-18524-3
- Cosgrove D, Park BH, Vogelstein B. Tumor Suppressor Genes. In: Bast R, Hait W, Kufe D, et al., eds. Holland‐Frei Cancer Medicine. John Wiley & Sons, Inc.; 2017. doi:10.1002/9781119000822
- Ono S, Hirose K, Sukegawa S, et al. Squamous cell carcinoma initially occurring on the tongue dorsum: a case series report with molecular analysis. Diagn Pathol. 2024;19(1):1-8. doi:10.1186/S13000-024-01487-0/FIGURES/2
- Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS, Abstract G. Why are there hotspot mutations in the TP53 gene in human cancers? Most p53 mutations are at the DNA binding interface: why? Cell Death Differ. 2018;25:154-160. doi:10.1038/cdd.2017.180
- George SA, Kotapalli V, Ramaswamy P, et al. Novel oncogenic transcriptional targets of mutant p53 in esophageal squamous cell carcinoma. J Cell Biochem. 2024;125(4):e30534. doi:10.1002/JCB.30534
- Gulati P, Singh CV. The Crucial Role of Molecular Biology in Cancer Therapy: A Comprehensive Review. Cureus. 2024;16(1):e52246. doi:10.7759/cureus.52246
- El-Naggar AK, Lai S, Clayman GL, et al. Expression of p16, Rb, and cyclin D1 gene products in oral and laryngeal squamous carcinoma: Biological and clinical implications. Hum Pathol. 1999;30(9):1013-1018. doi:10.1016/S0046-8177(99)90217-4
- Loyo M, Pai SI. The Molecular Genetics of Laryngeal Cancer. Otolaryngol Clin North Am. 2008;41(4):657-672. doi:10.1016/J.OTC.2008.01.019
- Swellam M, El-Arab LRE, Adly A. Prognostic value of cell-cycle regulators and cellular biomarkers in laryngeal squamous cell carcinoma. Clin Biochem. 2008;41(13):1059-1066. doi:10.1016/J.CLINBIOCHEM.2008.06.001
- Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22-31. doi:10.1016/J.PHARMTHERA.2014.11.001
- Paterson IC, Matthews JB, Huntley S, et al. Decreased expression of TGF-b cell surface receptors during progression of human oral squamous cell carcinoma. J Pathol. 2001;193(4):458-467. doi:10.1002/1096-9896
Year 2024,
Volume: 7 Issue: 3, 362 - 367, 27.10.2024
Günel Bayramova
,
Baris Ertugrul
,
Göksu Kaşarcı
,
Sinem Bireller
,
Bedia Çakmakoğlu
References
- Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J. 2022;233(9):780-786. doi:10.1038/s41415-022-5166-x
- Siegel RL, Miller KD, Sandeep N, et al. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17-48. doi:10.3322/caac.21763
- Chow LQM. Head and Neck Cancer. Longo DL, ed. N Engl J Med. 2020;382(1):60-72. doi:10.1056/NEJMRA1715715
- Arboleda LPA, de Carvalho GB, Santos-Silva AR, et al. Squamous Cell Carcinoma of the Oral Cavity, Oropharynx, and Larynx: A Scoping Review of Treatment Guidelines Worldwide. Cancers (Basel). 2023;15(17). doi:10.3390/cancers15174405
- Petti S. Lifestyle risk factors for oral cancer. Oral Oncol. 2009;45(4-5):340-350. doi:10.1016/J.ORALONCOLOGY.2008.05.018
- Yazar H, Karaca İR. Oral Kanserin Risk Faktörleri. ADO Klin Bilim Derg. 2018;9(1):1609-1616.
- Leemans CR, Braakhuis BJM, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer 2011 111. 2011;11(1):9-22. doi:10.1038/nrc2982
- Jing F, Zhu L, Bai J, et al. A prognostic model built on amino acid metabolism patterns in HPV-associated head and neck squamous cell carcinoma. Arch Oral Biol. 2024;163. doi:10.1016/J.ARCHORALBIO.2024.105975
- Williams J, Kostiuk M, Biron VL. Molecular Detection Methods in HPV-Related Cancers. Front Oncol. 2022;12(864820). doi:10.3389/FONC.2022.864820
- Gameiro SF, Evans AM, Mymryk JS. The tumor immune microenvironments of HPV+ and HPV− head and neck cancers. WIREs Mech Dis. 2022;14(2):e1539. doi:10.1002/WSBM.1539
- Pierotti M, Frattini M, Molinari F, Sozzi G, Croce C. Oncogenes. In: Holland-Frei Cancer Medicine. ; 2017:1-22. doi:10.1002/9781119000822.hfcm004
- Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol Biochem. 2019;51(6):2647-2693. doi:10.1159/000495956
- Gleich LL, Salamone FN. Molecular Genetics of Head and Neck Cancer. 2002;9(5):369-378. doi:10.1177/107327480200900502
- Bireller İplik ES, Çakmakoğlu B. Onkogenler. İçinde: Baran Y (ed). Kanser Moleküler Biyolojisi. 2. Baskı, Ankara, Hipokrat Yayınevi; 2018:162-171.
- Deuel TF, Huang JS, Huang SS, Stroobant P, Waterfield MD. Expression of a Platelet-Derived Growth Factor-Like Protein in Simian Sarcoma Virus Transformed Cells. Science (80- ). 1983;221(4618):1348-1350. doi:10.1126/SCIENCE.6310754
- Heldin CH. Autocrine PDGF stimulation in malignancies. Ups J Med Sci. 2012;117:83-91. doi:10.3109/03009734.2012.658119
- Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 2012 126. 2012;12(6):387-400. doi:10.1038/nrc3277
- Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24(17):2666-2672. doi:10.1200/JCO.2005.04.8306/ASSET/IMAGES/ZLJ0170634180002.JPEG
- Almadori G, Cadoni G, Galli J, et al. Epidermal growth factor receptor expression in primary laryngeal cancer: an independent prognostic factor of neck node relapse - CORE Reader. Int J Cancer. 1999;84(2):188-191. Accessed June 21, 2024. https://core.ac.uk/reader/53834269?utm_source=linkout
- Şimşek H, Han Ü, Önal B, Şimşek G. The expression of EGFR, cerbB2, p16, and p53 and their relationship with conventional parameters in squamous cell carcinoma of the larynx. Turk J Med Sci. 2014;44(3):411-416.
- Sok JC, Coppelli FM, Thomas SM, et al. Mutant Epidermal Growth Factor Receptor (EGFRvIII) Contributes to Head and Neck Cancer Growth and Resistance to EGFR Targeting. Clin Cancer Res. 2006;12(17):5064-5073. doi:10.1158/1078-0432.CCR-06-0913
- Jares P, Fernández PL, Campo E, et al. PRAD-1/cyclin D1 gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res. 1994;54(17):4813-4817.
- Yoo J, Robinson RA. ras Gene Mutations in Salivary Gland Tumors. Arch Pathol Lab Med. 2000;124(6):836-839. doi:10.5858/2000-124-0836-RGMISG
- Lorenzo-Martín LF, Fernández-Parejo N, Menacho-Márquez M, et al. VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma. Nat Commun 2020 111. 2020;11(1):1-21. doi:10.1038/s41467-020-18524-3
- Cosgrove D, Park BH, Vogelstein B. Tumor Suppressor Genes. In: Bast R, Hait W, Kufe D, et al., eds. Holland‐Frei Cancer Medicine. John Wiley & Sons, Inc.; 2017. doi:10.1002/9781119000822
- Ono S, Hirose K, Sukegawa S, et al. Squamous cell carcinoma initially occurring on the tongue dorsum: a case series report with molecular analysis. Diagn Pathol. 2024;19(1):1-8. doi:10.1186/S13000-024-01487-0/FIGURES/2
- Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS, Abstract G. Why are there hotspot mutations in the TP53 gene in human cancers? Most p53 mutations are at the DNA binding interface: why? Cell Death Differ. 2018;25:154-160. doi:10.1038/cdd.2017.180
- George SA, Kotapalli V, Ramaswamy P, et al. Novel oncogenic transcriptional targets of mutant p53 in esophageal squamous cell carcinoma. J Cell Biochem. 2024;125(4):e30534. doi:10.1002/JCB.30534
- Gulati P, Singh CV. The Crucial Role of Molecular Biology in Cancer Therapy: A Comprehensive Review. Cureus. 2024;16(1):e52246. doi:10.7759/cureus.52246
- El-Naggar AK, Lai S, Clayman GL, et al. Expression of p16, Rb, and cyclin D1 gene products in oral and laryngeal squamous carcinoma: Biological and clinical implications. Hum Pathol. 1999;30(9):1013-1018. doi:10.1016/S0046-8177(99)90217-4
- Loyo M, Pai SI. The Molecular Genetics of Laryngeal Cancer. Otolaryngol Clin North Am. 2008;41(4):657-672. doi:10.1016/J.OTC.2008.01.019
- Swellam M, El-Arab LRE, Adly A. Prognostic value of cell-cycle regulators and cellular biomarkers in laryngeal squamous cell carcinoma. Clin Biochem. 2008;41(13):1059-1066. doi:10.1016/J.CLINBIOCHEM.2008.06.001
- Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22-31. doi:10.1016/J.PHARMTHERA.2014.11.001
- Paterson IC, Matthews JB, Huntley S, et al. Decreased expression of TGF-b cell surface receptors during progression of human oral squamous cell carcinoma. J Pathol. 2001;193(4):458-467. doi:10.1002/1096-9896