Research Article
BibTex RIS Cite

Diyetsel Gümüş Nanopartikülün Gökkuşağı Alabalığının (Oncorhynchus mykiss) Yetiştiricilik Parametreleri ve Yüksek Sıcaklık Toleransına Etkisi

Year 2023, Volume: 19 Issue: 3, 246 - 256, 01.09.2023
https://doi.org/10.22392/actaquatr.1210907

Abstract

Son yıllarda balık yemlerinde kullanılan balık unlarının yerine bitkisel protein kaynaklarının kullanılması ile birlikte balıklar için esansiyel olan mikro elementlerin yem içerisindeki miktarları da oransal olarak azalmıştır. Bu sebeple, kritik seviyelerde kullanılması gereken bu mikro besinlerin nanopartikül formlarının, özellikle soğuk su balıklarında kullanımının araştırılması önem arz etmektedir. Bu çalışmada yemlere ilave edilen gümüş nanopartikülün (Nano-Ag) gökkuşağı alabalığının (Oncorhynchus mykiss) büyüme, yem alımı, tüm vücut besinsel kompozisyonu ile kritik termal maksima değeri üzerine olan etkileri araştırılmıştır. Denemede 3 farklı dozda (0, 0.2 ve 2 mg/kg) Nano-Ag içeren yem hazırlanmıştır ve başlangıç ağırlıkları 41,50,31 g olan balıklar bu yemler ile 60 gün süresince günde iki defa olacak şekilde beslenmişlerdir. Deneme sonunda, alabalıkların final ağırlıkları 118,9 ve 112,9 g arasında değişmiş, gruplar arasında istatistiki önemli bir farklılık bulunmamıştır (P>0.05). Aynı şekilde, canlı ağırlık kazancı, yem tüketimi, yemden yararlanma oranı, visero-somatik indeks ve hepato-somtik indeks açısından da gruplar arasında istatistiksel olarak önemli bir farklılık bulunmamıştır (P>0.05). Gruplar arasında tüm vücut ham protein içeriği %16,1-16,3 arasında değişirken lipit içeriği %11,4-12,2 arasında değişim göstermiştir (P>0.05). Deneme sonunda gerçekleştirilen kritik termal maksima (CTMax) denemesinde yemlere ilave edilen Nano-Ag’nin önemli düzeyde istatistiki bir etkisinin olmadığı gözlenmesine karşın (P>0.05), yüksek Nano-Ag’nin termal toleransı kısmen de olsa artırdığı gözlenmiştir. Kontrol, 0.2 mg/kg ve 2 mg/kg grubu bireylerinin ortalama CTMax değerleri sırasıyla 27.0°C, 27.2°C ve 27.8°C olarak belirlenmiştir. 2 mg/kg Nano-Ag’nin CTMax’ı %3 artırdığı gözlenmiştir. Bu çalışma ile yemlere ilave edilen Nano-Ag’nin gökkuşağı alabalıklarında büyüme performans verilerine ve yem alımına etkisinin olmadığı ancak kısmen de olsa CTMax değerini artırma eğiliminde olduğu ortaya konmuştur.

Supporting Institution

Çukurova Üniversitesi Bilimsel Araştırmalar Projeleri Koordinasyon Birimi

Project Number

FYL-2020-12538

Thanks

Yazarlar, denemede kullanılan yemin teminini tarafımıza ücretsiz yapan Gümüşdoğa Yem Firmasına (Muğla) ve Gümüş Nanopartükülü ücretsiz şekilde gönderen Antalya NANOEN A.Ş’ne (Antalya, Türkiye) teşekkür etmektedir.

References

  • AOAC (Association of Official Analytical Chemists, & Association of Official Agricultural Chemists) (US). (1925). Official methods of analysis.
  • Al-Sagheer, A. A., Mahmoud, H. K., Reda, F. M., Mahgoub, S. A., & Ayyat, M. S. (2018). Supplementation of diets for Oreochromis niloticus with essential oil extracts from lemongrass (Cymbopogon citratus) and geranium (Pelargonium graveolens) and effects on growth, intestinal microbiota, antioxidant and immune activities. Aquaculture nutrition, 24(3), 1006-1014. https://doi.org/10.1111/anu.12637
  • Aly, S.M., Eissa, A.E., Abdel-Razek, N., El-Ramlawy, A.O., 2023. The antibacterial activity and immunomodulatory effect of naturally synthesized chitosan and silver nanoparticles against Pseudomonas fluorescence infection in Nile tilapia (Oreochromis niloticus): An in vivo study. Fish & Shellfish Immunology, 135, 108628. https://doi.org/10.1016/j.fsi.2023.108628
  • Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19(25), 255102. https://doi.org/10.1088/0957-4484/19/25/255102
  • Austin, B., Lawrence A.L.,Can., E., Carboni, C., Crockett, J., Demirtaş Erol, N., Dias Schleder, D., Jatobá, A., Kayış, Ş., Karacalar, U., Kizak, V., Kop, A., Thompson, K., Mendez Ruiz, C. A., Serdar, O., Seyhaneyildiz Can, S., Watts, S. & Yücel Gier, G. (2022). Selected topics insustainable aquaculture research: Current and future focus. Sustainable Aquatic Research, 1(2), 74-122. https://doi.org/10.5281/zenodo.7032804
  • Beitinger, T.L., Bennett, W.A. & McCauley, R.W. (2000). Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental biology of fishes, 58(3), 237- 275. https://doi.org/10.1023/A:1007676325825
  • Bennett, W.A. & Beitinger, T.L. (1997). Temperature Tolerance of the Sheepshead Minnow, Cyprinodon variegatus. Copeia, 77-87. https://doi.org/10.2307/1447842
  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M., & Froehlich, H. E. (2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nature Food, 1(5), 301-308. https://doi.org/10.1038/s43016-020-0078-x
  • Cowles, R.B. & Bogert, C.M. (1944). A preliminary study of the thermal requirements a desert reptiles. Iguana, 83, 265-296.
  • Cox, D.K. (1974). Effects of three heating rates on the critical thermal maximum of bluegill. Thermal ecology, 158-163.
  • Elliott, J. M. (1981). Some aspects of thermal stress on fresh-water teleosts. Stress and fish., 209-245.
  • Fajardo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J.M., Thomas, B. & De Donato, M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 7(2), 185-200. https://doi.org/10.1016/j.aaf.2021.12.006
  • FAO (2020). The State of World Fisheries and Aquaculture (p. 200). Rome, Italy
  • Galvez, F., Hogstrand, C., McGeer, J. C., & Wood, C. M. (2001). The physiological effects of a biologically incorporated silver diet on rainbow trout (Oncorhynchus mykiss). Aquatic toxicology, 55(1-2), 95-112. https://doi.org/10.1016/S0166-445X(01)00155-2
  • Halves, J. E., (2002). The vitamins. Fish Nutrition. Academic press.
  • He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., & Wang, C. (2017). Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Scientific reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-15667-0
  • Healy, T. M., & Schulte, P. M. (2012). Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiological and Biochemical Zoology, 85(2), 107-119. https://doi.org/10.1086/664584
  • Huang, C. M., Chen, C. H., Pornpattananangkul, D., Zhang, L., Chan, M., Hsieh, M. F., & Zhang, L. (2011). Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials, 32(1), 214-221. https://doi.org/10.1016/j.biomaterials.2010.08.076
  • Ineno, T., Tsuchida, S., Kanda, M., & Watabe, S. (2005). Thermal tolerance of a rainbow trout Oncorhynchus mykiss strain selected by high-temperature breeding. Fisheries Science, 71(4), 767-775. https://doi.org/10.1111/j.1444-2906.2005.01026.x
  • Ineno, T., Yamada, K., Tamaki, K., Kodama, R., Tan, E., Kinoshita, S., & Watabe, S. (2020). Determination of thermal tolerance in rainbow trout Oncorhynchus mykiss based on effective time, and its reproducibility for a large number of fish. Fisheries science, 86(5), 767-774. https://doi.org/10.1007/s12562-020-01447-9
  • Kumar, N., Krishnani, K. K., Gupta, S. K., & Singh, N. P. (2017a). Selenium nanoparticles enhanced thermal tolerance and maintain cellular stress protection of Pangasius hypophthalmus reared under lead and high temperature. Respiratory physiology & neurobiology, 246, 107-116.
  • Kumar, N., Krishnani, K. K., Gupta, S. K., & Singh, N. P. (2017b). Cellular stress and histopathological tools used as biomarkers in Oreochromis mossambicus for assessing metal contamination. Environmental toxicology and pharmacology, 49, 137-147.
  • Kumar, N., Krishnani, K. K., Kumar, P., & Singh, N. P. (2017c). Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. Journal of Thermal Biology, 70, 61-68. https://doi.org/10.1016/j.jtherbio.2017.10.003
  • Kumar, N., Krishnani, K. K., Chandan, N. K., & Singh, N. P. (2018). Dietary zinc potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under lead and thermal stress. Aquaculture Research, 49(2), 1105-1115.
  • Kumar, N., Krishnani, K. K., Kumar, P., Sharma, R., Baitha, R., Singh, D. K., & Singh, N. P. (2018). Dietary nano-silver: Does support or discourage thermal tolerance and biochemical status in air-breathing fish reared under multiple stressors? Journal of thermal biology, 77, 111-121. https://doi.org/10.1016/j.jtherbio.2018.08.011
  • Lall, S. P. (2002). The minerals. In Halver, J. E., Hardy, R.W. (Eds.) Fish Nutrition, 3rd edition (pp. 259–308). Academic Press San Diego.
  • Lutterschmidt, W.I. & Hutchison, V.H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574. https://doi.org/10.1139/z97-783
  • Márquez, J.C.M., Partida, A.H., del Carmen, M., Dosta, M., Mejía, J.C. & Martínez, J.A.B., 2018. Silver nanoparticles applications (AgNPS) in aquaculture. International Journal of Fisheries Aquatic Studies, 6, 5-11.
  • Merrifield, D.L., Shaw, B.J., Harper, G.M., Saoud, I.P., Davies, S.J., Handy, R.D. & Henry, T.B., 2013. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environmental Pollution, 174, 157-163. https://doi.org/10.1016/j.envpol.2012.11.017
  • Nasr-Eldahan, S., Nabil-Adam, A., Shreadah, M.A., Maher, A.M. & El-Sayed Ali, T., 2021. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquaculture International, 29, 1459-1480. https://doi.org/10.1007/s10499-021-00677-7
  • Nia, Jafar Rahman, 2009. Using of Nanosilver in Poultry, Livestock and Aquatics Industry: Google Patents.
  • NRC, N.R.C., 2011. Nutrient requirements of fish and shrimp. National academies press.
  • Ogunfowora, L.A., Iwuozor, K.O., Ighalo, J.O. & Igwegbe, C.A., 2021. Trends in the treatment of aquaculture effluents using nanotechnology. Cleaner Materials, 2, 100024. https://doi.org/10.1016/j.clema.2021.100024
  • Olsvik P. A., Søfteland L., Hevrøy E. M., Rasinger J. D. & Waagbø, R. (2016). Fish pre-acclimation temperature only modestly affects cadmium toxicity in Atlantic salmon hepatocytes. Journal of Thermal Biology, 57, 21-34. doi: 10.1016/j.jtherbio.2016.02.003. Epub 2016 Feb 27. PMID: 27033036.
  • Lara, H. H., Ayala-Núnez, N. V., Ixtepan Turrent, L. D. C., & Rodríguez Padilla, C. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615-621. https://doi.org/10.1007/s11274-009-0211-3
  • Recsetar, M. S., Zeigler, M. P., Ward, D. L., Bonar, S. A., & Caldwell, C. A. (2012). Relationship between fish size and upper thermal tolerance. Transactions of the American Fisheries Society, 141(6), 1433-1438. https://doi.org/10.1080/00028487.2012.694830
  • Shah, B. R., & Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Reviews in Aquaculture, 12(2), 925-942.
  • Spotila, J.R., Terpin, K.M., Koons, R.R. & Bonati, R.L. (1979). Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Environmental Biology of Fishes, 4(3), 281-307. https://doi.org/10.1007/BF00005485
  • Tafalla, C., Bøgwald, J. & Dalmo, R. A. (2013). Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. Fish & Shellfish Immunology, 35(6), 1740-1750. https://doi.org/10.1016/j.fsi.2013.02.029
  • Vinay, T. N., Ray, A. K., Avunje, S., Thangaraj, S. K., Krishnappa, H., Viswanathan, B., & Patil, P. K. (2019). Vibrio harveyi biofilm as immunostimulant candidate for high-health pacific white shrimp, Penaeus vannamei farming. Fish & shellfish immunology, 95, 498-505.
  • Yeo, M. K., & Kang, M. S. (2008). Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bulletin of the Korean Chemical Society, 29(6), 1179-1184. https://doi.org/10.5012/bkcs.2008.29.6.1179
  • Yue, L., Zhao, W., Wang, D., Meng, M., Zheng, Y., Li, Y., Qui., J., Yu, J., Yan Y., Sun, Y., Fu J., Wang, J., Zhang Q., Xu L., Ma, X. (2019). Silver nanoparticles inhibit beige fat function and promote adiposity. Molecular metabolism, 22, 1-11. https://doi.org/10.1016/j.molmet.2019.01.005

Effect of Diet Silver Nanoparticle on Cultivation Parameters and High Temperature Tolerance of Rainbow Trout (Onchorhyncus mykiss)

Year 2023, Volume: 19 Issue: 3, 246 - 256, 01.09.2023
https://doi.org/10.22392/actaquatr.1210907

Abstract

In recent years, with the use of plant protein sources instead of fish meals in fish feeds, the amounts of dietary essential microelements have decreased proportionally. For this reason, it is important to investigate the use of nanoparticle forms of these micronutrients, which should be used at critical levels, especially in cold-water fish. In this study, the effects of silver nanoparticles (Nan- Ag) added to feeds on growth, feed intake, whole-body nutritional composition, and critical thermal maximum value of rainbow trout (Oncorhynchus mykiss) were investigated. A feed containing Nano-Ag at three different doses (0, 0.2, and 2 mg/kg) was prepared for the trial, and fish with initial weights of 41 g were fed twice daily with these feeds for 60 days. At the end of the experiment, the final weights of the trout ranged between 118.9 and 112.9 g, without a statistically significant difference between the groups (P>0.05). Similarly, there was no statistically significant difference between the groups in terms of body weight gain, feed consumption, feed conversion ratio, viscerosomatic index, and hepatosomatic index (P>0.05). Whole body crude protein content varied between 16.1-16.3%, while lipid content varied between 11.4-12.2% between the groups (P>0.05). The critical thermal maxima (CTMax) trial carried out at the end of the trial exhibited that Nano-Ag added to feeds did not have a significant statistical effect (P> 0.05) although it was observed that high Nano-Ag partially increased thermal tolerance. The mean CTMax values of individuals in the 0 (control), 0.2, and 2 mg/kg groups were found to be 27.0°C, 27.2°C, and 27.8°C. In the present study, it was revealed that Nano-Ag added to the feeds did not affect the growth performance data and feed intake of 41 g rainbow trout but partially increased the CTMax value.

Project Number

FYL-2020-12538

References

  • AOAC (Association of Official Analytical Chemists, & Association of Official Agricultural Chemists) (US). (1925). Official methods of analysis.
  • Al-Sagheer, A. A., Mahmoud, H. K., Reda, F. M., Mahgoub, S. A., & Ayyat, M. S. (2018). Supplementation of diets for Oreochromis niloticus with essential oil extracts from lemongrass (Cymbopogon citratus) and geranium (Pelargonium graveolens) and effects on growth, intestinal microbiota, antioxidant and immune activities. Aquaculture nutrition, 24(3), 1006-1014. https://doi.org/10.1111/anu.12637
  • Aly, S.M., Eissa, A.E., Abdel-Razek, N., El-Ramlawy, A.O., 2023. The antibacterial activity and immunomodulatory effect of naturally synthesized chitosan and silver nanoparticles against Pseudomonas fluorescence infection in Nile tilapia (Oreochromis niloticus): An in vivo study. Fish & Shellfish Immunology, 135, 108628. https://doi.org/10.1016/j.fsi.2023.108628
  • Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19(25), 255102. https://doi.org/10.1088/0957-4484/19/25/255102
  • Austin, B., Lawrence A.L.,Can., E., Carboni, C., Crockett, J., Demirtaş Erol, N., Dias Schleder, D., Jatobá, A., Kayış, Ş., Karacalar, U., Kizak, V., Kop, A., Thompson, K., Mendez Ruiz, C. A., Serdar, O., Seyhaneyildiz Can, S., Watts, S. & Yücel Gier, G. (2022). Selected topics insustainable aquaculture research: Current and future focus. Sustainable Aquatic Research, 1(2), 74-122. https://doi.org/10.5281/zenodo.7032804
  • Beitinger, T.L., Bennett, W.A. & McCauley, R.W. (2000). Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental biology of fishes, 58(3), 237- 275. https://doi.org/10.1023/A:1007676325825
  • Bennett, W.A. & Beitinger, T.L. (1997). Temperature Tolerance of the Sheepshead Minnow, Cyprinodon variegatus. Copeia, 77-87. https://doi.org/10.2307/1447842
  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M., & Froehlich, H. E. (2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nature Food, 1(5), 301-308. https://doi.org/10.1038/s43016-020-0078-x
  • Cowles, R.B. & Bogert, C.M. (1944). A preliminary study of the thermal requirements a desert reptiles. Iguana, 83, 265-296.
  • Cox, D.K. (1974). Effects of three heating rates on the critical thermal maximum of bluegill. Thermal ecology, 158-163.
  • Elliott, J. M. (1981). Some aspects of thermal stress on fresh-water teleosts. Stress and fish., 209-245.
  • Fajardo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J.M., Thomas, B. & De Donato, M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 7(2), 185-200. https://doi.org/10.1016/j.aaf.2021.12.006
  • FAO (2020). The State of World Fisheries and Aquaculture (p. 200). Rome, Italy
  • Galvez, F., Hogstrand, C., McGeer, J. C., & Wood, C. M. (2001). The physiological effects of a biologically incorporated silver diet on rainbow trout (Oncorhynchus mykiss). Aquatic toxicology, 55(1-2), 95-112. https://doi.org/10.1016/S0166-445X(01)00155-2
  • Halves, J. E., (2002). The vitamins. Fish Nutrition. Academic press.
  • He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., & Wang, C. (2017). Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Scientific reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-15667-0
  • Healy, T. M., & Schulte, P. M. (2012). Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiological and Biochemical Zoology, 85(2), 107-119. https://doi.org/10.1086/664584
  • Huang, C. M., Chen, C. H., Pornpattananangkul, D., Zhang, L., Chan, M., Hsieh, M. F., & Zhang, L. (2011). Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials, 32(1), 214-221. https://doi.org/10.1016/j.biomaterials.2010.08.076
  • Ineno, T., Tsuchida, S., Kanda, M., & Watabe, S. (2005). Thermal tolerance of a rainbow trout Oncorhynchus mykiss strain selected by high-temperature breeding. Fisheries Science, 71(4), 767-775. https://doi.org/10.1111/j.1444-2906.2005.01026.x
  • Ineno, T., Yamada, K., Tamaki, K., Kodama, R., Tan, E., Kinoshita, S., & Watabe, S. (2020). Determination of thermal tolerance in rainbow trout Oncorhynchus mykiss based on effective time, and its reproducibility for a large number of fish. Fisheries science, 86(5), 767-774. https://doi.org/10.1007/s12562-020-01447-9
  • Kumar, N., Krishnani, K. K., Gupta, S. K., & Singh, N. P. (2017a). Selenium nanoparticles enhanced thermal tolerance and maintain cellular stress protection of Pangasius hypophthalmus reared under lead and high temperature. Respiratory physiology & neurobiology, 246, 107-116.
  • Kumar, N., Krishnani, K. K., Gupta, S. K., & Singh, N. P. (2017b). Cellular stress and histopathological tools used as biomarkers in Oreochromis mossambicus for assessing metal contamination. Environmental toxicology and pharmacology, 49, 137-147.
  • Kumar, N., Krishnani, K. K., Kumar, P., & Singh, N. P. (2017c). Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. Journal of Thermal Biology, 70, 61-68. https://doi.org/10.1016/j.jtherbio.2017.10.003
  • Kumar, N., Krishnani, K. K., Chandan, N. K., & Singh, N. P. (2018). Dietary zinc potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under lead and thermal stress. Aquaculture Research, 49(2), 1105-1115.
  • Kumar, N., Krishnani, K. K., Kumar, P., Sharma, R., Baitha, R., Singh, D. K., & Singh, N. P. (2018). Dietary nano-silver: Does support or discourage thermal tolerance and biochemical status in air-breathing fish reared under multiple stressors? Journal of thermal biology, 77, 111-121. https://doi.org/10.1016/j.jtherbio.2018.08.011
  • Lall, S. P. (2002). The minerals. In Halver, J. E., Hardy, R.W. (Eds.) Fish Nutrition, 3rd edition (pp. 259–308). Academic Press San Diego.
  • Lutterschmidt, W.I. & Hutchison, V.H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574. https://doi.org/10.1139/z97-783
  • Márquez, J.C.M., Partida, A.H., del Carmen, M., Dosta, M., Mejía, J.C. & Martínez, J.A.B., 2018. Silver nanoparticles applications (AgNPS) in aquaculture. International Journal of Fisheries Aquatic Studies, 6, 5-11.
  • Merrifield, D.L., Shaw, B.J., Harper, G.M., Saoud, I.P., Davies, S.J., Handy, R.D. & Henry, T.B., 2013. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environmental Pollution, 174, 157-163. https://doi.org/10.1016/j.envpol.2012.11.017
  • Nasr-Eldahan, S., Nabil-Adam, A., Shreadah, M.A., Maher, A.M. & El-Sayed Ali, T., 2021. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquaculture International, 29, 1459-1480. https://doi.org/10.1007/s10499-021-00677-7
  • Nia, Jafar Rahman, 2009. Using of Nanosilver in Poultry, Livestock and Aquatics Industry: Google Patents.
  • NRC, N.R.C., 2011. Nutrient requirements of fish and shrimp. National academies press.
  • Ogunfowora, L.A., Iwuozor, K.O., Ighalo, J.O. & Igwegbe, C.A., 2021. Trends in the treatment of aquaculture effluents using nanotechnology. Cleaner Materials, 2, 100024. https://doi.org/10.1016/j.clema.2021.100024
  • Olsvik P. A., Søfteland L., Hevrøy E. M., Rasinger J. D. & Waagbø, R. (2016). Fish pre-acclimation temperature only modestly affects cadmium toxicity in Atlantic salmon hepatocytes. Journal of Thermal Biology, 57, 21-34. doi: 10.1016/j.jtherbio.2016.02.003. Epub 2016 Feb 27. PMID: 27033036.
  • Lara, H. H., Ayala-Núnez, N. V., Ixtepan Turrent, L. D. C., & Rodríguez Padilla, C. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615-621. https://doi.org/10.1007/s11274-009-0211-3
  • Recsetar, M. S., Zeigler, M. P., Ward, D. L., Bonar, S. A., & Caldwell, C. A. (2012). Relationship between fish size and upper thermal tolerance. Transactions of the American Fisheries Society, 141(6), 1433-1438. https://doi.org/10.1080/00028487.2012.694830
  • Shah, B. R., & Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Reviews in Aquaculture, 12(2), 925-942.
  • Spotila, J.R., Terpin, K.M., Koons, R.R. & Bonati, R.L. (1979). Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Environmental Biology of Fishes, 4(3), 281-307. https://doi.org/10.1007/BF00005485
  • Tafalla, C., Bøgwald, J. & Dalmo, R. A. (2013). Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. Fish & Shellfish Immunology, 35(6), 1740-1750. https://doi.org/10.1016/j.fsi.2013.02.029
  • Vinay, T. N., Ray, A. K., Avunje, S., Thangaraj, S. K., Krishnappa, H., Viswanathan, B., & Patil, P. K. (2019). Vibrio harveyi biofilm as immunostimulant candidate for high-health pacific white shrimp, Penaeus vannamei farming. Fish & shellfish immunology, 95, 498-505.
  • Yeo, M. K., & Kang, M. S. (2008). Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bulletin of the Korean Chemical Society, 29(6), 1179-1184. https://doi.org/10.5012/bkcs.2008.29.6.1179
  • Yue, L., Zhao, W., Wang, D., Meng, M., Zheng, Y., Li, Y., Qui., J., Yu, J., Yan Y., Sun, Y., Fu J., Wang, J., Zhang Q., Xu L., Ma, X. (2019). Silver nanoparticles inhibit beige fat function and promote adiposity. Molecular metabolism, 22, 1-11. https://doi.org/10.1016/j.molmet.2019.01.005
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Environmental Sciences
Journal Section Research Articles
Authors

Özgür Uçaş 0000-0003-2543-5847

Ece Evliyaoğlu 0000-0003-3578-7336

Hüseyin Sevgili 0000-0001-8274-7391

Esin Akarsu 0000-0002-1965-5774

Siti Nur Insyirah Noor Izam 0000-0001-5224-6174

Hatice Asuman Yılmaz 0000-0001-5627-034X

Orhan Tufan Eroldoğan 0000-0001-6978-7524

Project Number FYL-2020-12538
Early Pub Date August 25, 2023
Publication Date September 1, 2023
Published in Issue Year 2023 Volume: 19 Issue: 3

Cite

APA Uçaş, Ö., Evliyaoğlu, E., Sevgili, H., Akarsu, E., et al. (2023). Diyetsel Gümüş Nanopartikülün Gökkuşağı Alabalığının (Oncorhynchus mykiss) Yetiştiricilik Parametreleri ve Yüksek Sıcaklık Toleransına Etkisi. Acta Aquatica Turcica, 19(3), 246-256. https://doi.org/10.22392/actaquatr.1210907