Review
BibTex RIS Cite

The Risk of Antibiotic Resistance in Aquaculture: The Future Outlook

Year 2024, Volume: 20 Issue: 4, 367 - 387, 01.12.2024
https://doi.org/10.22392/actaquatr.1478517

Abstract

Seafood production is a critical global industry that provides employment and sustenance to millions of people. The intensification of production technologies in the industry has emerged to bridge the demand–supply gap in seafood production, but concerns about potential public health threats have been raised. For instance, increased stocking densities in aquaculture settings have led to increased stress in fish, creating an environment conducive to pathogen proliferation. Antibiotics are widely used for the treatment and prevention of bacterial infections in fish and other animals. However, antibiotics pose a risk of harmful effects on human and animal health. The emergence of antibiotic-resistant bacteria in fish and other aquatic animals, as well as in the aquatic environment and other ecological niches, has created reservoirs of drug-resistant bacteria and transferable resistance genes. Resistance to antimicrobial agents in human pathogens severely limits therapeutic options during human infections. Therefore, responsible and monitored use of antibiotics in aquaculture is paramount. This review consolidates the knowledge on commonly used antibiotic types in aquaculture, antibiotic administration, antibiotic testing techniques, and antibiotic resistance in water, fish, and sediments. The challenges, strategies, and constraints in counteracting antibiotic resistance, as well as prospects for antibiotic use in aquaculture, are discussed.

References

  • Abarike, E., Atuna, R., Dandi, S., Agyekum, S., Appenteng, P., Alhassan, E., Akongyuure, D., Anchirinah, J., & Duodo, K. (2023). Preliminary survey on perceived fish health management practices among small-scale cage tilapia farmers on Lake Volta. HSOA Journal of Aquaculture & Fisheries, 7, 1-6. https://doi.org/10.24966/AAF-5523/100065
  • Abdallah, E. M., Alhatlani, B. Y., de Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. Plants, 12(17). https://doi.org/10.3390/plants12173077
  • Altan, F., Corum, O., Durna Corum, D., Uney, K., Terzi, E., Bilen, S., ... & Elmas, M. (2024). Pharmacokinetic behaviour and pharmacokinetic–pharmacodynamic integration of doxycycline in rainbow trout (Oncorhynchus mykiss) after intravascular, intramuscular and oral administrations. Veterinary Medicine and Science, 10(3), e1419. https://doi.org/10.1002/vms3.1419
  • Ajayi, A. O., Odeyemi, A. T., Akinjogunla, O. J., Adeyeye, A. B., & Ayo-ajayi, I. (2024). Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infection Ecology and Epidemiology, 14(1), 2312953. https://doi.org/10.1080/20008686.2024.2312953
  • Amos, G. C., Gozzard, E., Carter, C. E., Mead, A., Bowes, M. J., Hawkey, P. M., Zhang, L., Singer, A. C., Gaze, W. H., & Wellington, E. M. H. (2015). Validated predictive modelling of the environmental resistome. ISME Journal, 9(6), 1467-1476. https://doi.org/10.1038/ismej.2014.237
  • Arias-Andres, M., Kettner, M. T., Miki, T., & Grossart, H. P. (2018). Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems. Science of the Total Environment, 635, 1152-1159. https://doi.org/10.1016/j.scitotenv.2018.04.199
  • Ahmed, M. N., Porse, A., Sommer, M. O. A., Høiby, N., & Ciofu, O. (2018). Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrobial agents and chemotherapy, 62(8), 10-1128. https://doi.org/10.1128/aac.00320-18
  • Algammal, A. M., Mabrok, M., Ezzat, M., Alfifi, K. J., Esawy, A. M., Elmasry, N., & El-Tarabili, R. M. (2022). Prevalence, antimicrobial resistance (AMR) pattern, virulence determinant and AMR genes of emerging multi-drug resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquaculture, 548, 737643. https://doi.org/10.1016/j.aquaculture.2021.737643
  • Andrieu, M., Rico, A., Phu, T. M., Huong, D. T. T., Phuong, N. T., & Van den Brink, P. J. (2015). Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam. Chemosphere, 119, 407-414. https://doi.org/10.1016/j.chemosphere.2014.06.062
  • Apenteng, J. A., Yeboah, E. E. A., & Kyere-Davies, G. (2022). Antibiotic susceptibility of bacteria isolates from ward environment of a hospital in Tema, Ghana. African Journal of Microbiology Research, 16(6), 211-216. https://doi.org/10.5897/AJMR2020.9338
  • Ashiru, A., Uaboi-Egbeni, P., Oguntowo, J., & Idika, C. (2011). Isolation and antibiotic profile of Aeromonas species from tilapia fish (Tilapia nilotica) and catfish (Clarias betrachus). Pakistan journal of nutrition, 10(10), 982-986. https://doi.org/10.3923/pjn.2011.982.986
  • Assane, I. M., de Sousa, E. L., Valladão, G. M. R., Tamashiro, G. D., Criscoulo-Urbinati, E., Hashimoto, D. T., & Pilarski, F. (2021). Phenotypic and genotypic characterization of Aeromonas jandaei involved in mass mortalities of cultured Nile tilapia, Oreochromis niloticus (L.) in Brazil. Aquaculture, 541, 736848. https://doi.org/10.1016/j.aquaculture.2021.736848
  • Bakht, J., Ali, H., Khan, M. A., Khan, A., Saeed, M., Shafi, M., Islam, A., & Tayyab, M. (2011). Antimicrobial activities of different solvents extracted samples of Linum usitatissimum by disc diffusion method. African Journal of Biotechnology, 10(85), 19825-19835. https://doi.org/10.5897/AJB11.229
  • Baltekin, Ö., Boucharin, A., Tano, E., Andersson, D. I., & Elf, J. (2017). Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proceedings of the National Academy of Sciences, 114(34), 9170-9175. https://doi.org/10.1073/pnas.1708558114
  • Barnes, A. C., Rudenko, O., Landos, M., Dong, H. T., Lusiastuti, A., Phuoc, L. H., & Delamare‐Deboutteville, J. (2022). Autogenous vaccination in aquaculture: A locally enabled solution towards reduction of the global antimicrobial resistance problem. Reviews in Aquaculture, 14(2), 907-918. https://doi.org/10.1111/raq.12633
  • Begum, J., Mir, N., Dev, K., & Khan, I. (2018). Dynamics of antibiotic resistance with special reference to Shiga toxin‐producing Escherichia coli infections. Journal of applied microbiology, 125(5), 1228-1237. https://doi.org/10.1111/jam.14034
  • Belkina, T., Duvanova, N., Karbovskaja, J., Tebbens, J. D., & Vlcek, J. (2017). Antibiotic use practices of pharmacy staff: a cross-sectional study in Saint Petersburg, the Russian Federation. BMC Pharmacology and toxicology, 18(1), 1-6. https://doi.org/10.1186/s40360-017-0116-y
  • Beltrán Martínez, M. (2015). Analytical strategy for the detection of antibiotic residues in milk from small ruminants. Universitat Politècnica de València, https://doi.org/10.4995/Thesis/10251/48164
  • Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., & Larsson, D. J. (2014). Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in microbiology, 5, 648. https://doi.org/10.3389/fmicb.2014.00648
  • Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS microbiology reviews, 42(1), fux053. https://doi.org/10.1093/femsre/fux053
  • Berlanga, M., Gomez-Perez, L., & Guerrero, R. (2017). Biofilm formation and antibiotic susceptibility in dispersed cells versus planktonic cells from clinical, industry and environmental origins. Antonie Van Leeuwenhoek, 110, 1691-1704. https://doi.org/10.1007/s10482-017-0919-2
  • Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., Barton, H. A., & Wright, G. D. (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE, 7(4), 1-11. https://doi.org/10.1371/journal.pone.0034953
  • Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., ... & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421-1451. https://doi.org/10.1111/raq.12786
  • Budiati, T., Rusul, G., Wan-Abdullah, W. N., Arip, Y. M., Ahmad, R., & Thong, K. L. (2013). Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture, 372, 127-132. https://doi.org/10.1016/j.aquaculture.2012.11.003
  • Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x
  • Cai, S., Wang, J., Wang, K., Chen, D., Dong, X., Liu, T., Zeng, Y., Wang, X., & Wu, D. (2016). Expression, purification and antibacterial activity of NK-lysin mature peptides from the channel catfish (Ictalurus punctatus). Applied Sciences, 6(9), 240. https://doi.org/10.3390/app6090240
  • Chang, Z. Q., Neori, A., He, Y. Y., Li, J. T., Qiao, L., Preston, S. I., Liu, Ping, & Li, J. (2020). Development and current state of seawater shrimp farming, with an emphasis on integrated multi‐trophic pond aquaculture farms, in China-a review. Reviews in Aquaculture, 12(4), 2544-2558. https://doi.org/10.1111/raq.12457
  • Charlton, K. E., Russell, J., Gorman, E., Hanich, Q., Delisle, A., Campbell, B., & Bell, J. (2016). Fish, food security and health in Pacific Island countries and territories: a systematic literature review. BMC Public Health, 16(1), 1-26. https://doi.org/10.1186/s12889-016-2953-9
  • Chen, B. Y., Pyla, R., Kim, T. J., Silva, J. L., & Jung, Y. S. (2010). Antibiotic resistance in Listeria species isolated from catfish fillets and processing environment. Letters in Applied Microbiology, 50(6), 626–632. https://doi.org/10.1111/j.1472-765X.2010.02843.x
  • Chen, C., Pankow, C. A., Oh, M., Heath, L. S., Zhang, L., Du, P., Xia, K., & Pruden, A. (2019). Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments. Environment international, 128, 233-243. https://doi.org/10.1016/j.envint.2019.04.043
  • Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S., & Laxminarayan, R. (2018). Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. The Lancet Planetary Health, 2(9), e398-e405. https://doi.org/10.1016/S2542-5196(18)30186-4
  • Corum, O., Uney, K., Terzi, E., Durna Corum, D., Coskun, D., Altan, F., & Elmas, M. (2023). Effects of temperature on the pharmacokinetics, tissue residues, and withdrawal times of doxycycline in rainbow trout (Oncorhynchus mykiss) following oral administration. Veterinary Sciences, 10(6), 401. https://doi.org/10.3390/vetsci10060401
  • Corum, O., Durna Corum, D., Terzi, E., & Uney, K. (2023). Pharmacokinetics, tissue residues, and withdrawal times of oxytetracycline in rainbow trout (Oncorhynchus mykiss) after single-and multiple-dose oral administration. Animals, 13(24), 3845. https://doi.org/10.3390/ani13243845
  • Corum, O., Terzi, E., Durna Corum, D., Tastan, Y., Gonzales, R. C., Kenanoglu, O. N., ... & Uney, K. (2022). Plasma and muscle tissue disposition of enrofloxacin in Nile tilapia (Oreochromis niloticus) after intravascular, intraperitoneal, and oral administrations. Food Additives & Contaminants: Part A, 39(11), 1806-1817. https://doi.org/10.1080/19440049.2022.2121429
  • Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., Hammes, F., Bürgmann, H., & Von Gunten, U. (2016). Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment. Environmental Science and Technology, 50(21), 11862-11871. https://doi.org/10.1021/acs.est.6b02640
  • Capkin, E., Terzi, E., & Altinok, I. (2015). Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Diseases of Aquatic organisms, 114(2), 127-137. https://doi.org/10.3354/dao02852
  • Dangtip, S., Kampeera, J., Suvannakad, R., Khumwan, P., Jaroenram, W., Sonthi, M., Senapin, S., & Kiatpathomchai, W. (2019). Colorimetric detection of scale drop disease virus in Asian sea bass using loop-mediated isothermal amplification with xylenol orange. Aquaculture, 510, 386-391. https://doi.org/10.1016/j.aquaculture.2019.05.071
  • Dawood, M. A., Koshio, S., & Esteban, M. Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture, 10(4), 950-974. https://doi.org/10.1111/raq.12209
  • Desbois, A. P., Garza, M., Eltholth, M., Hegazy, Y. M., Mateus, A., Adams, A., Litte, D. C., Høg, E., Mohan, C. V., Ali, S. E., & Ali, S. E. (2021). Systems-thinking approach to identify and assess feasibility of potential interventions to reduce antibiotic use in tilapia farming in Egypt. Aquaculture, 540, 736735. https://doi.org/10.1016/j.aquaculture.2021.736735
  • D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, B. G., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477: 457-461. https://doi.org/10.1038/nature10388
  • Durna Corum, D., Corum, O., Terzi, E., Coskun, D., Bilen, S., Cetin, G., & Uney, K. (2022). Pharmacokinetics of cefquinome in rainbow trout (Oncorhynchus mykiss) after intravascular, intraperitoneal, and oral administrations. Journal of Veterinary Pharmacology and Therapeutics, 45(6), 578-583. https://doi.org/10.1111/jvp.13091
  • Fletcher, S. (2015). Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environmental health and preventive medicine, 20(4), 243-252. https://doi.org/10.1007/s12199-015-0468-0
  • Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369-378. https://doi.org/10.1016/j.jiph.2016.08.007
  • Gaikowski, M. P., Wolf, J. C., Endris, R. G., & Gingerich, W. H. (2003). Safety of Aquaflor (florfenicol, 50% type A medicated article), administered in feed to channel catfish, Ictalurus punctatus. Toxicologic Pathology, 31(6), 689-697. https://doi.org/10.1080/0192623039024182
  • Gaikowski, M. P., Wolf, J. C., Schleis, S. M., Tuomari, D., & Endris, R. G. (2013). Safety of florfenicol administered in feed to tilapia (Oreochromis sp.). Toxicologic Pathology, 41(4), 639-652. https://doi.org/10.1177/0192623312463986
  • Garza, M., Mohan, C. V., Brunton, L., Wieland, B., & Häsler, B. (2022). Typology of interventions for antimicrobial use and antimicrobial resistance in aquaculture systems in low-and middle-income countries. International Journal of Antimicrobial Agents, 59(1), 106495. https://doi.org/10.1016/j.ijantimicag.2021.106495
  • Goel, N., Ranjan, P. K., Aggarwal, R., Chaudhary, U., & Sanjeev, N. (2009). Emergence of nonalbicans Candida in neonatal septicemia and antifungal susceptibility: experience from a tertiary care center. Journal of laboratory physicians, 1(02), 053-055. https://doi.org/10.4103/0974-2727.59699
  • Gupta, A., Mumtaz, S., Li, C.-H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415-427. https://doi.org/10.1039/c7cs00748e
  • Helsens, N., Calvez, S., Prevost, H., Bouju-Albert, A., Maillet, A., Rossero, A., Hurtaud-Pessel, D., Zagorec, M., & Magras, C. (2020). Antibiotic resistance genes and bacterial communities of farmed rainbow trout fillets (Oncorhynchus mykiss). Frontiers in Microbiology, 11(December), 1–17. https://doi.org/10.3389/fmicb.2020.590902
  • Hjelmstedt, P., Sundh, H., Brijs, J., Ekström, A., Sundell, K. S., Berg, C., Sandblom, E., Bowman, J., Morgenroth, D., & Gräns, A. (2020). Effects of prophylactic antibiotic-treatment on post-surgical recovery following intraperitoneal bio-logger implantation in rainbow trout. Scientific reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-62558-y
  • Hoa, P. T. P., Managaki, S., Nakada, N., Takada, H., Shimizu, A., Anh, D. H., Viet, P.H., & Suzuki, S. (2011). Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Science of the total environment, 409(15), 2894-2901. https://doi.org/10.1016/j.scitotenv.2011.04.030
  • Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., & Matsuda, H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research, 29(8), 11054–11075. https://doi.org/10.1007/s11356-021-17825-4
  • Hurdle, J. G., O'neill, A. J., Chopra, I., & Lee, R. E. (2011). Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nature Reviews Microbiology, 9(1), 62-75. https://doi.org/10.1038/nrmicro2474
  • Leal, C.A.G., Silva, B. A., & Colombo, S. A. (2023). Susceptibility Profile and epidemiological cut-off values are influenced by serotype in fish pathogenic Streptococcus agalactiae. Antibiotics, 12(12). https://doi.org/10.3390/antibiotics12121726
  • Ikhrami, M. A., Sari, D. W. K., & Putra, M. M. P. (2024). Emergence of Antibiotic Resistance Genes sul1, tetA, blaGES, and mexF in Sapon Irrigation Canal and Aquaculture Pond in Kulon Progo Regency, Indonesia. Journal of Ecological Engineering, 25(2), 85–92. https://doi.org/10.12911/22998993/176207
  • Imran, M., Jha, S. K., Hasan, N., Insaf, A., Shrestha, J., Shrestha, J., Devkota, H.P., Khan, S.; Panth, N., Warkiani, M. E. Dua, K., Hansbro, P. M., Paudel, K. R., & Mohammed., Y. (2022). Overcoming multidrug resistance of antibiotics via nanodelivery systems. Pharmaceutics, 14(3), 586. https://doi.org/10.3390/pharmaceutics14030586
  • Indira, G. (2014). In vitro antifungal susceptibility testing of 5 antifungal agents against dermatophytic species by CLSI (M38-A) micro dilution method. Clinical Microbiology, 3(3), 1-5. https://doi.org/10.4172/2327-5073.1000145
  • Jansen, P. A., Grøntvedt, R. N., Tarpai, A., Helgesen, K. O., & Horsberg, T. E. (2016). Surveillance of the sensitivity towards antiparasitic bath-treatments in the salmon louse (Lepeophtheirus salmonis). Plos one, 11(2), e0149006. https://doi.org/10.1371/journal.pone.0149006
  • Jayachandran, A. L., Katragadda, R., Ravinder, T., Vajravelu, L., Manorajan, L., Hemalatha, S., & Shanmugam, K. (2018). Antifungal susceptibility pattern among candida species: an evaluation of disc diffusion and micro broth dilution method. Journal of Microbiology and Infectious Diseases, 8(03), 97-102. https://doi.org/10.5799/jmid.458457
  • Jonasson, E., Matuschek, E., & Kahlmeter, G. (2020). The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. Journal of Antimicrobial Chemotherapy, 75(4), 968-978. https://doi.org/10.1093/jac/dkz548
  • Julinta, R. B., Abraham, T. J., Roy, A., Singha, J., Bardhan, A., Sar, T. K., Patil, P. K., & Kumar, K. A. (2020). Safety of emamectin benzoate administered in feed to Nile tilapia Oreochromis niloticus (L.). Environmental Toxicology Pharmacology 75, 103348. https://doi.org/10.1016/j.etap.2020.103348
  • Julinta, R. B., Roy, A., Singha, J., Abraham, T. J., & Patil, P. (2017). Evaluation of efficacy of oxytetracycline oral and bath therapies in Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. International Journal of Current Microbiology and Applied Sciences, 6(7), 62-76. https://doi.org/10.20546/ijcmas.2017.607.008
  • Kumar, G., Engle, C., Hegde, S., & van Senten, J. (2020). Economics of US catfish farming practices: Profitability, economies of size, and liquidity. Journal of the World Aquaculture Society, 51(4), 829-846. https://doi.org/10.1111/jwas.12717
  • Lafferty, K. D., Harvell, C. D., Conrad, J. M., Friedman, C. S., Kent, M. L., Kuris, A. M., Powell, E.N., Rondeau, D., & Saksida, S. M. (2015). Infectious diseases affect marine fisheries and aquaculture economics. Annual review of marine science, 7, 471-496. https://doi.org/10.1146/annurev-marine-010814-015646
  • Laith, A., & Najiah, M. (2014). Aeromonas hydrophila: antimicrobial susceptibility and histopathology of isolates from diseased catfish, Clarias gariepinus (Burchell). Journal of Aquaculture Research and Development, 5(2). https://doi.org/10.4172/2155-9546.1000215
  • Larsson, D. J. (2014). Antibiotics in the environment. Upsala journal of medical sciences, 119(2), 108-112. https://doi.org/10.3109/03009734.2014.896438
  • Lawal, M. O., Aderolu, A. Z., & Ezenwanne, D. O. (2012). The growth rate and histology of catfish (Clarias gariepinus) juveniles fed antibiotics (oxytetracycline and furasol) treated feed. Rep Opinion, 4(6), 37-42.
  • Lee, J.-H., Seo, J. S., Kim, G. W., Kwon, M.-G., Kim, D.-H., Park, C.-I., Kim, K. T., & Park, J. (2022). Effect of lincomycin, an injectable lincosamide antibiotic, against streptococcosis in cultured olive flounder Paralichthys olivaceus and its pharmacokinetic-pharmacodynamic profile. Aquaculture, 548, 737667. https://doi.org/10.1016/j.aquaculture.2021.737667
  • Lee, S., & Wendy, W. (2017). Antibiotic and heavy metal resistance of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile Aeromonas septicemia and Edwardsiellosis. Veterinary world, 10(7), 803. https://doi.org/10.14202/vetworld.2017.803-807
  • Legario, F. S., Choresca Jr, C. H., Turnbull, J. F., & Crumlish, M. (2020). Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. Journal of fish diseases, 43(11), 1431-1442. https://doi.org/10.1111/jfd.13247
  • Li, J., Zhang, K., & Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237, 460-467. https://doi.org/10.1016/j.envpol.2018.02.050
  • Li, L., Yao, R., Olsen, R. H., Zhang, Y., & Meng, H. (2022). Antibiotic resistance and polymyxin B resistance mechanism of Aeromonas spp. isolated from yellow catfish, hybrid snakeheads and associated water from intensive fish farms in Southern China. LWT, 166, 113802. https://doi.org/10.1016/j.lwt.2022.113802
  • Limbu, S. M., Ma, Q., Zhang, M.-L., & Du, Z.-Y. (2019). High fat diet worsens the adverse effects of antibiotic on intestinal health in juvenile Nile tilapia (Oreochromis niloticus). Science of the total environment, 680, 169-180. https://doi.org/10.1016/j.scitotenv.2019.05.067
  • Limbu, S. M., Zhou, L., Sun, S.-X., Zhang, M.-L., & Du, Z.-Y. (2018). Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment international, 115, 205-219. https://doi.org/10.1016/j.envint.2018.03.034
  • Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. https://doi.org/10.1111/raq.12344
  • Matuschek, E., Brown, D.F.J., & Kahlmeter, G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20(4), 0255–0266. https://doi.org/10.1111/1469-0691.12373
  • Ma, X., Guo, N., Ren, S., Wang, S., & Wang, Y. (2019). Response of antibiotic resistance to the co-existence of chloramphenicol and copper during bio-electrochemical treatment of antibiotic-containing wastewater. Environment international, 126, 127-133. https://doi.org/10.1016/j.envint.2019.02.002
  • MacGowan, A., & Macnaughton, E. (2017). Antibiotic resistance. Medicine, 45(10), 622-628. https://doi.org/10.1016/j.jiph.2016.08.007
  • Manna, S. K., Das, N., Sarkar, D. J., Bera, A. K., Baitha, R., Nag, S. K., Das, B.K., Kumar, A., Ravindran, R., Krishna, N., & Patil, P. K. (2022). Pharmacokinetics, bioavailability and withdrawal period of antibiotic oxytetracycline in catfish Pangasianodon hypophthalmus. Environmental Toxicology Pharmacology, 89, 103778. https://doi.org/10.1016/j.etap.2021.103778
  • Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(4), 795. https://doi.org/10.3390/molecules23040795
  • Milijasevic, M., Veskovic-Moracanin, S., Milijasevic, J. B., Petrovic, J., & Nastasijevic, I. (2024). Antimicrobial Resistance in Aquaculture: Risk Mitigation within One Health Context. Preprints, 2024060874. https://doi.org/10.20944/preprints202406.0874.v1
  • Minich, J. J., Zhu, Q., Xu, Z. Z., Amir, A., Ngochera, M., Simwaka, M., Allen, E. E., Zidana, H., & Knight, R. (2018). Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). Microbiologyopen, 7(6), e00716. https://doi.org/10.1002/mbo3.716
  • Miranda, C. D., Godoy, F. A., & Lee, M. R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Frontiers in Microbiology, 9(JUN), 1-14. https://doi.org/10.3389/fmicb.2018.01284
  • Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45(2), 681-693. https://doi.org/10.1016/j.watres.2010.08.033
  • Mohanty, D., Panda, S., Kumar, S., & Ray, P. (2019). In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial pathogenesis, 126, 212-217. https://doi.org/10.1016/j.micpath.2018.11.014
  • Morshdy, A. E. M., Hussein, M. A., Mohamed, M. A. A., Hamed, E., El-Murr, A. E., & Darwish, W. S. (2022). Tetracycline residues in tilapia and catfish tissue and the effect of different cooking methods on oxytetracycline and doxycycline residues. Journal of Consumer Protection and Food Safety, 17(4), 387-393. https://doi.org/10.1007/s00003-022-01389-7
  • Mostafa, A. E., Salam, R. A. A., Hadad, G. M., & Eissa, I. A. (2017). Simultaneous determination of selected veterinary antibiotics in Nile tilapia (Orechromis niloticus) and water samples by HPLC/UV and LC-MS/MS. RSC advances, 7(73), 46171-46182. https://doi.org/ 10.1039/C7RA08398J
  • Nawaz, M., Sung, K., Khan, S. A., Khan, A. A., & Steele, R. (2006). Biochemical and molecular characterization of tetracycline-resistant Aeromonas veronii isolates from catfish. Applied and environmental microbiology, 72(10), 6461-6466. https://doi.org/10.1128/AEM.00271-06
  • Naviner, M., Gordon, L., Giraud, E., Denis, M., Mangion, C., Le Bris, H., & Ganière, J.P. (2011). Antimicrobial resistance of Aeromonas spp. isolated from the growth pond to the commercial product in a rainbow trout farm following a flumequine treatment. Aquaculture, 315(3–4), 236–241. https://doi.org/10.1016/j.aquaculture.2011.03.006
  • Nyboer, E. A., Embke, H. S., Robertson, A. M., Arlinghaus, R., Bower, S., Baigun, C., Beard, D., Cooke, S. J., Cowx, I.G., Koehn, J. D. Lyach, R., Milardi, M., Potts, W., & Lynch, A.J. (2022). Overturning stereotypes: The fuzzy boundary between recreational and subsistence inland fisheries. Fish Fisheries, 23(6), 1282-1298. https://doi.org/10.1111/faf.12688
  • Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., Atakpa, E. O., Agu, C. V., & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 29(46), 69241-69274. https://doi.org/10.1007/s11356-022-22319-y
  • Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture, Public health reviews, 1-22. https://doi.org/10.1186/s40985-018-0099-2
  • Okon, E. M., Okocha, R. C., Adesina, B. T., Ehigie, J. O., Alabi, O. O., Bolanle, A. M., Matekwe, N., Falana, B. M., Tiamiyu, A. M., Olatoye, I. O., & Adedeji, O. B. (2022). Antimicrobial resistance in fish and poultry : Public health implications for animal source food production in Nigeria, Egypt, and South Africa. Frontiers in Antibiotics, 1:1043302(November), 1-19. https://doi.org/10.3389/frabi.2022.1043302
  • Opiyo, M. A., Marijani, E., Muendo, P., Odede, R., Leschen, W., & Charo-Karisa, H. (2018). A review of aquaculture production and health management practices of farmed fish in Kenya. International journal of veterinary science medicine 6(2), 141-148. https://doi.org/10.1016/j.ijvsm.2018.07.001
  • Oviedo-Bolaños, K., Rodríguez-Rodríguez, J. A., Sancho-Blanco, C., Barquero-Chanto, J. E., Peña-Navarro, N., Escobedo-Bonilla, C. M., & Umaña-Castro, R. (2021). Molecular identification of Streptococcus sp. and antibiotic resistance genes present in Tilapia farms (Oreochromis niloticus) from the Northern Pacific region, Costa Rica. Aquaculture International, 29(5), 2337-2355. https://doi.org/10.1007/s10499-021-00751-0
  • Patil, H. J., Benet-Perelberg, A., Naor, A., Smirnov, M., Ofek, T., Nasser, A., Minz, D., & Cytryn, E. (2016). Evidence of increased antibiotic resistance in phylogenetically-diverse Aeromonas isolates from semi-intensive fish ponds treated with antibiotics. Frontiers in microbiology, 7, 1875. https://doi.org/10.3389/fmicb.2016.01875
  • Pauzi, N. A., Mohamad, N., Azzam-Sayuti, M., Yasin, I. S. M., Saad, M. Z., Nasruddin, N. S., & Azmai, M. N. A. (2020). Antibiotic susceptibility and pathogenicity of Aeromonas hydrophila isolated from red hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus) in Malaysia. Veterinary world, 13(10), 2166. https://doi.org/10.14202/vetworld.2020.2166-2171
  • Pereira, J. G., Fernandes, J., Duarte, A. R., & Fernandes, S. M. (2022). β-Lactam dosing in critical patients: a narrative review of optimal efficacy and the prevention of resistance and toxicity. Antibiotics, 11(12), 1839. https://doi.org/10.3390/antibiotics11121839
  • Pfaller, M., & Diekema, D. (2012). Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. Journal of clinical microbiology, 50(9), 2846-2856. https://doi.org/10.1128/jcm.00937-12
  • Popoola, O. M. (2022). Fish production and biodiversity conservation: An interplay for life sustenance. In Biodiversity in Africa: Potentials, Threats and Conservation (pp. 293-321): Springer.
  • Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 75, 1497-1517. https://doi.org/10.2478/s11756-020-00456-4
  • Raju, D. V., Nagarajan, A., Pandit, S., Nag, M., Lahiri, D., & Upadhye, V. (2022). Effect of bacterial quorum sensing and mechanism of antimicrobial resistance. Biocatalysis and Agricultural Biotechnology, 43, 102409. https://doi.org/10.1016/j.bcab.2022.102409
  • Ray, S., Das, S., & Suar, M. (2017). Molecular mechanism of drug resistance. Drug resistance in bacteria, fungi, malaria, and cancer, 47-110. https://doi.org/10.1007/978-3-319-48683-3_3
  • Rico, A., Dimitrov, M. R., Van Wijngaarden, R. P., Satapornvanit, K., Smidt, H., & Van den Brink, P. J. (2014a). Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms. Aquatic Toxicology, 147, 92-104. https://doi.org/10.1016/j.aquatox.2013.12.008
  • Rahimi, N. N. M. N., Ikhsan, N. F. M., Loh, J. Y., Ranzil, F. K. E., Gina, M., Lim, S. H. E., Lai, K. S., & Chong, C. M. (2022). Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics, 11(4), 1–24. https://doi.org/10.3390/antibiotics11040469
  • Rico, A., Oliveira, R., McDonough, S., Matser, A., Khatikarn, J., Satapornvanit, K., Nogueira, A. J. A., Soares, A. M. V. M., Domingues, I., & Van den Brink, P. (2014b). Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environmental Pollution, 191, 8-16. https://doi.org/10.1016/j.envpol.2014.04.002
  • Romero, J., Feijoó, C. G., & Navarrete, P. (2012). Antibiotics in aquaculture-use, abuse and alternatives. Health and environment in aquaculture, 159, 159-198. https://doi.org/10.5772/28157
  • Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural products as platforms to overcome antibiotic resistance. Chemical reviews, 117(19), 12415-12474. https://doi.org/10.1021/acs.chemrev.7b00283
  • Satlin, M. J., Lewis II, J. S., Weinstein, M. P., Patel, J., Humphries, R. M., Kahlmeter, G., Giske, C. G., & Turnidge, J. (2020). Clinical and laboratory standards institute (CLSI) and european committee on antimicrobial susceptibility testing (EUCAST) position statements on polymyxin B and colistin clinical breakpoints. Clinical Infectious Diseases, 71(9), 523–529. https://doi.org/10.1093/cid/ciaa121
  • Sáenz, J. S., Marques, T. V., Simões, R., Barone, C., Eurico, J., Cyrino, P., Kublik, S., Nesme, J., Schloter, M., Rath, S., & Vestergaard, G. (2019). Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome, 7(24), 1-14. https://doi.org/10.1186/s40168-019-0632-7
  • Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10(1), 0-9. https://doi.org/10.1038/s41598-020-78849-3
  • Saejung, C., Hatai, K., & Sanoamuang, L. O. (2014). Bath efficacy of sodium hypochlorite, oxytetracycline dihydrate and chloramphenicol against bacterial black disease in fairy shrimp Branchinella thailandensis. Aquaculture Research, 45(10), 1697-1705. https://doi.org/10.1111/are.12115
  • Salako, D., Trang, P., Ha, N., Miyamoto, T., & Ngoc, T. (2020). Prevalence of antibiotic resistance Escherichia coli isolated from pangasius catfish (Pangasius hypophthalmus) fillet during freezing process at two factories in Mekong Delta Vietnam. Food Research, 4(5), 1785-1793. https://doi.org/10.26656/fr.2017.4(5).160
  • Samaddar, A. (2022). Recent trends on tilapia cultivation and its major socioeconomic impact among some developing nations: A review. Asian Journal of Fisheries Aquatic Research, 1-11.
  • Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water, 12(12), 3313. https://doi.org/10.3390/w12123313
  • Shan, Q., Fan, J., Wang, J., Zhu, X., Yin, Y., & Zheng, G. (2018). Pharmacokinetics of enrofloxacin after oral, intramuscular and bath administration in Crucian carp (Carassius auratus). Journal of veterinary pharmacology and therapeutics, 41(1), 159-162. https://doi.org/10.1111/jvp.12428
  • Sherif, A. H., Gouda, M., Darwish, S., & Abdelmohsin, A. (2021). Prevalence of antibiotic‐resistant bacteria in freshwater fish farms. Aquaculture Research, 52(5), 2036-2047. https://doi.org/10.1111/are.15052
  • Shine, D. J., Shasha, S., Emmanuel, O., Fometu, S. S., & Guohua, W. (2020). Biosynthesizing gold nanoparticles with Parkia biglobosa leaf extract for antibacterial efficacy in vitro and photocatalytic degradation activities of rhodamine B dye. Advanced Science, Engineering and Medicine, 12(7), 970-981. https://doi.org/10.1166/asem.2020.2661
  • Sing, C. K., Khan, M. Z. I., Daud, H. H. M., & Aziz, A. R. (2016). Prevalence of Salmonella sp. in African Catfish (Clarias gariepinus) obtained from farms and wet markets in Kelantan, Malaysia and their antibiotic resistance. Sains Malaysiana, 45(11), 1597-1602.
  • Singh, A., & Lakra, W. (2012). Culture of Pangasianodon hypophthalmus into India: impacts and present scenario. Pakistan Journal of Biological Sciences, 15(1), 19. https://doi.org/10.3923/pjbs.2012.19.26
  • Sivaraman, G., Sudha, S., Muneeb, K., Shome, B., Holmes, M., & Cole, J. (2020). Molecular assessment of antimicrobial resistance and virulence in multi drug resistant ESBL-producing Escherichia coli and Klebsiella pneumoniae from food fishes, Assam, India. Microbial Pathogenesis, 149, 104581. https://doi.org/10.1016/j.micpath.2020.104581
  • Skandalis, N., Maeusli, M., Papafotis, D., Miller, S., Lee, B., Theologidis, I., & Luna, B. (2021). Environmental spread of antibiotic resistance. Antibiotics, 10(6), 640. https://doi.org/10.3390/antibiotics10060640
  • Sønderholm, M., Kragh, K. N., Koren, K., Jakobsen, T. H., Darch, S. E., Alhede, M., Jensen, P.Q., Whiteley, M., Kühl, M., & Bjarnsholt, T. (2017). Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics. Applied and Environmental Microbiology, 83(9), e00113-00117. https://doi.org/10.1128/AEM.00113-17
  • Syal, K., Mo, M., Yu, H., Iriya, R., Jing, W., Guodong, S., Wang, S., Grys, T. E., Haydel, S. E., & Tao, N. (2017). Current and emerging techniques for antibiotic susceptibility tests. Theranostics, 7(7), 1795. https://doi.org/10.7150/thno.19217
  • Terzi, E., Corum, O., Bilen, S., Kenanoglu, O. N., Atik, O., & Uney, K. (2020). Pharmacokinetics of danofloxacin in rainbow trout after different routes of administration. Aquaculture, 520, 734984. https://doi.org/10.1016/j.aquaculture.2020.734984
  • Touraki, M., Niopas, I., & Karagiannis, V. (2012). Treatment of vibriosis in European sea bass larvae, Dicentrarchus labrax L., with oxolinic acid administered by bath or through medicated nauplii of Artemia franciscana (Kellogg): efficacy and residual kinetics. Journal of Fish Diseases, 35(7), 513-522. https://doi.org/10.1111/j.1365-2761.2012.01387.x
  • Treves-Brown, K. M. (2013). Applied fish pharmacology (Vol. 3): Springer Science & Business Media. Uney, K., Terzi, E., Durna Corum, D., Ozdemir, R. C., Bilen, S., & Corum, O. (2021). Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of enrofloxacin following single oral administration of different doses in brown trout (Salmo trutta). Animals, 11(11), 3086. https://doi.org/10.3390/ani11113086.
  • Van Belkum, A., Burnham, C.-A. D., Rossen, J. W., Mallard, F., Rochas, O., & Dunne Jr, W. M. (2020). Innovative and rapid antimicrobial susceptibility testing systems. Nature Reviews Microbiology, 18(5), 299-311. https://doi.org/10.1038/s41579-020-0327-x
  • Verner-jeffreys, D. W., Welch, T. J., Schwarz, T., Pond, M. J., Woodward, M. J., Haig, S. J., Rimmer, G. S. E., Roberts, E., Morrison, V., & Baker-Austin, C. (2009). High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS ONE, 4(12). https://doi.org/10.1371/journal.pone.0008388
  • Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture : sources , sinks and solutions. Marine Drugs, 15(158), 1-16. https://doi.org/10.3390/md15060158
  • Wamala, S. P., Mugimba, K. K., Mutoloki, S., Evensen, Ø., Mdegela, R., Byarugaba, D. K., & Sørum, H. (2018). Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fisheries and Aquatic Sciences, 21(1), 1-10. https://doi.org/10.1186/s41240-017-0080-x
  • Wang, H.-B., Wu, Y.-H., Luo, L.-W., Yu, T., Xu, A., Xue, S., Chen, G.-Q., Ni, X.-Y., Peng, L., Chen, Z., Wang, Y.-H., Tong, X., Bai, Y., Xu, Y.-Q., & Hu, H.Y. (2021). Risks, characteristics, and control strategies of disinfection-residual-bacteria (DRB) from the perspective of microbial community structure. Water Research, 204, 117606. https://doi.org/10.1016/j.watres.2021.117606
  • Wanja, D. W., Mbuthia, P. G., Waruiru, R. M., Bebora, L. C., Ngowi, H. A., & Nyaga, P. N. (2020). Antibiotic and disinfectant susceptibility patterns of bacteria isolated from farmed fish in kirinyaga county, Kenya. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/8897338
  • Wright, G. D. (2016). Antibiotic adjuvants: rescuing antibiotics from resistance. Trends in microbiology, 24(11), 862-871. https://doi.org/10.1016/j.tim.2016.06.009
  • Xu, N., Li, M., Ai, X., & Lin, Z. (2021). Determination of pharmacokinetic and pharmacokinetic-pharmacodynamic parameters of doxycycline against Edwardsiella ictaluri in yellow catfish (Pelteobagrus fulvidraco). Antibiotics, 10(3), 329. https://doi.org/10.3390/antibiotics10030329
  • Yang, Q., Zhao, M., Wang, K.-Y., Wang, J., He, Y., Wang, E.-L., Liu, T., Chen, D.-F., & Lai, W. (2017). Multidrug-resistant Aeromonas veronii recovered from Channel catfish (Ictalurus punctatus) in China: prevalence and mechanisms of fluoroquinolone resistance. Microbial Drug Resistance, 23(4), 473-479. https://doi.org/10.1089/mdr.2015.0296
  • Ye, C., Shi, J., Zhang, X., Qin, L., Jiang, Z., Wang, J., Li, Y., & Liu, B. (2021). Occurrence and bioaccumulation of sulfonamide antibiotics in different fish species from Hangbu-Fengle River, Southeast China. Environmental Science and Pollution Research, 28, 44111-44123. https://doi.org/10.1007/s11356-021-13850-5
  • Yukgehnaish, K., Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray, B. A., & Arockiaraj, J. (2020). Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903-1927. https://doi.org/10.1111/raq.12416
  • Yuan, X., Lv, Z., Zhang, Z., Han, Y., Liu, Z., & Zhang, H. (2023). A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: occurrence, contamination, and transmission. Toxics, 11(420), 2–14. https://doi.org/10.3390/toxics11050420
  • Zhang, J., Zhang, X., Zhou, Y., Han, Q., Wang, X., Song, C., Wang, S., & Zhao, S. (2023). Occurrence, distribution and risk assessment of antibiotics at various aquaculture stages in typical aquaculture areas surrounding the Yellow Sea. Journal of Environmental Sciences, 126, 621-632. https://doi.org/10.1016/j.jes.2022.01.024

Su Ürünleri Yetiştiriciliğinde Antibiyotik Direnci Riski: Geleceğe Bakış

Year 2024, Volume: 20 Issue: 4, 367 - 387, 01.12.2024
https://doi.org/10.22392/actaquatr.1478517

Abstract

Deniz ürünleri üretimi, milyonlarca insana istihdam ve geçim sağlayan kritik bir küresel endüstridir. Sektördeki üretim teknolojilerinin yoğunlaşması, deniz ürünleri üretimindeki arz-talep açığını kapatmak için ortaya çıkmıştır, ancak potansiyel halk sağlığı tehditlerine ilişkin endişeler gündeme gelmiştir. Örneğin, su ürünleri yetiştiriciliği ortamlarında artan stok yoğunlukları balıklarda stresin artmasına yol açarak patojen çoğalmasına elverişli bir ortam yaratmıştır. Antibiyotikler balıklarda ve diğer hayvanlarda bakteriyel enfeksiyonların tedavisinde ve önlenmesinde yaygın olarak kullanılmaktadır. Ancak antibiyotiklerin insan ve hayvan sağlığına zararlı etki yapma riski bulunmaktadır. Balıklarda ve diğer su hayvanlarında, ayrıca su ortamında ve diğer ekolojik nişlerde antibiyotiklere dirençli bakterilerin ortaya çıkması, ilaca dirençli bakterilerin ve aktarılabilir direnç genlerinin rezervuarlarını oluşturmuştur. İnsan patojenlerindeki antimikrobiyal ajanlara karşı direnç, insan enfeksiyonları sırasında tedavi seçeneklerini ciddi şekilde sınırlandırmaktadır. Bu derleme, su ürünleri yetiştiriciliğinde yaygın olarak kullanılan antibiyotik türleri, antibiyotik uygulaması, antibiyotik test teknikleri ve su, balık ve sedimentteki antibiyotik direnci hakkındaki bilgileri bir araya getirmektedir. Antibiyotik direnciyle mücadelede karşılaşılan zorluklar, stratejiler ve kısıtlamaların yanı sıra su ürünleri yetiştiriciliğinde antibiyotik kullanımına yönelik beklentiler de tartışılmaktadır.

References

  • Abarike, E., Atuna, R., Dandi, S., Agyekum, S., Appenteng, P., Alhassan, E., Akongyuure, D., Anchirinah, J., & Duodo, K. (2023). Preliminary survey on perceived fish health management practices among small-scale cage tilapia farmers on Lake Volta. HSOA Journal of Aquaculture & Fisheries, 7, 1-6. https://doi.org/10.24966/AAF-5523/100065
  • Abdallah, E. M., Alhatlani, B. Y., de Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. Plants, 12(17). https://doi.org/10.3390/plants12173077
  • Altan, F., Corum, O., Durna Corum, D., Uney, K., Terzi, E., Bilen, S., ... & Elmas, M. (2024). Pharmacokinetic behaviour and pharmacokinetic–pharmacodynamic integration of doxycycline in rainbow trout (Oncorhynchus mykiss) after intravascular, intramuscular and oral administrations. Veterinary Medicine and Science, 10(3), e1419. https://doi.org/10.1002/vms3.1419
  • Ajayi, A. O., Odeyemi, A. T., Akinjogunla, O. J., Adeyeye, A. B., & Ayo-ajayi, I. (2024). Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infection Ecology and Epidemiology, 14(1), 2312953. https://doi.org/10.1080/20008686.2024.2312953
  • Amos, G. C., Gozzard, E., Carter, C. E., Mead, A., Bowes, M. J., Hawkey, P. M., Zhang, L., Singer, A. C., Gaze, W. H., & Wellington, E. M. H. (2015). Validated predictive modelling of the environmental resistome. ISME Journal, 9(6), 1467-1476. https://doi.org/10.1038/ismej.2014.237
  • Arias-Andres, M., Kettner, M. T., Miki, T., & Grossart, H. P. (2018). Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems. Science of the Total Environment, 635, 1152-1159. https://doi.org/10.1016/j.scitotenv.2018.04.199
  • Ahmed, M. N., Porse, A., Sommer, M. O. A., Høiby, N., & Ciofu, O. (2018). Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrobial agents and chemotherapy, 62(8), 10-1128. https://doi.org/10.1128/aac.00320-18
  • Algammal, A. M., Mabrok, M., Ezzat, M., Alfifi, K. J., Esawy, A. M., Elmasry, N., & El-Tarabili, R. M. (2022). Prevalence, antimicrobial resistance (AMR) pattern, virulence determinant and AMR genes of emerging multi-drug resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquaculture, 548, 737643. https://doi.org/10.1016/j.aquaculture.2021.737643
  • Andrieu, M., Rico, A., Phu, T. M., Huong, D. T. T., Phuong, N. T., & Van den Brink, P. J. (2015). Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam. Chemosphere, 119, 407-414. https://doi.org/10.1016/j.chemosphere.2014.06.062
  • Apenteng, J. A., Yeboah, E. E. A., & Kyere-Davies, G. (2022). Antibiotic susceptibility of bacteria isolates from ward environment of a hospital in Tema, Ghana. African Journal of Microbiology Research, 16(6), 211-216. https://doi.org/10.5897/AJMR2020.9338
  • Ashiru, A., Uaboi-Egbeni, P., Oguntowo, J., & Idika, C. (2011). Isolation and antibiotic profile of Aeromonas species from tilapia fish (Tilapia nilotica) and catfish (Clarias betrachus). Pakistan journal of nutrition, 10(10), 982-986. https://doi.org/10.3923/pjn.2011.982.986
  • Assane, I. M., de Sousa, E. L., Valladão, G. M. R., Tamashiro, G. D., Criscoulo-Urbinati, E., Hashimoto, D. T., & Pilarski, F. (2021). Phenotypic and genotypic characterization of Aeromonas jandaei involved in mass mortalities of cultured Nile tilapia, Oreochromis niloticus (L.) in Brazil. Aquaculture, 541, 736848. https://doi.org/10.1016/j.aquaculture.2021.736848
  • Bakht, J., Ali, H., Khan, M. A., Khan, A., Saeed, M., Shafi, M., Islam, A., & Tayyab, M. (2011). Antimicrobial activities of different solvents extracted samples of Linum usitatissimum by disc diffusion method. African Journal of Biotechnology, 10(85), 19825-19835. https://doi.org/10.5897/AJB11.229
  • Baltekin, Ö., Boucharin, A., Tano, E., Andersson, D. I., & Elf, J. (2017). Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proceedings of the National Academy of Sciences, 114(34), 9170-9175. https://doi.org/10.1073/pnas.1708558114
  • Barnes, A. C., Rudenko, O., Landos, M., Dong, H. T., Lusiastuti, A., Phuoc, L. H., & Delamare‐Deboutteville, J. (2022). Autogenous vaccination in aquaculture: A locally enabled solution towards reduction of the global antimicrobial resistance problem. Reviews in Aquaculture, 14(2), 907-918. https://doi.org/10.1111/raq.12633
  • Begum, J., Mir, N., Dev, K., & Khan, I. (2018). Dynamics of antibiotic resistance with special reference to Shiga toxin‐producing Escherichia coli infections. Journal of applied microbiology, 125(5), 1228-1237. https://doi.org/10.1111/jam.14034
  • Belkina, T., Duvanova, N., Karbovskaja, J., Tebbens, J. D., & Vlcek, J. (2017). Antibiotic use practices of pharmacy staff: a cross-sectional study in Saint Petersburg, the Russian Federation. BMC Pharmacology and toxicology, 18(1), 1-6. https://doi.org/10.1186/s40360-017-0116-y
  • Beltrán Martínez, M. (2015). Analytical strategy for the detection of antibiotic residues in milk from small ruminants. Universitat Politècnica de València, https://doi.org/10.4995/Thesis/10251/48164
  • Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., & Larsson, D. J. (2014). Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in microbiology, 5, 648. https://doi.org/10.3389/fmicb.2014.00648
  • Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS microbiology reviews, 42(1), fux053. https://doi.org/10.1093/femsre/fux053
  • Berlanga, M., Gomez-Perez, L., & Guerrero, R. (2017). Biofilm formation and antibiotic susceptibility in dispersed cells versus planktonic cells from clinical, industry and environmental origins. Antonie Van Leeuwenhoek, 110, 1691-1704. https://doi.org/10.1007/s10482-017-0919-2
  • Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., Barton, H. A., & Wright, G. D. (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE, 7(4), 1-11. https://doi.org/10.1371/journal.pone.0034953
  • Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., ... & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421-1451. https://doi.org/10.1111/raq.12786
  • Budiati, T., Rusul, G., Wan-Abdullah, W. N., Arip, Y. M., Ahmad, R., & Thong, K. L. (2013). Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture, 372, 127-132. https://doi.org/10.1016/j.aquaculture.2012.11.003
  • Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x
  • Cai, S., Wang, J., Wang, K., Chen, D., Dong, X., Liu, T., Zeng, Y., Wang, X., & Wu, D. (2016). Expression, purification and antibacterial activity of NK-lysin mature peptides from the channel catfish (Ictalurus punctatus). Applied Sciences, 6(9), 240. https://doi.org/10.3390/app6090240
  • Chang, Z. Q., Neori, A., He, Y. Y., Li, J. T., Qiao, L., Preston, S. I., Liu, Ping, & Li, J. (2020). Development and current state of seawater shrimp farming, with an emphasis on integrated multi‐trophic pond aquaculture farms, in China-a review. Reviews in Aquaculture, 12(4), 2544-2558. https://doi.org/10.1111/raq.12457
  • Charlton, K. E., Russell, J., Gorman, E., Hanich, Q., Delisle, A., Campbell, B., & Bell, J. (2016). Fish, food security and health in Pacific Island countries and territories: a systematic literature review. BMC Public Health, 16(1), 1-26. https://doi.org/10.1186/s12889-016-2953-9
  • Chen, B. Y., Pyla, R., Kim, T. J., Silva, J. L., & Jung, Y. S. (2010). Antibiotic resistance in Listeria species isolated from catfish fillets and processing environment. Letters in Applied Microbiology, 50(6), 626–632. https://doi.org/10.1111/j.1472-765X.2010.02843.x
  • Chen, C., Pankow, C. A., Oh, M., Heath, L. S., Zhang, L., Du, P., Xia, K., & Pruden, A. (2019). Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments. Environment international, 128, 233-243. https://doi.org/10.1016/j.envint.2019.04.043
  • Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S., & Laxminarayan, R. (2018). Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. The Lancet Planetary Health, 2(9), e398-e405. https://doi.org/10.1016/S2542-5196(18)30186-4
  • Corum, O., Uney, K., Terzi, E., Durna Corum, D., Coskun, D., Altan, F., & Elmas, M. (2023). Effects of temperature on the pharmacokinetics, tissue residues, and withdrawal times of doxycycline in rainbow trout (Oncorhynchus mykiss) following oral administration. Veterinary Sciences, 10(6), 401. https://doi.org/10.3390/vetsci10060401
  • Corum, O., Durna Corum, D., Terzi, E., & Uney, K. (2023). Pharmacokinetics, tissue residues, and withdrawal times of oxytetracycline in rainbow trout (Oncorhynchus mykiss) after single-and multiple-dose oral administration. Animals, 13(24), 3845. https://doi.org/10.3390/ani13243845
  • Corum, O., Terzi, E., Durna Corum, D., Tastan, Y., Gonzales, R. C., Kenanoglu, O. N., ... & Uney, K. (2022). Plasma and muscle tissue disposition of enrofloxacin in Nile tilapia (Oreochromis niloticus) after intravascular, intraperitoneal, and oral administrations. Food Additives & Contaminants: Part A, 39(11), 1806-1817. https://doi.org/10.1080/19440049.2022.2121429
  • Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., Hammes, F., Bürgmann, H., & Von Gunten, U. (2016). Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment. Environmental Science and Technology, 50(21), 11862-11871. https://doi.org/10.1021/acs.est.6b02640
  • Capkin, E., Terzi, E., & Altinok, I. (2015). Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Diseases of Aquatic organisms, 114(2), 127-137. https://doi.org/10.3354/dao02852
  • Dangtip, S., Kampeera, J., Suvannakad, R., Khumwan, P., Jaroenram, W., Sonthi, M., Senapin, S., & Kiatpathomchai, W. (2019). Colorimetric detection of scale drop disease virus in Asian sea bass using loop-mediated isothermal amplification with xylenol orange. Aquaculture, 510, 386-391. https://doi.org/10.1016/j.aquaculture.2019.05.071
  • Dawood, M. A., Koshio, S., & Esteban, M. Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture, 10(4), 950-974. https://doi.org/10.1111/raq.12209
  • Desbois, A. P., Garza, M., Eltholth, M., Hegazy, Y. M., Mateus, A., Adams, A., Litte, D. C., Høg, E., Mohan, C. V., Ali, S. E., & Ali, S. E. (2021). Systems-thinking approach to identify and assess feasibility of potential interventions to reduce antibiotic use in tilapia farming in Egypt. Aquaculture, 540, 736735. https://doi.org/10.1016/j.aquaculture.2021.736735
  • D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, B. G., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477: 457-461. https://doi.org/10.1038/nature10388
  • Durna Corum, D., Corum, O., Terzi, E., Coskun, D., Bilen, S., Cetin, G., & Uney, K. (2022). Pharmacokinetics of cefquinome in rainbow trout (Oncorhynchus mykiss) after intravascular, intraperitoneal, and oral administrations. Journal of Veterinary Pharmacology and Therapeutics, 45(6), 578-583. https://doi.org/10.1111/jvp.13091
  • Fletcher, S. (2015). Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environmental health and preventive medicine, 20(4), 243-252. https://doi.org/10.1007/s12199-015-0468-0
  • Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369-378. https://doi.org/10.1016/j.jiph.2016.08.007
  • Gaikowski, M. P., Wolf, J. C., Endris, R. G., & Gingerich, W. H. (2003). Safety of Aquaflor (florfenicol, 50% type A medicated article), administered in feed to channel catfish, Ictalurus punctatus. Toxicologic Pathology, 31(6), 689-697. https://doi.org/10.1080/0192623039024182
  • Gaikowski, M. P., Wolf, J. C., Schleis, S. M., Tuomari, D., & Endris, R. G. (2013). Safety of florfenicol administered in feed to tilapia (Oreochromis sp.). Toxicologic Pathology, 41(4), 639-652. https://doi.org/10.1177/0192623312463986
  • Garza, M., Mohan, C. V., Brunton, L., Wieland, B., & Häsler, B. (2022). Typology of interventions for antimicrobial use and antimicrobial resistance in aquaculture systems in low-and middle-income countries. International Journal of Antimicrobial Agents, 59(1), 106495. https://doi.org/10.1016/j.ijantimicag.2021.106495
  • Goel, N., Ranjan, P. K., Aggarwal, R., Chaudhary, U., & Sanjeev, N. (2009). Emergence of nonalbicans Candida in neonatal septicemia and antifungal susceptibility: experience from a tertiary care center. Journal of laboratory physicians, 1(02), 053-055. https://doi.org/10.4103/0974-2727.59699
  • Gupta, A., Mumtaz, S., Li, C.-H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415-427. https://doi.org/10.1039/c7cs00748e
  • Helsens, N., Calvez, S., Prevost, H., Bouju-Albert, A., Maillet, A., Rossero, A., Hurtaud-Pessel, D., Zagorec, M., & Magras, C. (2020). Antibiotic resistance genes and bacterial communities of farmed rainbow trout fillets (Oncorhynchus mykiss). Frontiers in Microbiology, 11(December), 1–17. https://doi.org/10.3389/fmicb.2020.590902
  • Hjelmstedt, P., Sundh, H., Brijs, J., Ekström, A., Sundell, K. S., Berg, C., Sandblom, E., Bowman, J., Morgenroth, D., & Gräns, A. (2020). Effects of prophylactic antibiotic-treatment on post-surgical recovery following intraperitoneal bio-logger implantation in rainbow trout. Scientific reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-62558-y
  • Hoa, P. T. P., Managaki, S., Nakada, N., Takada, H., Shimizu, A., Anh, D. H., Viet, P.H., & Suzuki, S. (2011). Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Science of the total environment, 409(15), 2894-2901. https://doi.org/10.1016/j.scitotenv.2011.04.030
  • Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., & Matsuda, H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research, 29(8), 11054–11075. https://doi.org/10.1007/s11356-021-17825-4
  • Hurdle, J. G., O'neill, A. J., Chopra, I., & Lee, R. E. (2011). Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nature Reviews Microbiology, 9(1), 62-75. https://doi.org/10.1038/nrmicro2474
  • Leal, C.A.G., Silva, B. A., & Colombo, S. A. (2023). Susceptibility Profile and epidemiological cut-off values are influenced by serotype in fish pathogenic Streptococcus agalactiae. Antibiotics, 12(12). https://doi.org/10.3390/antibiotics12121726
  • Ikhrami, M. A., Sari, D. W. K., & Putra, M. M. P. (2024). Emergence of Antibiotic Resistance Genes sul1, tetA, blaGES, and mexF in Sapon Irrigation Canal and Aquaculture Pond in Kulon Progo Regency, Indonesia. Journal of Ecological Engineering, 25(2), 85–92. https://doi.org/10.12911/22998993/176207
  • Imran, M., Jha, S. K., Hasan, N., Insaf, A., Shrestha, J., Shrestha, J., Devkota, H.P., Khan, S.; Panth, N., Warkiani, M. E. Dua, K., Hansbro, P. M., Paudel, K. R., & Mohammed., Y. (2022). Overcoming multidrug resistance of antibiotics via nanodelivery systems. Pharmaceutics, 14(3), 586. https://doi.org/10.3390/pharmaceutics14030586
  • Indira, G. (2014). In vitro antifungal susceptibility testing of 5 antifungal agents against dermatophytic species by CLSI (M38-A) micro dilution method. Clinical Microbiology, 3(3), 1-5. https://doi.org/10.4172/2327-5073.1000145
  • Jansen, P. A., Grøntvedt, R. N., Tarpai, A., Helgesen, K. O., & Horsberg, T. E. (2016). Surveillance of the sensitivity towards antiparasitic bath-treatments in the salmon louse (Lepeophtheirus salmonis). Plos one, 11(2), e0149006. https://doi.org/10.1371/journal.pone.0149006
  • Jayachandran, A. L., Katragadda, R., Ravinder, T., Vajravelu, L., Manorajan, L., Hemalatha, S., & Shanmugam, K. (2018). Antifungal susceptibility pattern among candida species: an evaluation of disc diffusion and micro broth dilution method. Journal of Microbiology and Infectious Diseases, 8(03), 97-102. https://doi.org/10.5799/jmid.458457
  • Jonasson, E., Matuschek, E., & Kahlmeter, G. (2020). The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. Journal of Antimicrobial Chemotherapy, 75(4), 968-978. https://doi.org/10.1093/jac/dkz548
  • Julinta, R. B., Abraham, T. J., Roy, A., Singha, J., Bardhan, A., Sar, T. K., Patil, P. K., & Kumar, K. A. (2020). Safety of emamectin benzoate administered in feed to Nile tilapia Oreochromis niloticus (L.). Environmental Toxicology Pharmacology 75, 103348. https://doi.org/10.1016/j.etap.2020.103348
  • Julinta, R. B., Roy, A., Singha, J., Abraham, T. J., & Patil, P. (2017). Evaluation of efficacy of oxytetracycline oral and bath therapies in Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. International Journal of Current Microbiology and Applied Sciences, 6(7), 62-76. https://doi.org/10.20546/ijcmas.2017.607.008
  • Kumar, G., Engle, C., Hegde, S., & van Senten, J. (2020). Economics of US catfish farming practices: Profitability, economies of size, and liquidity. Journal of the World Aquaculture Society, 51(4), 829-846. https://doi.org/10.1111/jwas.12717
  • Lafferty, K. D., Harvell, C. D., Conrad, J. M., Friedman, C. S., Kent, M. L., Kuris, A. M., Powell, E.N., Rondeau, D., & Saksida, S. M. (2015). Infectious diseases affect marine fisheries and aquaculture economics. Annual review of marine science, 7, 471-496. https://doi.org/10.1146/annurev-marine-010814-015646
  • Laith, A., & Najiah, M. (2014). Aeromonas hydrophila: antimicrobial susceptibility and histopathology of isolates from diseased catfish, Clarias gariepinus (Burchell). Journal of Aquaculture Research and Development, 5(2). https://doi.org/10.4172/2155-9546.1000215
  • Larsson, D. J. (2014). Antibiotics in the environment. Upsala journal of medical sciences, 119(2), 108-112. https://doi.org/10.3109/03009734.2014.896438
  • Lawal, M. O., Aderolu, A. Z., & Ezenwanne, D. O. (2012). The growth rate and histology of catfish (Clarias gariepinus) juveniles fed antibiotics (oxytetracycline and furasol) treated feed. Rep Opinion, 4(6), 37-42.
  • Lee, J.-H., Seo, J. S., Kim, G. W., Kwon, M.-G., Kim, D.-H., Park, C.-I., Kim, K. T., & Park, J. (2022). Effect of lincomycin, an injectable lincosamide antibiotic, against streptococcosis in cultured olive flounder Paralichthys olivaceus and its pharmacokinetic-pharmacodynamic profile. Aquaculture, 548, 737667. https://doi.org/10.1016/j.aquaculture.2021.737667
  • Lee, S., & Wendy, W. (2017). Antibiotic and heavy metal resistance of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile Aeromonas septicemia and Edwardsiellosis. Veterinary world, 10(7), 803. https://doi.org/10.14202/vetworld.2017.803-807
  • Legario, F. S., Choresca Jr, C. H., Turnbull, J. F., & Crumlish, M. (2020). Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. Journal of fish diseases, 43(11), 1431-1442. https://doi.org/10.1111/jfd.13247
  • Li, J., Zhang, K., & Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237, 460-467. https://doi.org/10.1016/j.envpol.2018.02.050
  • Li, L., Yao, R., Olsen, R. H., Zhang, Y., & Meng, H. (2022). Antibiotic resistance and polymyxin B resistance mechanism of Aeromonas spp. isolated from yellow catfish, hybrid snakeheads and associated water from intensive fish farms in Southern China. LWT, 166, 113802. https://doi.org/10.1016/j.lwt.2022.113802
  • Limbu, S. M., Ma, Q., Zhang, M.-L., & Du, Z.-Y. (2019). High fat diet worsens the adverse effects of antibiotic on intestinal health in juvenile Nile tilapia (Oreochromis niloticus). Science of the total environment, 680, 169-180. https://doi.org/10.1016/j.scitotenv.2019.05.067
  • Limbu, S. M., Zhou, L., Sun, S.-X., Zhang, M.-L., & Du, Z.-Y. (2018). Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment international, 115, 205-219. https://doi.org/10.1016/j.envint.2018.03.034
  • Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. https://doi.org/10.1111/raq.12344
  • Matuschek, E., Brown, D.F.J., & Kahlmeter, G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20(4), 0255–0266. https://doi.org/10.1111/1469-0691.12373
  • Ma, X., Guo, N., Ren, S., Wang, S., & Wang, Y. (2019). Response of antibiotic resistance to the co-existence of chloramphenicol and copper during bio-electrochemical treatment of antibiotic-containing wastewater. Environment international, 126, 127-133. https://doi.org/10.1016/j.envint.2019.02.002
  • MacGowan, A., & Macnaughton, E. (2017). Antibiotic resistance. Medicine, 45(10), 622-628. https://doi.org/10.1016/j.jiph.2016.08.007
  • Manna, S. K., Das, N., Sarkar, D. J., Bera, A. K., Baitha, R., Nag, S. K., Das, B.K., Kumar, A., Ravindran, R., Krishna, N., & Patil, P. K. (2022). Pharmacokinetics, bioavailability and withdrawal period of antibiotic oxytetracycline in catfish Pangasianodon hypophthalmus. Environmental Toxicology Pharmacology, 89, 103778. https://doi.org/10.1016/j.etap.2021.103778
  • Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(4), 795. https://doi.org/10.3390/molecules23040795
  • Milijasevic, M., Veskovic-Moracanin, S., Milijasevic, J. B., Petrovic, J., & Nastasijevic, I. (2024). Antimicrobial Resistance in Aquaculture: Risk Mitigation within One Health Context. Preprints, 2024060874. https://doi.org/10.20944/preprints202406.0874.v1
  • Minich, J. J., Zhu, Q., Xu, Z. Z., Amir, A., Ngochera, M., Simwaka, M., Allen, E. E., Zidana, H., & Knight, R. (2018). Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). Microbiologyopen, 7(6), e00716. https://doi.org/10.1002/mbo3.716
  • Miranda, C. D., Godoy, F. A., & Lee, M. R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Frontiers in Microbiology, 9(JUN), 1-14. https://doi.org/10.3389/fmicb.2018.01284
  • Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45(2), 681-693. https://doi.org/10.1016/j.watres.2010.08.033
  • Mohanty, D., Panda, S., Kumar, S., & Ray, P. (2019). In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial pathogenesis, 126, 212-217. https://doi.org/10.1016/j.micpath.2018.11.014
  • Morshdy, A. E. M., Hussein, M. A., Mohamed, M. A. A., Hamed, E., El-Murr, A. E., & Darwish, W. S. (2022). Tetracycline residues in tilapia and catfish tissue and the effect of different cooking methods on oxytetracycline and doxycycline residues. Journal of Consumer Protection and Food Safety, 17(4), 387-393. https://doi.org/10.1007/s00003-022-01389-7
  • Mostafa, A. E., Salam, R. A. A., Hadad, G. M., & Eissa, I. A. (2017). Simultaneous determination of selected veterinary antibiotics in Nile tilapia (Orechromis niloticus) and water samples by HPLC/UV and LC-MS/MS. RSC advances, 7(73), 46171-46182. https://doi.org/ 10.1039/C7RA08398J
  • Nawaz, M., Sung, K., Khan, S. A., Khan, A. A., & Steele, R. (2006). Biochemical and molecular characterization of tetracycline-resistant Aeromonas veronii isolates from catfish. Applied and environmental microbiology, 72(10), 6461-6466. https://doi.org/10.1128/AEM.00271-06
  • Naviner, M., Gordon, L., Giraud, E., Denis, M., Mangion, C., Le Bris, H., & Ganière, J.P. (2011). Antimicrobial resistance of Aeromonas spp. isolated from the growth pond to the commercial product in a rainbow trout farm following a flumequine treatment. Aquaculture, 315(3–4), 236–241. https://doi.org/10.1016/j.aquaculture.2011.03.006
  • Nyboer, E. A., Embke, H. S., Robertson, A. M., Arlinghaus, R., Bower, S., Baigun, C., Beard, D., Cooke, S. J., Cowx, I.G., Koehn, J. D. Lyach, R., Milardi, M., Potts, W., & Lynch, A.J. (2022). Overturning stereotypes: The fuzzy boundary between recreational and subsistence inland fisheries. Fish Fisheries, 23(6), 1282-1298. https://doi.org/10.1111/faf.12688
  • Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., Atakpa, E. O., Agu, C. V., & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 29(46), 69241-69274. https://doi.org/10.1007/s11356-022-22319-y
  • Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture, Public health reviews, 1-22. https://doi.org/10.1186/s40985-018-0099-2
  • Okon, E. M., Okocha, R. C., Adesina, B. T., Ehigie, J. O., Alabi, O. O., Bolanle, A. M., Matekwe, N., Falana, B. M., Tiamiyu, A. M., Olatoye, I. O., & Adedeji, O. B. (2022). Antimicrobial resistance in fish and poultry : Public health implications for animal source food production in Nigeria, Egypt, and South Africa. Frontiers in Antibiotics, 1:1043302(November), 1-19. https://doi.org/10.3389/frabi.2022.1043302
  • Opiyo, M. A., Marijani, E., Muendo, P., Odede, R., Leschen, W., & Charo-Karisa, H. (2018). A review of aquaculture production and health management practices of farmed fish in Kenya. International journal of veterinary science medicine 6(2), 141-148. https://doi.org/10.1016/j.ijvsm.2018.07.001
  • Oviedo-Bolaños, K., Rodríguez-Rodríguez, J. A., Sancho-Blanco, C., Barquero-Chanto, J. E., Peña-Navarro, N., Escobedo-Bonilla, C. M., & Umaña-Castro, R. (2021). Molecular identification of Streptococcus sp. and antibiotic resistance genes present in Tilapia farms (Oreochromis niloticus) from the Northern Pacific region, Costa Rica. Aquaculture International, 29(5), 2337-2355. https://doi.org/10.1007/s10499-021-00751-0
  • Patil, H. J., Benet-Perelberg, A., Naor, A., Smirnov, M., Ofek, T., Nasser, A., Minz, D., & Cytryn, E. (2016). Evidence of increased antibiotic resistance in phylogenetically-diverse Aeromonas isolates from semi-intensive fish ponds treated with antibiotics. Frontiers in microbiology, 7, 1875. https://doi.org/10.3389/fmicb.2016.01875
  • Pauzi, N. A., Mohamad, N., Azzam-Sayuti, M., Yasin, I. S. M., Saad, M. Z., Nasruddin, N. S., & Azmai, M. N. A. (2020). Antibiotic susceptibility and pathogenicity of Aeromonas hydrophila isolated from red hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus) in Malaysia. Veterinary world, 13(10), 2166. https://doi.org/10.14202/vetworld.2020.2166-2171
  • Pereira, J. G., Fernandes, J., Duarte, A. R., & Fernandes, S. M. (2022). β-Lactam dosing in critical patients: a narrative review of optimal efficacy and the prevention of resistance and toxicity. Antibiotics, 11(12), 1839. https://doi.org/10.3390/antibiotics11121839
  • Pfaller, M., & Diekema, D. (2012). Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. Journal of clinical microbiology, 50(9), 2846-2856. https://doi.org/10.1128/jcm.00937-12
  • Popoola, O. M. (2022). Fish production and biodiversity conservation: An interplay for life sustenance. In Biodiversity in Africa: Potentials, Threats and Conservation (pp. 293-321): Springer.
  • Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 75, 1497-1517. https://doi.org/10.2478/s11756-020-00456-4
  • Raju, D. V., Nagarajan, A., Pandit, S., Nag, M., Lahiri, D., & Upadhye, V. (2022). Effect of bacterial quorum sensing and mechanism of antimicrobial resistance. Biocatalysis and Agricultural Biotechnology, 43, 102409. https://doi.org/10.1016/j.bcab.2022.102409
  • Ray, S., Das, S., & Suar, M. (2017). Molecular mechanism of drug resistance. Drug resistance in bacteria, fungi, malaria, and cancer, 47-110. https://doi.org/10.1007/978-3-319-48683-3_3
  • Rico, A., Dimitrov, M. R., Van Wijngaarden, R. P., Satapornvanit, K., Smidt, H., & Van den Brink, P. J. (2014a). Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms. Aquatic Toxicology, 147, 92-104. https://doi.org/10.1016/j.aquatox.2013.12.008
  • Rahimi, N. N. M. N., Ikhsan, N. F. M., Loh, J. Y., Ranzil, F. K. E., Gina, M., Lim, S. H. E., Lai, K. S., & Chong, C. M. (2022). Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics, 11(4), 1–24. https://doi.org/10.3390/antibiotics11040469
  • Rico, A., Oliveira, R., McDonough, S., Matser, A., Khatikarn, J., Satapornvanit, K., Nogueira, A. J. A., Soares, A. M. V. M., Domingues, I., & Van den Brink, P. (2014b). Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environmental Pollution, 191, 8-16. https://doi.org/10.1016/j.envpol.2014.04.002
  • Romero, J., Feijoó, C. G., & Navarrete, P. (2012). Antibiotics in aquaculture-use, abuse and alternatives. Health and environment in aquaculture, 159, 159-198. https://doi.org/10.5772/28157
  • Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural products as platforms to overcome antibiotic resistance. Chemical reviews, 117(19), 12415-12474. https://doi.org/10.1021/acs.chemrev.7b00283
  • Satlin, M. J., Lewis II, J. S., Weinstein, M. P., Patel, J., Humphries, R. M., Kahlmeter, G., Giske, C. G., & Turnidge, J. (2020). Clinical and laboratory standards institute (CLSI) and european committee on antimicrobial susceptibility testing (EUCAST) position statements on polymyxin B and colistin clinical breakpoints. Clinical Infectious Diseases, 71(9), 523–529. https://doi.org/10.1093/cid/ciaa121
  • Sáenz, J. S., Marques, T. V., Simões, R., Barone, C., Eurico, J., Cyrino, P., Kublik, S., Nesme, J., Schloter, M., Rath, S., & Vestergaard, G. (2019). Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome, 7(24), 1-14. https://doi.org/10.1186/s40168-019-0632-7
  • Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10(1), 0-9. https://doi.org/10.1038/s41598-020-78849-3
  • Saejung, C., Hatai, K., & Sanoamuang, L. O. (2014). Bath efficacy of sodium hypochlorite, oxytetracycline dihydrate and chloramphenicol against bacterial black disease in fairy shrimp Branchinella thailandensis. Aquaculture Research, 45(10), 1697-1705. https://doi.org/10.1111/are.12115
  • Salako, D., Trang, P., Ha, N., Miyamoto, T., & Ngoc, T. (2020). Prevalence of antibiotic resistance Escherichia coli isolated from pangasius catfish (Pangasius hypophthalmus) fillet during freezing process at two factories in Mekong Delta Vietnam. Food Research, 4(5), 1785-1793. https://doi.org/10.26656/fr.2017.4(5).160
  • Samaddar, A. (2022). Recent trends on tilapia cultivation and its major socioeconomic impact among some developing nations: A review. Asian Journal of Fisheries Aquatic Research, 1-11.
  • Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water, 12(12), 3313. https://doi.org/10.3390/w12123313
  • Shan, Q., Fan, J., Wang, J., Zhu, X., Yin, Y., & Zheng, G. (2018). Pharmacokinetics of enrofloxacin after oral, intramuscular and bath administration in Crucian carp (Carassius auratus). Journal of veterinary pharmacology and therapeutics, 41(1), 159-162. https://doi.org/10.1111/jvp.12428
  • Sherif, A. H., Gouda, M., Darwish, S., & Abdelmohsin, A. (2021). Prevalence of antibiotic‐resistant bacteria in freshwater fish farms. Aquaculture Research, 52(5), 2036-2047. https://doi.org/10.1111/are.15052
  • Shine, D. J., Shasha, S., Emmanuel, O., Fometu, S. S., & Guohua, W. (2020). Biosynthesizing gold nanoparticles with Parkia biglobosa leaf extract for antibacterial efficacy in vitro and photocatalytic degradation activities of rhodamine B dye. Advanced Science, Engineering and Medicine, 12(7), 970-981. https://doi.org/10.1166/asem.2020.2661
  • Sing, C. K., Khan, M. Z. I., Daud, H. H. M., & Aziz, A. R. (2016). Prevalence of Salmonella sp. in African Catfish (Clarias gariepinus) obtained from farms and wet markets in Kelantan, Malaysia and their antibiotic resistance. Sains Malaysiana, 45(11), 1597-1602.
  • Singh, A., & Lakra, W. (2012). Culture of Pangasianodon hypophthalmus into India: impacts and present scenario. Pakistan Journal of Biological Sciences, 15(1), 19. https://doi.org/10.3923/pjbs.2012.19.26
  • Sivaraman, G., Sudha, S., Muneeb, K., Shome, B., Holmes, M., & Cole, J. (2020). Molecular assessment of antimicrobial resistance and virulence in multi drug resistant ESBL-producing Escherichia coli and Klebsiella pneumoniae from food fishes, Assam, India. Microbial Pathogenesis, 149, 104581. https://doi.org/10.1016/j.micpath.2020.104581
  • Skandalis, N., Maeusli, M., Papafotis, D., Miller, S., Lee, B., Theologidis, I., & Luna, B. (2021). Environmental spread of antibiotic resistance. Antibiotics, 10(6), 640. https://doi.org/10.3390/antibiotics10060640
  • Sønderholm, M., Kragh, K. N., Koren, K., Jakobsen, T. H., Darch, S. E., Alhede, M., Jensen, P.Q., Whiteley, M., Kühl, M., & Bjarnsholt, T. (2017). Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics. Applied and Environmental Microbiology, 83(9), e00113-00117. https://doi.org/10.1128/AEM.00113-17
  • Syal, K., Mo, M., Yu, H., Iriya, R., Jing, W., Guodong, S., Wang, S., Grys, T. E., Haydel, S. E., & Tao, N. (2017). Current and emerging techniques for antibiotic susceptibility tests. Theranostics, 7(7), 1795. https://doi.org/10.7150/thno.19217
  • Terzi, E., Corum, O., Bilen, S., Kenanoglu, O. N., Atik, O., & Uney, K. (2020). Pharmacokinetics of danofloxacin in rainbow trout after different routes of administration. Aquaculture, 520, 734984. https://doi.org/10.1016/j.aquaculture.2020.734984
  • Touraki, M., Niopas, I., & Karagiannis, V. (2012). Treatment of vibriosis in European sea bass larvae, Dicentrarchus labrax L., with oxolinic acid administered by bath or through medicated nauplii of Artemia franciscana (Kellogg): efficacy and residual kinetics. Journal of Fish Diseases, 35(7), 513-522. https://doi.org/10.1111/j.1365-2761.2012.01387.x
  • Treves-Brown, K. M. (2013). Applied fish pharmacology (Vol. 3): Springer Science & Business Media. Uney, K., Terzi, E., Durna Corum, D., Ozdemir, R. C., Bilen, S., & Corum, O. (2021). Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of enrofloxacin following single oral administration of different doses in brown trout (Salmo trutta). Animals, 11(11), 3086. https://doi.org/10.3390/ani11113086.
  • Van Belkum, A., Burnham, C.-A. D., Rossen, J. W., Mallard, F., Rochas, O., & Dunne Jr, W. M. (2020). Innovative and rapid antimicrobial susceptibility testing systems. Nature Reviews Microbiology, 18(5), 299-311. https://doi.org/10.1038/s41579-020-0327-x
  • Verner-jeffreys, D. W., Welch, T. J., Schwarz, T., Pond, M. J., Woodward, M. J., Haig, S. J., Rimmer, G. S. E., Roberts, E., Morrison, V., & Baker-Austin, C. (2009). High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS ONE, 4(12). https://doi.org/10.1371/journal.pone.0008388
  • Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture : sources , sinks and solutions. Marine Drugs, 15(158), 1-16. https://doi.org/10.3390/md15060158
  • Wamala, S. P., Mugimba, K. K., Mutoloki, S., Evensen, Ø., Mdegela, R., Byarugaba, D. K., & Sørum, H. (2018). Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fisheries and Aquatic Sciences, 21(1), 1-10. https://doi.org/10.1186/s41240-017-0080-x
  • Wang, H.-B., Wu, Y.-H., Luo, L.-W., Yu, T., Xu, A., Xue, S., Chen, G.-Q., Ni, X.-Y., Peng, L., Chen, Z., Wang, Y.-H., Tong, X., Bai, Y., Xu, Y.-Q., & Hu, H.Y. (2021). Risks, characteristics, and control strategies of disinfection-residual-bacteria (DRB) from the perspective of microbial community structure. Water Research, 204, 117606. https://doi.org/10.1016/j.watres.2021.117606
  • Wanja, D. W., Mbuthia, P. G., Waruiru, R. M., Bebora, L. C., Ngowi, H. A., & Nyaga, P. N. (2020). Antibiotic and disinfectant susceptibility patterns of bacteria isolated from farmed fish in kirinyaga county, Kenya. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/8897338
  • Wright, G. D. (2016). Antibiotic adjuvants: rescuing antibiotics from resistance. Trends in microbiology, 24(11), 862-871. https://doi.org/10.1016/j.tim.2016.06.009
  • Xu, N., Li, M., Ai, X., & Lin, Z. (2021). Determination of pharmacokinetic and pharmacokinetic-pharmacodynamic parameters of doxycycline against Edwardsiella ictaluri in yellow catfish (Pelteobagrus fulvidraco). Antibiotics, 10(3), 329. https://doi.org/10.3390/antibiotics10030329
  • Yang, Q., Zhao, M., Wang, K.-Y., Wang, J., He, Y., Wang, E.-L., Liu, T., Chen, D.-F., & Lai, W. (2017). Multidrug-resistant Aeromonas veronii recovered from Channel catfish (Ictalurus punctatus) in China: prevalence and mechanisms of fluoroquinolone resistance. Microbial Drug Resistance, 23(4), 473-479. https://doi.org/10.1089/mdr.2015.0296
  • Ye, C., Shi, J., Zhang, X., Qin, L., Jiang, Z., Wang, J., Li, Y., & Liu, B. (2021). Occurrence and bioaccumulation of sulfonamide antibiotics in different fish species from Hangbu-Fengle River, Southeast China. Environmental Science and Pollution Research, 28, 44111-44123. https://doi.org/10.1007/s11356-021-13850-5
  • Yukgehnaish, K., Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray, B. A., & Arockiaraj, J. (2020). Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903-1927. https://doi.org/10.1111/raq.12416
  • Yuan, X., Lv, Z., Zhang, Z., Han, Y., Liu, Z., & Zhang, H. (2023). A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: occurrence, contamination, and transmission. Toxics, 11(420), 2–14. https://doi.org/10.3390/toxics11050420
  • Zhang, J., Zhang, X., Zhou, Y., Han, Q., Wang, X., Song, C., Wang, S., & Zhao, S. (2023). Occurrence, distribution and risk assessment of antibiotics at various aquaculture stages in typical aquaculture areas surrounding the Yellow Sea. Journal of Environmental Sciences, 126, 621-632. https://doi.org/10.1016/j.jes.2022.01.024
There are 140 citations in total.

Details

Primary Language Turkish
Subjects Fisheries Management
Journal Section Review Articles
Authors

Emmanuel D. Abarike This is me 0000-0003-4873-6546

Emmanuel Okoampah This is me 0000-0002-7188-5921

Ebru Yılmaz 0000-0003-1905-1265

Early Pub Date October 14, 2024
Publication Date December 1, 2024
Submission Date May 5, 2024
Acceptance Date August 2, 2024
Published in Issue Year 2024 Volume: 20 Issue: 4

Cite

APA Abarike, E. D., Okoampah, E., & Yılmaz, E. (2024). Su Ürünleri Yetiştiriciliğinde Antibiyotik Direnci Riski: Geleceğe Bakış. Acta Aquatica Turcica, 20(4), 367-387. https://doi.org/10.22392/actaquatr.1478517