BibTex RIS Cite

Antiviral RNA Interference and Its Comparison with CRISPR/Cas Mechanism, A Novel Gene Editing Method

Year 2015, Volume: 4 Issue: 2, 429 - 434, 01.06.2015

Abstract

Background: RNA Interference RNAi mechanism is assumed among the most important biotechnological methods, that allows to edit the genome in the last two decades. The experiments have been performed through by this method in many sub-fields of biotechnology, and quite a lot of data were obtained. A mechanism, similar of RNAi, was discovered just then obtained data was going to evaluate as therapeutics. This mechanism that provided immunity to viruses and phages was named as CRISPR. To possess an advantage of the new method, compared to RNAi in some circumstances, is nowadays come into prominence significantly. Conclusion: RNAi, being an important tool in struggling with viruses, which forms the basis of this review and newer mechanism CRISPR and its differences are subjected in. At the end of the review, it was concluded that both methods, showing the interaction between themselves, would be impact on biotechnology branches in the near future.

References

  • Adoro S, Cubillos-Ruiz JR, Chen X, Deruaz M, Vrbanac VD, Song M, Park S, Murooka TT, Dudek TE, Luster AD, Tager AM, Streeck H, Bowman B, Walker BD, Kwon DS, Lazarevic V and Glimcher LH (2015). IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat. Commun., 6:7562 doi: 10.1038/ncomms8562.
  • Aoki K, Moriguchi H, Yoshioka T, Okawa K and Tabara H (2007). In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. The EMBO journal, 26(24): 5007- 5019.
  • Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003). RNA interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev., 67(4): 657.
  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008). Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor- independent, Dicer-dependent small RNAs. Genes & development, 22(20): 2773-2785.
  • Bagasra O, Prilliman KR (2004). RNA interference: The molecular immune system. J. Mol. Hist. 35: 545–553.
  • Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V and van Brabant Smith A (2015). Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic acids research, doi: 10.1093/nar/gkv226.
  • Chuang ST, Ji WT, Chen YT, Lin CH, Hsieh YC, Liu HJ (2007). Suppression of bovine ephemeral fever virus by RNA interference. J. Virol. Met., 145(1): 84-87.
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669): 806-811.
  • Fire AZ (2007). Gene Silencing by Double-Stranded RNA (Nobel Lecture). Angew. Chem. Int. Ed., 46: 6966 – 6984.
  • Feinberg EH and Hunter CP (2003). Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 301(5639): 1545-1547.
  • Gaj T, Gersbach CA and Barbas CF (2013). ZFN, TALEN, and CRISPR/ Cas-based methods for genome engineering. Trends in biotechnology,31(7), 397-405.
  • Grissa I, Vergnaud,G and Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic acids research, 35(suppl 2), 52-57.
  • Jorgensen RA, Cluster PD, English J, Que Q and Napoli CA (1996). Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant molecular biology, 31(5), 957-973.
  • Kim VN, Han J, Siomi MC (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell. Biol., 10(2): 126-39.
  • Lagos D, Pollara G, Henderson S, Gratrix F, Fabani M, Milne RS, Gotch F and Boshoff C (2010). miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nature cell biology, 12(5), 513-519.
  • Lambeth LS, Moore RJ, Muralitharan MS and Doran TJ (2007). Suppression of bovine viral diarrhea virus replication by small interfering RNA and short hairpin RNA-mediated RNA interference. Veterinary microbiology, 119(2), 132-143.
  • Lander ES (2016). The Heroes of CRISPR. Cell, 164(1), 18-28.
  • Li Y, Lu J, Han Y, Fan X, and Ding SW (2013). RNA interference functions as an antiviral immunity mechanism in mammals. Science, 342(6155): 231-234.
  • Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O (2013). Antiviral RNA interference in mammalian cells. Science, 342(6155): 235-238.
  • Ornelas SS, Barra GB, Kanzaki LIB (2012). Inhibition of feline leukemia virus replication in chronically infected cell line utilizing RNA interference. Retrovirology: Res. Treat., 14: 13-20.
  • Pengyan W, Yan R, Zhiru G, Chuangfu C (2008). Inhibition of foot- and-mouth disease virus replication in vitro and in vivo by small interfering RNA. Virol. J., 5: 86.
  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005). Identification of microRNAs of the herpesvirus family. Nature methods, 2(4): 269-276.
  • Rath D, Amlinger L, Rath A and Lundgren M (2015). The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 117:119-128.
  • Saleh MC, Tassetto M, Van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009). Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature, 458(7236): 346-350.
  • Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hannon GJ (2008). Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature, 453(7194), 534-538.
  • Wilkes RP, Kania SA (2009). Use of interfering RNAs targeted against feline herpesvirus 1 glycoprotein D for inhibition of feline herpesvirus 1 infection of feline kidney cells. Am. J. Vet. Res., 70(8), 1018-1025.
  • Wilson RC, Doudna JA (2013). Molecular mechanism of RNA interference. Annu. Rev. Biophysics., 42: 217-239

Antiviral RNA İnterferenz RNAi ve Yeni Bir Gen Düzenleme Metodu CRISPR/Cas Mekanizması ile Karşılaştırılması

Year 2015, Volume: 4 Issue: 2, 429 - 434, 01.06.2015

Abstract

Özbilgi: RNA İnterferenz RNAi mekanizması son 20 yılda genom üzerinde değişiklik yapmayı sağlayan en önemli biyoteknolojik yöntemdir. Bu metot ile biyoteknolojinin birçok alt dalında denemeler yapılmış ve oldukça fazla veri elde edilmiştir. Tam da bu verilerin terapötik olarak değerleneceği sırada yine RNAi’e benzer bir mekanizma keşfedilmiştir. Virus ve fajlara karşı bakterilerde savunma sağlayan bu mekanizmaya CRISPR adı verilmiştir. Bu yeni teknolojinin RNAi’e göre bazı durumlarda avantajı olması günümüzde onu oldukça öne çıkarmıştır. Sonuç: Özellikle viruslara karşı mücadelede önemli silah olan RNAi bu derlemenin temelini oluştururken, daha yeni olan CRISPR mekanizması ve farklılıkları da bu derlemede konu edilmiştir. Derleme sonunda karşılıklı etkileşim gösteren bu iki yöntemin yakın gelecekte biyoteknoloji alanına damga vurucağı sonucuna varılmıştır.

References

  • Adoro S, Cubillos-Ruiz JR, Chen X, Deruaz M, Vrbanac VD, Song M, Park S, Murooka TT, Dudek TE, Luster AD, Tager AM, Streeck H, Bowman B, Walker BD, Kwon DS, Lazarevic V and Glimcher LH (2015). IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat. Commun., 6:7562 doi: 10.1038/ncomms8562.
  • Aoki K, Moriguchi H, Yoshioka T, Okawa K and Tabara H (2007). In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. The EMBO journal, 26(24): 5007- 5019.
  • Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003). RNA interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev., 67(4): 657.
  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008). Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor- independent, Dicer-dependent small RNAs. Genes & development, 22(20): 2773-2785.
  • Bagasra O, Prilliman KR (2004). RNA interference: The molecular immune system. J. Mol. Hist. 35: 545–553.
  • Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V and van Brabant Smith A (2015). Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic acids research, doi: 10.1093/nar/gkv226.
  • Chuang ST, Ji WT, Chen YT, Lin CH, Hsieh YC, Liu HJ (2007). Suppression of bovine ephemeral fever virus by RNA interference. J. Virol. Met., 145(1): 84-87.
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669): 806-811.
  • Fire AZ (2007). Gene Silencing by Double-Stranded RNA (Nobel Lecture). Angew. Chem. Int. Ed., 46: 6966 – 6984.
  • Feinberg EH and Hunter CP (2003). Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 301(5639): 1545-1547.
  • Gaj T, Gersbach CA and Barbas CF (2013). ZFN, TALEN, and CRISPR/ Cas-based methods for genome engineering. Trends in biotechnology,31(7), 397-405.
  • Grissa I, Vergnaud,G and Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic acids research, 35(suppl 2), 52-57.
  • Jorgensen RA, Cluster PD, English J, Que Q and Napoli CA (1996). Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant molecular biology, 31(5), 957-973.
  • Kim VN, Han J, Siomi MC (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell. Biol., 10(2): 126-39.
  • Lagos D, Pollara G, Henderson S, Gratrix F, Fabani M, Milne RS, Gotch F and Boshoff C (2010). miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nature cell biology, 12(5), 513-519.
  • Lambeth LS, Moore RJ, Muralitharan MS and Doran TJ (2007). Suppression of bovine viral diarrhea virus replication by small interfering RNA and short hairpin RNA-mediated RNA interference. Veterinary microbiology, 119(2), 132-143.
  • Lander ES (2016). The Heroes of CRISPR. Cell, 164(1), 18-28.
  • Li Y, Lu J, Han Y, Fan X, and Ding SW (2013). RNA interference functions as an antiviral immunity mechanism in mammals. Science, 342(6155): 231-234.
  • Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O (2013). Antiviral RNA interference in mammalian cells. Science, 342(6155): 235-238.
  • Ornelas SS, Barra GB, Kanzaki LIB (2012). Inhibition of feline leukemia virus replication in chronically infected cell line utilizing RNA interference. Retrovirology: Res. Treat., 14: 13-20.
  • Pengyan W, Yan R, Zhiru G, Chuangfu C (2008). Inhibition of foot- and-mouth disease virus replication in vitro and in vivo by small interfering RNA. Virol. J., 5: 86.
  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005). Identification of microRNAs of the herpesvirus family. Nature methods, 2(4): 269-276.
  • Rath D, Amlinger L, Rath A and Lundgren M (2015). The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 117:119-128.
  • Saleh MC, Tassetto M, Van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009). Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature, 458(7236): 346-350.
  • Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hannon GJ (2008). Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature, 453(7194), 534-538.
  • Wilkes RP, Kania SA (2009). Use of interfering RNAs targeted against feline herpesvirus 1 glycoprotein D for inhibition of feline herpesvirus 1 infection of feline kidney cells. Am. J. Vet. Res., 70(8), 1018-1025.
  • Wilson RC, Doudna JA (2013). Molecular mechanism of RNA interference. Annu. Rev. Biophysics., 42: 217-239
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

B. Taylan Koç

T. Çiğdem Oğuzoğlu This is me

Publication Date June 1, 2015
Published in Issue Year 2015 Volume: 4 Issue: 2

Cite

APA Koç, B. T., & Oğuzoğlu, T. Ç. (2015). Antiviral RNA İnterferenz RNAi ve Yeni Bir Gen Düzenleme Metodu CRISPR/Cas Mekanizması ile Karşılaştırılması. Animal Health Production and Hygiene, 4(2), 429-434.