Research Article
BibTex RIS Cite

The Usage of Native Arbuscular Mycorrhizal Fungi (AMF) in Drought Areas and Low–Input Crop Production Systems

Year 2017, Volume: 14 Issue: 2, 69 - 73, 31.12.2017
https://doi.org/10.25308/aduziraat.323026

Abstract

With increasing interest in the development of sustainable agriculture in semi–aird regions, low input land use systems are enhanced to be considered as an option on low production site. Amount of soil losses, erosion is an environmental disaster in marginal lands throughout the world. Greatly efficient rhizosphere microorganisms like VAM (vesicular arbuscular mycorrhizal) are of highly importance for sustainable agriculture. They could supply unavailable soil nutrients and create formation of micro aggregates. Also they chemically enmesh and stabilize micro aggregates and smaller macro aggregates into macro aggregate structures. The majority of agricultural activities in Turkey are exposure to nutrient deficiency and soil erosion. Progressing of this problem is in relationship with poor cover of low–input sites with vegetation at drought conditions. Our goal was to apply VAM for low–input vegetation in terms of improving soil nutrients supply and protect soil structure stability. Trap cultures provide a non–molecular approach to baiting cryptic species of VAM present in plant communities. Diversity of arbuscular mycorrhizal fungi in selected habitats using trap culture methodology. In trap culture, we will study the rate of root colonization by VAM as highest and lowest inocula or capability of selected VAM species to symbiosis with other soil bacterial species to nutrients supply and soil aggregation in low–input sites. Based on this situation, it is purpose of this study to combination of classical and molecular methods in order of elucidate VAM species with important soil nutrition and structure stability.


References

  • Abdelmoneim TS, Moussa TAA, Almaghrabi OA, Alzahrani HS, Abdelbagi I (2014) Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. J. Life Sci., 11, 10-17.
  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14, 263-269.
  • Auge RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.
  • Costa FA, Haddad LSM, Kasuya MCM, Oton WC, Costa MD, Borges AC (2013) In vitro culture of Gigaspora decipiens and Glomus clarum in transformed roots of carrot: the influence of temperature and pH. Acta Scientiarum, 35:315-323.
  • Faye A, Dalpé Y, Ndung’u-Magiroi K, Jefwa J, Ndoye I, Diouf M, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants. Canadian Journal of Plant Science, 93(6): 1201-1208.
  • Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experienti Volume 47, Issue 4, pp 350-355.
  • Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhizal technology in agriculture from genes to bioproducts. Editors: ISBN: 978-3-0348-9444-9 (Print) 978-3-0348-8117-3 (Online).
  • Gopal S, Chandrasekaran M, Shagol C, Kim K, Sa T (2012) Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant growth under stress conditions. Korean J. Soil Sci. Fert. 45(4), 582-592.
  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands, Science, vol. 327, Issue 5968, pg. 1008-1010.
  • Hamel C, Strullu D (2006) Arbuscular mycorrhizal fungi in field crop production: Potential and new direction. Canadian Journal of Plant Sciences, 86 (4): 941-950.
  • Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol., 196 (2): 367-382.
  • Khalvati MA, Dincer I (2013) Environmental impact of soil microorganisms on global change. ed: Ibrahim Dincer, C. Ozgur Colpan and Fethi Kadioglu: Causes, Impacts and Solutions to Global Warming Springer-publish Berlin Heidelberg New York. pp. 233-250.
  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by mycorrhizal hyphae and its significance for leaf growth, water relations and gas exchange of barley subjected to drought stress. Plant Biology, 7, 706-712.
  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O,Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880-882.
  • Koca YO, Erekul O (2016) Changes of Dry Matter, Biomass and Relative Growth Rate with Different Phenological Stages of Corn. Agriculture and Agricultural Science Procedia, 10, 67-75.
  • Li T, Lin G, Zhang X, Chen Y, Zhang S, Chen B (2014) Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza, 24(8), 595-602.
  • McGraw AC, Hendrix JW (1984) Host and soil fumigation effects on spore population densities of species of endogonaceous mycorrhizal fungi. Mycologia, 76:122-131.
  • Pena R, Polle A (2014) Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. The ISME Journal 8, 321-330.
  • Rahimi A, Jahanbin S, Salehi A, Farajee H (2017) Changes in Content of Chlorophyll, Carotenoids, Phosphorus and Relative Water Content of Medicinal Plant of Borage (Borago officinails L.) under the Influence of Mycorrhizal Fungi and Water Stress. Journal of Biological Sciences, 17, 28-34.
  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil quality. Canadian Journal of Soil Science 84: 355-363.
  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J. Plant Physiol. 167, 862-869.
  • Ruth B, Khalvati MA, Schmidhalter U (2011) Quantification of Water Flow through Hyphae of Mycorrizal Plants Measured by Capacitance Sensors for Soil Water Content. Plant and Soil, Volume 342, Numbers 1-2, 459-468.
  • Singh PK, Singh M, Tripathi BN (2013) Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma, 250(3):663-9.
  • Smith S, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156, 1050-1057.
  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 63: 227-250.
  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol. 205, 1632-1645.
  • Wehner J, Powell JR, Muller LAH, Caruso T, Veresoglou SD, Hempel S, Rillig MC (2014) Determinants of root-associated fungal communities within Asteraceae in a semi-arid grassland. Journal of Ecology, 102, 425-436.
  • Wu QS, Cao MQ, Zou YN, He XH (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports 4, article number: 5823.
  • Zhang ZZ, Lou YG, Deng DJ, Rahman MM, Wu QS (2015) Effects of common mycorrhizal network on plant carbohydrates and soil properties in trifoliate orange–white clover association. PLoS ONE 10(11): e0142371. doi:10.1371/journal.pone.0142371.

Arbusküler Mikorizal Mantarların Kurak Bölgelerde ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı

Year 2017, Volume: 14 Issue: 2, 69 - 73, 31.12.2017
https://doi.org/10.25308/aduziraat.323026

Abstract

Yarı kurak alanların kullanımı ve sürdürülebilir tarım uygulamalarının geliştirilmesine son dönemlerde yaygın olarak çalışılmaktadır. Bu bağlamda; düşük girdili zirai alanların geliştirilmesi kısıtlı alanlarda zirai üretim yapılabilmesi için uygun bir seçenek haline gelmektedir. Kaybedilen toprak alanlarının, erozyonun değişik karakteristik özelliklere sahip topraklar dahil olmak üzere dünyanın her yerinde rastlanabilen bir çevre felaketlerinden biri olduğu aşikardır. Sürdürülebilir tarım uygulamaları için; veziküler arbusküler mikorizal mantarları (VAM) gibi oldukça verimli olan rizosfer mikroorganizmaları önem arz etmektedir. Bu mikroorganizmalar bitkilerin bünyelerine alamayacak oldukları topraktaki besin maddelerini bitkilerin kullanabileceği mikroagregatların oluşmasını sağlamaktadır. Bunun yanı sıra kimyasal olarak makroagregatların parçalanmasını sağlayarak, yeni oluşan yapıda stabilize edebilmektedir. Türkiye’de otlaklar ve zirai alanların çoğu besin maddeleri bakımından yetersiz ve/veya erozyona maruz kalmaktadır. Düşük girdili alanların yetersiz bitki örtüsü ve kuraklık koşulları arasındaki ilişki ile bu sorunlar zamanla artmaktadır. Amacımız, bu kapsamda veziküler arbusküler mikorizal mantarların düşük girdili sistemlerde uygulanması ve toprak besin maddelerinin zirai amaçla daha etkili kullanılması, ayrıca kuraklık koşulları altında toprak yapısını korumak ve araziyi stabil hale getirerek sürdürülebilir tarım yapılmasına olanak sağlamaktır. Seçilen habitatta arbusküler mikorizal mantarların çeşitliliği kültürlerin ayrılması metodu ile belirlenmiştir. Bu yöntemde, düşük ve yüksek dozdaki aşılamada mikorizal mantarların bitki köklerinde oluşturdukları koloni yüzdeleri kıyaslanarak mikorizal mantarların simbiyoz kapasiteleri, diğer toprak mikroorganizmaları ile etkileşimleri değerlendirilmiştir. Bu kapsamda, bu çalışmanın amacı klasik zirai yöntemler ile moleküler metodların entregrasyonunun, toprak besinlerinin etkili kullanılması ve toprak yapısının korunmasında veziküler arbusküler mikorizal mantarların etkisi ve önemini ortaya koymaktır.


References

  • Abdelmoneim TS, Moussa TAA, Almaghrabi OA, Alzahrani HS, Abdelbagi I (2014) Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. J. Life Sci., 11, 10-17.
  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14, 263-269.
  • Auge RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.
  • Costa FA, Haddad LSM, Kasuya MCM, Oton WC, Costa MD, Borges AC (2013) In vitro culture of Gigaspora decipiens and Glomus clarum in transformed roots of carrot: the influence of temperature and pH. Acta Scientiarum, 35:315-323.
  • Faye A, Dalpé Y, Ndung’u-Magiroi K, Jefwa J, Ndoye I, Diouf M, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants. Canadian Journal of Plant Science, 93(6): 1201-1208.
  • Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experienti Volume 47, Issue 4, pp 350-355.
  • Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhizal technology in agriculture from genes to bioproducts. Editors: ISBN: 978-3-0348-9444-9 (Print) 978-3-0348-8117-3 (Online).
  • Gopal S, Chandrasekaran M, Shagol C, Kim K, Sa T (2012) Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant growth under stress conditions. Korean J. Soil Sci. Fert. 45(4), 582-592.
  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands, Science, vol. 327, Issue 5968, pg. 1008-1010.
  • Hamel C, Strullu D (2006) Arbuscular mycorrhizal fungi in field crop production: Potential and new direction. Canadian Journal of Plant Sciences, 86 (4): 941-950.
  • Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol., 196 (2): 367-382.
  • Khalvati MA, Dincer I (2013) Environmental impact of soil microorganisms on global change. ed: Ibrahim Dincer, C. Ozgur Colpan and Fethi Kadioglu: Causes, Impacts and Solutions to Global Warming Springer-publish Berlin Heidelberg New York. pp. 233-250.
  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by mycorrhizal hyphae and its significance for leaf growth, water relations and gas exchange of barley subjected to drought stress. Plant Biology, 7, 706-712.
  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O,Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880-882.
  • Koca YO, Erekul O (2016) Changes of Dry Matter, Biomass and Relative Growth Rate with Different Phenological Stages of Corn. Agriculture and Agricultural Science Procedia, 10, 67-75.
  • Li T, Lin G, Zhang X, Chen Y, Zhang S, Chen B (2014) Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza, 24(8), 595-602.
  • McGraw AC, Hendrix JW (1984) Host and soil fumigation effects on spore population densities of species of endogonaceous mycorrhizal fungi. Mycologia, 76:122-131.
  • Pena R, Polle A (2014) Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. The ISME Journal 8, 321-330.
  • Rahimi A, Jahanbin S, Salehi A, Farajee H (2017) Changes in Content of Chlorophyll, Carotenoids, Phosphorus and Relative Water Content of Medicinal Plant of Borage (Borago officinails L.) under the Influence of Mycorrhizal Fungi and Water Stress. Journal of Biological Sciences, 17, 28-34.
  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil quality. Canadian Journal of Soil Science 84: 355-363.
  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J. Plant Physiol. 167, 862-869.
  • Ruth B, Khalvati MA, Schmidhalter U (2011) Quantification of Water Flow through Hyphae of Mycorrizal Plants Measured by Capacitance Sensors for Soil Water Content. Plant and Soil, Volume 342, Numbers 1-2, 459-468.
  • Singh PK, Singh M, Tripathi BN (2013) Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma, 250(3):663-9.
  • Smith S, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156, 1050-1057.
  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 63: 227-250.
  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol. 205, 1632-1645.
  • Wehner J, Powell JR, Muller LAH, Caruso T, Veresoglou SD, Hempel S, Rillig MC (2014) Determinants of root-associated fungal communities within Asteraceae in a semi-arid grassland. Journal of Ecology, 102, 425-436.
  • Wu QS, Cao MQ, Zou YN, He XH (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports 4, article number: 5823.
  • Zhang ZZ, Lou YG, Deng DJ, Rahman MM, Wu QS (2015) Effects of common mycorrhizal network on plant carbohydrates and soil properties in trifoliate orange–white clover association. PLoS ONE 10(11): e0142371. doi:10.1371/journal.pone.0142371.
There are 29 citations in total.

Details

Subjects Agricultural Engineering
Journal Section Research
Authors

Bülent Budak 0000-0002-2728-9049

Mohammad Ali Khalvati This is me 0000-0003-0948-7065

Şükrü Sezgi Özkan 0000-0001-5989-0384

Publication Date December 31, 2017
Published in Issue Year 2017 Volume: 14 Issue: 2

Cite

APA Budak, B., Khalvati, M. A., & Özkan, Ş. S. (2017). Arbusküler Mikorizal Mantarların Kurak Bölgelerde ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2), 69-73. https://doi.org/10.25308/aduziraat.323026
AMA Budak B, Khalvati MA, Özkan ŞS. Arbusküler Mikorizal Mantarların Kurak Bölgelerde ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı. ADÜ ZİRAAT DERG. December 2017;14(2):69-73. doi:10.25308/aduziraat.323026
Chicago Budak, Bülent, Mohammad Ali Khalvati, and Şükrü Sezgi Özkan. “Arbusküler Mikorizal Mantarların Kurak Bölgelerde Ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 14, no. 2 (December 2017): 69-73. https://doi.org/10.25308/aduziraat.323026.
EndNote Budak B, Khalvati MA, Özkan ŞS (December 1, 2017) Arbusküler Mikorizal Mantarların Kurak Bölgelerde ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 14 2 69–73.
IEEE B. Budak, M. A. Khalvati, and Ş. S. Özkan, “Arbusküler Mikorizal Mantarların Kurak Bölgelerde ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı”, ADÜ ZİRAAT DERG, vol. 14, no. 2, pp. 69–73, 2017, doi: 10.25308/aduziraat.323026.
ISNAD Budak, Bülent et al. “Arbusküler Mikorizal Mantarların Kurak Bölgelerde Ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 14/2 (December 2017), 69-73. https://doi.org/10.25308/aduziraat.323026.
JAMA Budak B, Khalvati MA, Özkan ŞS. Arbusküler Mikorizal Mantarların Kurak Bölgelerde ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı. ADÜ ZİRAAT DERG. 2017;14:69–73.
MLA Budak, Bülent et al. “Arbusküler Mikorizal Mantarların Kurak Bölgelerde Ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, vol. 14, no. 2, 2017, pp. 69-73, doi:10.25308/aduziraat.323026.
Vancouver Budak B, Khalvati MA, Özkan ŞS. Arbusküler Mikorizal Mantarların Kurak Bölgelerde ve Düşük Girdili Bitkisel Üretim Sistemlerinde Kullanımı. ADÜ ZİRAAT DERG. 2017;14(2):69-73.