Research Article
BibTex RIS Cite

Genelleştirilmiş Türevli Yarıasal Halkaların Lie İdealleri

Year 2018, Volume: 8 Issue: 1, 1 - 12, 30.06.2018

Abstract

R, 2-torsion free bir yarıasal halka ve U, R halkasının bir merkez tarafından kapsanılmayan kare-kapalı Lie ideali olsun. Eğer her x,y∈R için F(xy) = F(x)y + xd(y), koşulunu sağlayan bir d:R→R türevi varsa F dönüşümüne R halkasının d ile belirlenmiş bir genelleştirilmiş türevi denir. Bu çalışmada, aşağıdaki koşullardan biri sağlanırsa d dönüşümünün U üzerinde komüting dönüşüm olduğu gösterilecektir: i) F(u)u = ±uG(u), ii) [F(u),v] = ±[u,G(v)], iii) F(u)∘v = ±u∘G(v), iv) [F(u),v] = ±u∘G(v), v) F([u,v]) = [F(u),v] + [d(v),u]. Burada G:R→R dönüşümü h:R→R türevi ile belirlenmiş bir genelleştirilmiş türevdir.

References

  • R. Awtar, Lie structure in prime rings with derivations, Publ. Math. Debrecen 31, 1984, 209-215.
  • J. Bergen, I. N. Herstein, W. Kerr, Lie ideals and derivation of prime rings, J. of Algebra 71, 1981, 259-267.
  • M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33, 1991, 89-93.
  • M. Bresar, On skew-commuting mappings of rings, Bull. Austral. Math. Soc. 47, 1993, 291--296.
  • N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III. 49, 1955, 19-52.
  • M. Hongan, N. Rehman, R. M. Al-Omary, Lie ideals and Jordan triple derivations in rings: Rend. Semin. Mat. Univ. Padova, 125, 2011, 147--156.
  • Ö. Gölbaşı, E. Koç, Generalized derivations on Lie ideals in prime rings: Turk. J. Math., 35, 2011, 23-28.
  • P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations, Bull. Institute of Math. Acedemia Sinica, 11, 1983, 75-79.
  • E. C. Posner, Derivations in prime rings, Proc Amer. Math. Soc. 8, 1957, 1093-1100.
  • N. Rehman, M. Hongan, Generalized Jordan derivations on Lie ideals associate with Hochschild 2-cocycles of rings, Rend. Circ. Mat. Palermo 60 (3), 2011, 437-444.
  • J. Vukman, Identities with derivations and autommorphisms on semiprime rings, Internat J. Math. and Math. Sci. 2005 (7), 2005, 1031-1038.

Lie Ideals of Semiprime Rings with Generalized Derivations

Year 2018, Volume: 8 Issue: 1, 1 - 12, 30.06.2018

Abstract

Let R be a 2- torsion free semiprime ring, U a noncentral square-closed Lie ideal of R. A map F:R→R  is called a generalized derivations if there exists a derivation d:R→R such that F(xy)=F(x)y+xd(y), for all x,y∈R. In the present paper, we shall prove that h is commuting map on U if any one of the following holds: i) F(u)u=±uG(u), ii) [F(u),v]=±[u,G(v)], iii) F(u)∘v=± u∘G(v), iv) [F(u),v]=±u∘G(v), v)F([u,v])=[F(u),v]+[d(v),u] for all u,v∈U, where G:R→R  is a generalized derivation associated with the derivation h:R→R.

References

  • R. Awtar, Lie structure in prime rings with derivations, Publ. Math. Debrecen 31, 1984, 209-215.
  • J. Bergen, I. N. Herstein, W. Kerr, Lie ideals and derivation of prime rings, J. of Algebra 71, 1981, 259-267.
  • M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33, 1991, 89-93.
  • M. Bresar, On skew-commuting mappings of rings, Bull. Austral. Math. Soc. 47, 1993, 291--296.
  • N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III. 49, 1955, 19-52.
  • M. Hongan, N. Rehman, R. M. Al-Omary, Lie ideals and Jordan triple derivations in rings: Rend. Semin. Mat. Univ. Padova, 125, 2011, 147--156.
  • Ö. Gölbaşı, E. Koç, Generalized derivations on Lie ideals in prime rings: Turk. J. Math., 35, 2011, 23-28.
  • P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations, Bull. Institute of Math. Acedemia Sinica, 11, 1983, 75-79.
  • E. C. Posner, Derivations in prime rings, Proc Amer. Math. Soc. 8, 1957, 1093-1100.
  • N. Rehman, M. Hongan, Generalized Jordan derivations on Lie ideals associate with Hochschild 2-cocycles of rings, Rend. Circ. Mat. Palermo 60 (3), 2011, 437-444.
  • J. Vukman, Identities with derivations and autommorphisms on semiprime rings, Internat J. Math. and Math. Sci. 2005 (7), 2005, 1031-1038.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Emine Koç Sögütcü

Öznur Gölbaşı

Publication Date June 30, 2018
Submission Date November 1, 2017
Acceptance Date June 4, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Koç Sögütcü, E., & Gölbaşı, Ö. (2018). Lie Ideals of Semiprime Rings with Generalized Derivations. Adıyaman University Journal of Science, 8(1), 1-12.
AMA Koç Sögütcü E, Gölbaşı Ö. Lie Ideals of Semiprime Rings with Generalized Derivations. ADYU J SCI. June 2018;8(1):1-12.
Chicago Koç Sögütcü, Emine, and Öznur Gölbaşı. “Lie Ideals of Semiprime Rings With Generalized Derivations”. Adıyaman University Journal of Science 8, no. 1 (June 2018): 1-12.
EndNote Koç Sögütcü E, Gölbaşı Ö (June 1, 2018) Lie Ideals of Semiprime Rings with Generalized Derivations. Adıyaman University Journal of Science 8 1 1–12.
IEEE E. Koç Sögütcü and Ö. Gölbaşı, “Lie Ideals of Semiprime Rings with Generalized Derivations”, ADYU J SCI, vol. 8, no. 1, pp. 1–12, 2018.
ISNAD Koç Sögütcü, Emine - Gölbaşı, Öznur. “Lie Ideals of Semiprime Rings With Generalized Derivations”. Adıyaman University Journal of Science 8/1 (June 2018), 1-12.
JAMA Koç Sögütcü E, Gölbaşı Ö. Lie Ideals of Semiprime Rings with Generalized Derivations. ADYU J SCI. 2018;8:1–12.
MLA Koç Sögütcü, Emine and Öznur Gölbaşı. “Lie Ideals of Semiprime Rings With Generalized Derivations”. Adıyaman University Journal of Science, vol. 8, no. 1, 2018, pp. 1-12.
Vancouver Koç Sögütcü E, Gölbaşı Ö. Lie Ideals of Semiprime Rings with Generalized Derivations. ADYU J SCI. 2018;8(1):1-12.

...