Research Article
BibTex RIS Cite

ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ

Year 2018, Volume: 5 Issue: 8, 147 - 155, 01.06.2018

Abstract

Bu çalışmada zeytin küspesinden
anaerobik fermantasyon yöntemi ile biyohidrojen ve biyogaz üretimi için optimal
substrat konsantrasyonları araştırılmıştır. Çalışmada kullanılan substrat için
Kimyasal Oksijen İhtiyacı (KOİ), Toplam Katı Madde (TKM), Uçucu Katı Madde
(UKM), Toplam Askıda Katı Madde (TAKM), Uçucu Askıda Katı Madde (UAKM), Toplam
Azot (TN), Toplam Fosfor (TP), Toplam Protein (TP), Toplam Karbonhidrat, pH ve
alkalinite parametreleri hesaplanmıştır. Toplam biyogaz ve biyohidrojen
analizleri gaz kromotografi cihazı (GC) ile ölçülmüştür. Zeytin küspesinden en
yüksek toplam biyogaz üretimi 50 g/L substrat konsantrasyonunda 90,04 mL olarak
ölçülmüştür. Zeytin küspesinden biyohidrojen üretimine bakıldığında ise en
yüksek verimin 3,51 mL olduğu ve bu değerin elde edilmesi için en uygun
konsantrasyonunun 50 g/L substrat olduğu görülmüştür. Zeytin küspesinden biyohidrojen
ve biyogaz üretilebilirliği görülmüş ve substrat konsantrasyonun artmasının
üretim verimini de arttırdığını göstermiştir. 

References

  • Kaynaklar[1] Haron, R., Mat, R., Abdullah, T. A. T., Rahman, R. A.. Overview on utilization of biodiesel by-product for biohydrogen production. Journal of Cleaner Production 2018;172, 314-324.[2] Ratnasingam, J., Ramasamy, G., Ioras, F., Parasuraman, N.. Assessment of the Carbon Footprint of Rubberwood Sawmilling in Peninsular Malaysia: Challenging the Green Label of the Material. BioResources 2017;12.2, 3490-3503. [3] Hoffert, M.I., Caldeira, K., Jain, A.K., Haites, E.F., Danny, L.D., Seth, H. Energy implications of future stabilization of atmospheric CO2 content. nature 1998;39.5, 881–884.[4] Pandu, K., Joseph, S., Comparisons and limitations of biohydrogen production processes: A review. Int. J. Adv. Eng. Technol. 2012;342–356.[5] Baghchehsaree, B., Nakhla, G., Karamanev, D., Argyrios, M. Fermentative hydrogen production by diverse Microflora. Int. J. Hydrogen Energy 2010;35, 5021–5027.[6] Abanades, A. The challenge of hydrogen production for the transition to a CO2-free economy. Agronomy Res. Biosystem. Eng. 2016;1, 11–16.[7] Ahmed, A., Al-Amin, A. Q., Ambrose, A. F., Saidur, R. Hydrogen fuel and transport system: A sustainable and environmental future. International journal of hydrogen energy 2016;41(3), 1369-1380.[8] Korres, Nicholas E., Jason K. Norsworthy. Biohydrogen Production from Agricultural Biomass and Organic Wastes. Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi 2017; 49-67.[9] Guo, X. M., Trably, E., Latrille, E., Carrere, H., Steyer, J. P. Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. international journal of hydrogen energy 2014;39(14), 7476-7485.[10] Kim, I.S., Hwang, M.H., Jang, N.J., Hyun, S.H., Lee, S.T. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy 2004;29, 1133–1140. [11] Yasin, N.H.M., Rahman, N.A., Man, H.C., Yusoff, M.Z.M., Hassan, M.A. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int. J. Hydrogen Energy 2011;36, 9571–9580.[12] Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., Yu, Z. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int. J. Hydrogen Energy 2009;34, 812–820.[13] Li, M., Zhao, Y., Guo, Q., Qian, X., Niu, D. Biohydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew. Energy 2008;33, 2573–2579.[14] Lin, Z.X., Huang, H., Zhang, H.M., Zhang, L., Yan, L.S. ve Chen, J.W. Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology 2010;162, 1872–1880.[15] Aslan, M. Optimal operation conditions for bio-hydrogen production from duckweed. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2016;38(14), 2072-2078.[16] Karaosmanoğlu, F. Biohydrogen production from hydrolized waste wheat by continuous dark fermentation process containing novel support material. Yüksek Lisans Tezi. İzmir; Dokuz Eylül Üniversitesi, 2015.[17] Gökfiliz, P. Microbial support particle selection for hydrogen gas production in an immobilized reactor system by dark fermentation. Yüksek Lisans Tezi. İzmir; Dokuz Eylül Üniversitesi; 2014.[18] Kırlı, B. Continuous hydrogen production from waste materials in an up-flow packed bed reactor. Yüksek Lisans Tezi. İzmir; Dokuz Eylül Üniversitesi; 2014.[19] Park, J.H., Cheon, H.C., Yoon, J.J., Park, H.D., Kim, S.H. Optimization of batch dilute-acid hydrolysisfor biohydrogen production from red algal biomass. Int. J. Hydrogen Energy 2013;38:6130–6136[20] Xu, J., Deshusses, M. A. Fermentation of swine wastewater-derived duckweed for biohydrogen production. International journal of hydrogen energy 2015; 40(22), 7028-7036.
Year 2018, Volume: 5 Issue: 8, 147 - 155, 01.06.2018

Abstract

References

  • Kaynaklar[1] Haron, R., Mat, R., Abdullah, T. A. T., Rahman, R. A.. Overview on utilization of biodiesel by-product for biohydrogen production. Journal of Cleaner Production 2018;172, 314-324.[2] Ratnasingam, J., Ramasamy, G., Ioras, F., Parasuraman, N.. Assessment of the Carbon Footprint of Rubberwood Sawmilling in Peninsular Malaysia: Challenging the Green Label of the Material. BioResources 2017;12.2, 3490-3503. [3] Hoffert, M.I., Caldeira, K., Jain, A.K., Haites, E.F., Danny, L.D., Seth, H. Energy implications of future stabilization of atmospheric CO2 content. nature 1998;39.5, 881–884.[4] Pandu, K., Joseph, S., Comparisons and limitations of biohydrogen production processes: A review. Int. J. Adv. Eng. Technol. 2012;342–356.[5] Baghchehsaree, B., Nakhla, G., Karamanev, D., Argyrios, M. Fermentative hydrogen production by diverse Microflora. Int. J. Hydrogen Energy 2010;35, 5021–5027.[6] Abanades, A. The challenge of hydrogen production for the transition to a CO2-free economy. Agronomy Res. Biosystem. Eng. 2016;1, 11–16.[7] Ahmed, A., Al-Amin, A. Q., Ambrose, A. F., Saidur, R. Hydrogen fuel and transport system: A sustainable and environmental future. International journal of hydrogen energy 2016;41(3), 1369-1380.[8] Korres, Nicholas E., Jason K. Norsworthy. Biohydrogen Production from Agricultural Biomass and Organic Wastes. Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi 2017; 49-67.[9] Guo, X. M., Trably, E., Latrille, E., Carrere, H., Steyer, J. P. Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. international journal of hydrogen energy 2014;39(14), 7476-7485.[10] Kim, I.S., Hwang, M.H., Jang, N.J., Hyun, S.H., Lee, S.T. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy 2004;29, 1133–1140. [11] Yasin, N.H.M., Rahman, N.A., Man, H.C., Yusoff, M.Z.M., Hassan, M.A. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int. J. Hydrogen Energy 2011;36, 9571–9580.[12] Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., Yu, Z. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int. J. Hydrogen Energy 2009;34, 812–820.[13] Li, M., Zhao, Y., Guo, Q., Qian, X., Niu, D. Biohydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew. Energy 2008;33, 2573–2579.[14] Lin, Z.X., Huang, H., Zhang, H.M., Zhang, L., Yan, L.S. ve Chen, J.W. Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology 2010;162, 1872–1880.[15] Aslan, M. Optimal operation conditions for bio-hydrogen production from duckweed. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2016;38(14), 2072-2078.[16] Karaosmanoğlu, F. Biohydrogen production from hydrolized waste wheat by continuous dark fermentation process containing novel support material. Yüksek Lisans Tezi. İzmir; Dokuz Eylül Üniversitesi, 2015.[17] Gökfiliz, P. Microbial support particle selection for hydrogen gas production in an immobilized reactor system by dark fermentation. Yüksek Lisans Tezi. İzmir; Dokuz Eylül Üniversitesi; 2014.[18] Kırlı, B. Continuous hydrogen production from waste materials in an up-flow packed bed reactor. Yüksek Lisans Tezi. İzmir; Dokuz Eylül Üniversitesi; 2014.[19] Park, J.H., Cheon, H.C., Yoon, J.J., Park, H.D., Kim, S.H. Optimization of batch dilute-acid hydrolysisfor biohydrogen production from red algal biomass. Int. J. Hydrogen Energy 2013;38:6130–6136[20] Xu, J., Deshusses, M. A. Fermentation of swine wastewater-derived duckweed for biohydrogen production. International journal of hydrogen energy 2015; 40(22), 7028-7036.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Harun Türkmenler

Mustafa Aslan

Mustafa Gümüş This is me

Publication Date June 1, 2018
Submission Date April 3, 2018
Published in Issue Year 2018 Volume: 5 Issue: 8

Cite

APA Türkmenler, H., Aslan, M., & Gümüş, M. (2018). ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 5(8), 147-155.
AMA Türkmenler H, Aslan M, Gümüş M. ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. June 2018;5(8):147-155.
Chicago Türkmenler, Harun, Mustafa Aslan, and Mustafa Gümüş. “ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 5, no. 8 (June 2018): 147-55.
EndNote Türkmenler H, Aslan M, Gümüş M (June 1, 2018) ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 5 8 147–155.
IEEE H. Türkmenler, M. Aslan, and M. Gümüş, “ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 5, no. 8, pp. 147–155, 2018.
ISNAD Türkmenler, Harun et al. “ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 5/8 (June 2018), 147-155.
JAMA Türkmenler H, Aslan M, Gümüş M. ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2018;5:147–155.
MLA Türkmenler, Harun et al. “ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 5, no. 8, 2018, pp. 147-55.
Vancouver Türkmenler H, Aslan M, Gümüş M. ZEYTİN KÜSPESİ ÇÖZELTİSİNİN DERİŞİME BAĞLI BİYOGAZ VE HİDROJEN POTANSİYELİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2018;5(8):147-55.