Research Article
BibTex RIS Cite

PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU

Year 2021, Volume: 8 Issue: 14, 23 - 33, 30.06.2021

Abstract

Bu çalışmada poli (glisidil metakrilat) (PGMA) polimeri, fonksiyonel SiO2 nano yapıları ile etkileştirilerek kompozit membranlar hazırlanmış ve karakterize edilmiştir. PEMFC’ de proton (H+) iyonlarının iletimini sağlayan nano yapılı kompozit membranların üretimi için imidazol (Im) ile SiO2 nanoparçacıkları modifiye edilmiştir. Modifiye edilen imidazol fonksiyonel SiO2 (Im-SiO2) nano yapıları halka açılma reaksiyonu ile PGMA ile etkileştirilmiştir. Elde edilen yapıya fosforik asit (H3PO4) eklenerek proton iletkenliği yüksek nanokompozit membranlar hazırlanmıştır. Nanokompozit membranların karakterizasyonunda PGMA ve Im-SiO2 etkileşimin belirlemek için FTIR analizi, termal özelliklerini incelemek için TGA ve DSC analizi, proton iletkenliklerini belirlemek için iletkenlik analizi yapılmıştır. Membranların morfolojisini belirlemek için SEM analizi yapılmıştır. PEMFC uygulamaları için geliştirilen nanokompozit membranların hazırlanmasında SiO2 ve imidazol etkileşimi doğrulanmış ayrıca PGMA üzerindeki epoksi halkasının açıldığı gözlenmiştir. Nanokompozit membranların proton iletkenlik özelliklerinin yüksek sıcaklıkta (120ºC) 0.04 Scm-1 iletkenlik değerine sahip olduğu belirlenmiştir.

References

  • [1] Çelik SÜ, Akbey Ü, Graf R, Bozkurt A, Spiess HW. Anhydrous proton-conducting properties of triazole–phosphonic acid copolymers: a combined study with MAS NMR. Physical Chemistry Chemical Physics 2008; 10: 6058-6066.
  • [2] Aslan A, Bozkurt A. An investigation of proton conductivity of nanocomposite membranes based on sulfated nano-titania and polymer. Solid State Ionics 2013; 239: 21-27.
  • [3] Gohil JM, Karamanev DG. Preparation and characterization of polyvinyl alcohol polyelectrolyte-based membrane-anode assembly for hybrid Fe3+/H2 redox flow microbial fuel cell. Chemical Engineering Journal 2015; 259: 25-33.
  • [4] Chen J, Li D, Koshikawa H, Asano M, Maekawa Y. Crosslinking and grafting of polyetheretherketone film by radiation techniques for application in fuel cells. Journal of Membrane Science 2010; 362: 488-494.
  • [5] Wong CY, Wong WY, Loh KS, Daud WRW, Lim KL, Khalid M, Walvekar R. Development of poly (vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: a review. Polymer Reviews 2020; 60: 171-202.
  • [6] Rosli RE, Sulong AB, Daud, WRW, Zulkifley MA, Husaini T, Rosli MI, Haque MA. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy 2017; 42: 9293-9314.
  • [7] Sen U, Çelik SÜ, Ata A, Bozkurt A. Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/Azole composites. International journal of hydrogen energy 2008; 33: 2808-2815.
  • [8] Wang Y, Diaz DFR, Chen KS, Wang Z, Adroher XC. Materials, technological status, and fundamentals of PEM fuel cells–a review. Materials Today 2020; 32: 178-203.
  • [9] Aslan A, Bozkurt A. Nanocomposite polymer electrolyte membranes based on poly (vinylphosphonic acid)/TiO2 nanoparticles. Journal of Materials Research 2012; 27: 3090.
  • [10] Beydaghi H, Javanbakht M, Kowsari E. Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Industrial & Engineering Chemistry Research 2014; 53; 16621-16632.
  • [11] Danwanichakul P, Sirikhajornnam P. An investigation of chitosan-grafted-poly (vinyl alcohol) as an electrolyte membrane. Journal of Chemistry, 2013.
  • [12] Guo M, Fang J, Xu H, Li W, Lu X, Lan C, Li K. Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells. Journal of Membrane Science 2010; 362: 97-104.
  • [13] Kim D, Jung J, Park SI, Seo J. Preparation and characterization of LDPE/PVA blend films filled with glycerin‐plasticized polyvinyl alcohol. Journal of Applied Polymer Science 2015; 132: 22.
  • [14] Kim DS, Park HB, Rhim JW, Lee YM. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science 2004; 240: 37-48.
  • [15] Koohmareh GA, Hajian M, Fallahi H. Graft Copolymerization of Styrene from Poly (vinyl alcohol) via RAFT Process. International Journal of Polymer Science 2011.
  • [16] Kreuer KD. Proton conductivity: materials and applications. Chemistry of materials 1996; 8: 610-641.
  • [17] Li P, Wu W, Liu J, Shi B, Du Y, Li Y, Wang J. Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes. Journal of Membrane Science 2018; 555: 327-336.
  • [18] Liu S, Wang L, Zhang B, Liu B, Wang J, Song Y. Novel sulfonated polyimide/polyvinyl alcohol blend membranes for vanadium redox flow battery applications. Journal of Materials Chemistry 2015; 3: 2072-2081.
  • [19] Yan F, Yu S, Zhang X, Qiu L, Chu F, You J, Lu J. Enhanced proton conduction in polymer electrolyte membranes as synthesized by polymerization of protic ionic liquid-based microemulsions. Chemistry of Materials 2019; 21: 1480-1484.
  • [20] Lin CH, Yang MC, Wei HJ. Amino-silica modified Nafion membrane for vanadium redox flow battery. Journal of Power Sources 2015; 282: 562-571.
  • [21] Lin HL, Wang SH. Nafion/poly (vinyl alcohol) nano-fiber composite and Nafion/poly (vinyl alcohol) blend membranes for direct methanol fuel cells. Journal of membrane science 2014; 452: 253-262.
  • [22] Mokhtar M, Majlan EH, Ahmad A, Tasirin SM, Daud WRW. Effect of ZnO filler on PVA-alkaline solid polymer electrolyte for aluminum-air battery applications. Journal of The Electrochemical Society 2018; 165: A2483.
  • [23] Palani PB, Kannan R, Rajashabala S, Rajendran S, Velraj G. Studies on PVA based nanocomposite Proton Exchange Membrane for Direct methanol fuel cell (DMFC) applications. In IOP Conference Series: Materials Science and Engineering 2015; 73: 12128.
  • [24] Pu H, Pan H, Qin Y, Wan D, Yuan J. Phosphonic acid-functionalized hollow silica spheres by nitroxide mediated polymerization. Materials Letters 2010; 64: 1510-1512.
  • [25] Wang H, Holmberg BA, Huang L, Wang Z, Mitra A, Norbeck JM, Yan Y. Nafion-bifunctional silica composite proton conductive membranes. Journal of Materials Chemistry 2002; 12: 834-837.
  • [26] Zhu Y, Shi J, Chen H, Shen W, Dong X. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Microporous and Mesoporous Materials 2005; 84: 218-222.
  • [27] Lee KH, Chu JY, Kim AR, Yoo DJ. Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application. International Journal of Energy Research 2019; 43: 5333-5345.
  • [28] Amiinu IS, Li W, Wang G, Tu Z, Tang H, Pan M, Zhang H. Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes. Electrochimica Acta 2015; 160: 185-194.
  • [29] Jalani NH, Dunn K, Datta R. Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochimica Acta 2005; 51: 553-560.
  • [30] Jang SY, Han SH. Sulfonated polySEPS/hydrophilic-SiO2 composite membranes for polymer electrolyte membranes (PEMs). Journal of Industrial and Engineering Chemistry 2015; 23: 285-289.
  • [31] Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M. Silica–metal core–shell nanostructures. Advances in colloid and interface science 2012; 170: 28-47.
  • [32] Binsu VV, Nagarale RK, Shahi VK. Phosphonic acid functionalized aminopropyl triethoxysilane–PVA composite material: organic–inorganic hybrid proton-exchange membranes in aqueous media. Journal of Materials Chemistry 2005; 15: 4823-4831.
  • [33] Kalappa P, Lee JH. Proton conducting membranes based on sulfonated poly (ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polymer international 2007; 56: 371-375.
  • [34] Kamoun EA, Youssef ME, Abu-Saied MA, Fahmy A, Khalil HF, Abdelhai F. Ion conducting nanocomposite membranes based on PVA-HA-HAP for fuel cell application: II. Effect of modifier agent of PVA on membrane properties. Int. J. Electrochem. Sci 2015; 10: 6627-6644.
  • [35] Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 2001; 42: 879-887.
  • [36] Martwiset S, Woudenberg RC, Granados-Focil S, Yavuzcetin O, Tuominen MT, Coughlin EB. Intrinsically conducting polymers and copolymers containing triazole moieties. Solid State Ionics 2007; 178: 1398-1403.
  • [37] Kausar A. Fabrication and characteristics of poly (benzimidazole/fluoro/ether/siloxane/amide)/ sulfonated polystyrene/silica nanoparticle-based proton exchange membranes doped with phosphoric acid. International Journal of Polymeric Materials and Polymeric Biomaterials 2015; 64: 184-191.
  • [38] Ke CC, Li XJ, Shen Q, Qu SG, Shao ZG, Yi BL. Investigation on sulfuric acid sulfonation of in-situ sol–gel derived Nafion/SiO2 composite membrane. International journal of hydrogen energy 2011; 36: 3606-3613.
  • [39] Mishra AK, Kuila T, Kim DY, Kim NH, Lee JH. Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. Journal of Materials Chemistry 2012; 22: 24366-24372.
  • [40] Aslan A, Gümüşdereli E, Soydan AM. Producing of imidazol functional SiO2 nanoparticles/ Nafion nanocomposite membranes for PEMFC applications. Journal of the Faculty of Engineering and Architecture of Gazi University 2019; 34: 351-363.
  • [41] Amiinu IS, Li W, Wang G, Tu Z, Tang H, Pan M, Zhang H. Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes. Electrochimica Acta 2015; 160: 185-194.
  • [42] Çelik SÜ, Aslan A, Bozkurt A. Phosphoric acid-doped poly (1-vinyl-1, 2, 4-triazole) as water-free proton conducting polymer electrolytes. Solid State Ionics 2008; 179: 683-688.
  • [43] Aslan A, Elanthikkal S, Bozkurt A. Chitosan/hollow silica sphere nanocomposites for wound healing application. Journal of Materials Research 2019; 34: 231-239.
  • [44] Kim JH, Kim SK, Nam K, Kim DW. Composite proton conducting membranes based on Nafion and sulfonated SiO2 nanoparticles. Journal of membrane science 2012; 415: 696-701.
  • [45] Aslan A, Gölcük K, Bozkurt A. Nanocomposite polymer electrolytes membranes based on Poly (vinylphosphonic acid)/SiO2. Journal of Polymer Research 2012; 19: 22.
  • [46] Aslan A, Çelik SÜ, Bozkurt A. Proton-conducting properties of the membranes based on poly (vinyl phosphonic acid) grafted poly (glycidyl methacrylate). Solid State Ionics 2009; 180: 1240-1245.
  • [47] Aslan A, Bozkurt A. Bioinspired blend membranes based on adenine and guanine functional poly (glycidyl methacrylate). Langmuir 2010; 26: 13655-13661.
  • [48] Çelik SÜ, Bozkurt A. Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly (glycidyl methacrylate). European polymer journal 2008; 44: 213-218.
  • [49] Çelik SÜ, Bozkurt A, Hosseini SS. Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes. Progress in Polymer Science 2012; 37: 1265-1291.
  • [50] Hori Y, Chikai T, Ida T, Mizuno M. Local structure and hydrogen bond characteristics of imidazole molecules for proton conduction in acid and base proton-conducting composite materials. Physical Chemistry Chemical Physics 2018; 20: 10311-10318.
  • [51] Chakraborty C, Rana U, Pandey RK, Moriyama S, Higuchi M. One-dimensional anhydrous proton conducting channel formation at high temperature in a pt (ii)-based metallo-supramolecular polymer and imidazole system. ACS Applied Materials & Interfaces 2017; 9: 13406-13414.
  • [52] Zięba S, Dubis AT, Gzella AK, Ławniczak P, Pogorzelec-Glaser K, Łapiński A. Toward a new type of proton conductor based on imidazole and aromatic acids. Physical Chemistry Chemical Physics 2019; 21: 17152-17162.
Year 2021, Volume: 8 Issue: 14, 23 - 33, 30.06.2021

Abstract

References

  • [1] Çelik SÜ, Akbey Ü, Graf R, Bozkurt A, Spiess HW. Anhydrous proton-conducting properties of triazole–phosphonic acid copolymers: a combined study with MAS NMR. Physical Chemistry Chemical Physics 2008; 10: 6058-6066.
  • [2] Aslan A, Bozkurt A. An investigation of proton conductivity of nanocomposite membranes based on sulfated nano-titania and polymer. Solid State Ionics 2013; 239: 21-27.
  • [3] Gohil JM, Karamanev DG. Preparation and characterization of polyvinyl alcohol polyelectrolyte-based membrane-anode assembly for hybrid Fe3+/H2 redox flow microbial fuel cell. Chemical Engineering Journal 2015; 259: 25-33.
  • [4] Chen J, Li D, Koshikawa H, Asano M, Maekawa Y. Crosslinking and grafting of polyetheretherketone film by radiation techniques for application in fuel cells. Journal of Membrane Science 2010; 362: 488-494.
  • [5] Wong CY, Wong WY, Loh KS, Daud WRW, Lim KL, Khalid M, Walvekar R. Development of poly (vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: a review. Polymer Reviews 2020; 60: 171-202.
  • [6] Rosli RE, Sulong AB, Daud, WRW, Zulkifley MA, Husaini T, Rosli MI, Haque MA. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy 2017; 42: 9293-9314.
  • [7] Sen U, Çelik SÜ, Ata A, Bozkurt A. Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/Azole composites. International journal of hydrogen energy 2008; 33: 2808-2815.
  • [8] Wang Y, Diaz DFR, Chen KS, Wang Z, Adroher XC. Materials, technological status, and fundamentals of PEM fuel cells–a review. Materials Today 2020; 32: 178-203.
  • [9] Aslan A, Bozkurt A. Nanocomposite polymer electrolyte membranes based on poly (vinylphosphonic acid)/TiO2 nanoparticles. Journal of Materials Research 2012; 27: 3090.
  • [10] Beydaghi H, Javanbakht M, Kowsari E. Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Industrial & Engineering Chemistry Research 2014; 53; 16621-16632.
  • [11] Danwanichakul P, Sirikhajornnam P. An investigation of chitosan-grafted-poly (vinyl alcohol) as an electrolyte membrane. Journal of Chemistry, 2013.
  • [12] Guo M, Fang J, Xu H, Li W, Lu X, Lan C, Li K. Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells. Journal of Membrane Science 2010; 362: 97-104.
  • [13] Kim D, Jung J, Park SI, Seo J. Preparation and characterization of LDPE/PVA blend films filled with glycerin‐plasticized polyvinyl alcohol. Journal of Applied Polymer Science 2015; 132: 22.
  • [14] Kim DS, Park HB, Rhim JW, Lee YM. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science 2004; 240: 37-48.
  • [15] Koohmareh GA, Hajian M, Fallahi H. Graft Copolymerization of Styrene from Poly (vinyl alcohol) via RAFT Process. International Journal of Polymer Science 2011.
  • [16] Kreuer KD. Proton conductivity: materials and applications. Chemistry of materials 1996; 8: 610-641.
  • [17] Li P, Wu W, Liu J, Shi B, Du Y, Li Y, Wang J. Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes. Journal of Membrane Science 2018; 555: 327-336.
  • [18] Liu S, Wang L, Zhang B, Liu B, Wang J, Song Y. Novel sulfonated polyimide/polyvinyl alcohol blend membranes for vanadium redox flow battery applications. Journal of Materials Chemistry 2015; 3: 2072-2081.
  • [19] Yan F, Yu S, Zhang X, Qiu L, Chu F, You J, Lu J. Enhanced proton conduction in polymer electrolyte membranes as synthesized by polymerization of protic ionic liquid-based microemulsions. Chemistry of Materials 2019; 21: 1480-1484.
  • [20] Lin CH, Yang MC, Wei HJ. Amino-silica modified Nafion membrane for vanadium redox flow battery. Journal of Power Sources 2015; 282: 562-571.
  • [21] Lin HL, Wang SH. Nafion/poly (vinyl alcohol) nano-fiber composite and Nafion/poly (vinyl alcohol) blend membranes for direct methanol fuel cells. Journal of membrane science 2014; 452: 253-262.
  • [22] Mokhtar M, Majlan EH, Ahmad A, Tasirin SM, Daud WRW. Effect of ZnO filler on PVA-alkaline solid polymer electrolyte for aluminum-air battery applications. Journal of The Electrochemical Society 2018; 165: A2483.
  • [23] Palani PB, Kannan R, Rajashabala S, Rajendran S, Velraj G. Studies on PVA based nanocomposite Proton Exchange Membrane for Direct methanol fuel cell (DMFC) applications. In IOP Conference Series: Materials Science and Engineering 2015; 73: 12128.
  • [24] Pu H, Pan H, Qin Y, Wan D, Yuan J. Phosphonic acid-functionalized hollow silica spheres by nitroxide mediated polymerization. Materials Letters 2010; 64: 1510-1512.
  • [25] Wang H, Holmberg BA, Huang L, Wang Z, Mitra A, Norbeck JM, Yan Y. Nafion-bifunctional silica composite proton conductive membranes. Journal of Materials Chemistry 2002; 12: 834-837.
  • [26] Zhu Y, Shi J, Chen H, Shen W, Dong X. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Microporous and Mesoporous Materials 2005; 84: 218-222.
  • [27] Lee KH, Chu JY, Kim AR, Yoo DJ. Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application. International Journal of Energy Research 2019; 43: 5333-5345.
  • [28] Amiinu IS, Li W, Wang G, Tu Z, Tang H, Pan M, Zhang H. Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes. Electrochimica Acta 2015; 160: 185-194.
  • [29] Jalani NH, Dunn K, Datta R. Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochimica Acta 2005; 51: 553-560.
  • [30] Jang SY, Han SH. Sulfonated polySEPS/hydrophilic-SiO2 composite membranes for polymer electrolyte membranes (PEMs). Journal of Industrial and Engineering Chemistry 2015; 23: 285-289.
  • [31] Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M. Silica–metal core–shell nanostructures. Advances in colloid and interface science 2012; 170: 28-47.
  • [32] Binsu VV, Nagarale RK, Shahi VK. Phosphonic acid functionalized aminopropyl triethoxysilane–PVA composite material: organic–inorganic hybrid proton-exchange membranes in aqueous media. Journal of Materials Chemistry 2005; 15: 4823-4831.
  • [33] Kalappa P, Lee JH. Proton conducting membranes based on sulfonated poly (ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polymer international 2007; 56: 371-375.
  • [34] Kamoun EA, Youssef ME, Abu-Saied MA, Fahmy A, Khalil HF, Abdelhai F. Ion conducting nanocomposite membranes based on PVA-HA-HAP for fuel cell application: II. Effect of modifier agent of PVA on membrane properties. Int. J. Electrochem. Sci 2015; 10: 6627-6644.
  • [35] Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 2001; 42: 879-887.
  • [36] Martwiset S, Woudenberg RC, Granados-Focil S, Yavuzcetin O, Tuominen MT, Coughlin EB. Intrinsically conducting polymers and copolymers containing triazole moieties. Solid State Ionics 2007; 178: 1398-1403.
  • [37] Kausar A. Fabrication and characteristics of poly (benzimidazole/fluoro/ether/siloxane/amide)/ sulfonated polystyrene/silica nanoparticle-based proton exchange membranes doped with phosphoric acid. International Journal of Polymeric Materials and Polymeric Biomaterials 2015; 64: 184-191.
  • [38] Ke CC, Li XJ, Shen Q, Qu SG, Shao ZG, Yi BL. Investigation on sulfuric acid sulfonation of in-situ sol–gel derived Nafion/SiO2 composite membrane. International journal of hydrogen energy 2011; 36: 3606-3613.
  • [39] Mishra AK, Kuila T, Kim DY, Kim NH, Lee JH. Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. Journal of Materials Chemistry 2012; 22: 24366-24372.
  • [40] Aslan A, Gümüşdereli E, Soydan AM. Producing of imidazol functional SiO2 nanoparticles/ Nafion nanocomposite membranes for PEMFC applications. Journal of the Faculty of Engineering and Architecture of Gazi University 2019; 34: 351-363.
  • [41] Amiinu IS, Li W, Wang G, Tu Z, Tang H, Pan M, Zhang H. Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes. Electrochimica Acta 2015; 160: 185-194.
  • [42] Çelik SÜ, Aslan A, Bozkurt A. Phosphoric acid-doped poly (1-vinyl-1, 2, 4-triazole) as water-free proton conducting polymer electrolytes. Solid State Ionics 2008; 179: 683-688.
  • [43] Aslan A, Elanthikkal S, Bozkurt A. Chitosan/hollow silica sphere nanocomposites for wound healing application. Journal of Materials Research 2019; 34: 231-239.
  • [44] Kim JH, Kim SK, Nam K, Kim DW. Composite proton conducting membranes based on Nafion and sulfonated SiO2 nanoparticles. Journal of membrane science 2012; 415: 696-701.
  • [45] Aslan A, Gölcük K, Bozkurt A. Nanocomposite polymer electrolytes membranes based on Poly (vinylphosphonic acid)/SiO2. Journal of Polymer Research 2012; 19: 22.
  • [46] Aslan A, Çelik SÜ, Bozkurt A. Proton-conducting properties of the membranes based on poly (vinyl phosphonic acid) grafted poly (glycidyl methacrylate). Solid State Ionics 2009; 180: 1240-1245.
  • [47] Aslan A, Bozkurt A. Bioinspired blend membranes based on adenine and guanine functional poly (glycidyl methacrylate). Langmuir 2010; 26: 13655-13661.
  • [48] Çelik SÜ, Bozkurt A. Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly (glycidyl methacrylate). European polymer journal 2008; 44: 213-218.
  • [49] Çelik SÜ, Bozkurt A, Hosseini SS. Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes. Progress in Polymer Science 2012; 37: 1265-1291.
  • [50] Hori Y, Chikai T, Ida T, Mizuno M. Local structure and hydrogen bond characteristics of imidazole molecules for proton conduction in acid and base proton-conducting composite materials. Physical Chemistry Chemical Physics 2018; 20: 10311-10318.
  • [51] Chakraborty C, Rana U, Pandey RK, Moriyama S, Higuchi M. One-dimensional anhydrous proton conducting channel formation at high temperature in a pt (ii)-based metallo-supramolecular polymer and imidazole system. ACS Applied Materials & Interfaces 2017; 9: 13406-13414.
  • [52] Zięba S, Dubis AT, Gzella AK, Ławniczak P, Pogorzelec-Glaser K, Łapiński A. Toward a new type of proton conductor based on imidazole and aromatic acids. Physical Chemistry Chemical Physics 2019; 21: 17152-17162.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ayşe Aslan

Sedef Kaptan Usul 0000-0002-8178-9343

Publication Date June 30, 2021
Submission Date December 1, 2020
Published in Issue Year 2021 Volume: 8 Issue: 14

Cite

APA Aslan, A., & Kaptan Usul, S. (2021). PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(14), 23-33.
AMA Aslan A, Kaptan Usul S. PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. June 2021;8(14):23-33.
Chicago Aslan, Ayşe, and Sedef Kaptan Usul. “PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 14 (June 2021): 23-33.
EndNote Aslan A, Kaptan Usul S (June 1, 2021) PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8 14 23–33.
IEEE A. Aslan and S. Kaptan Usul, “PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 14, pp. 23–33, 2021.
ISNAD Aslan, Ayşe - Kaptan Usul, Sedef. “PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8/14 (June 2021), 23-33.
JAMA Aslan A, Kaptan Usul S. PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8:23–33.
MLA Aslan, Ayşe and Sedef Kaptan Usul. “PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 14, 2021, pp. 23-33.
Vancouver Aslan A, Kaptan Usul S. PEM TİPİ YAKIT HÜCRELERİ İÇİN İMİDAZOL FONKSİYONEL SİLİKA / POLİ (GLİSİDİL METAKRİLAT) NANOKOMPOZİT MEMBRANLARIN ÜRETİLMESİ VE KARAKTERİZASYONU. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8(14):23-3.