Research Article
BibTex RIS Cite

UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ

Year 2022, Volume: 9 Issue: 17, 287 - 303, 31.08.2022
https://doi.org/10.54365/adyumbd.1053376

Abstract

Beton bileşiminden biri olan çimentonun hidratasyonu ile sülfat iyonları arasında oluşan kimyasal reaksiyon
sonucu sülfat korozyonu oluşmakta ve bu oluşum betonda bozulmalara neden olmaktadır. Sülfatın beton üzerinde
oluşturduğu hasarı azaltmak ya da en aza indirmek için çimento yerine uçucu kül gibi puzolanlar kullanılmaktadır.
Bu çalışmada betonun ana bileşenlerinden biri olan çimento yerine çimentoya yakın bileşene sahip olan Afşin
Elbistan Termik Santralinden temin edilmiş uçucu kül atığı kullanılmıştır. Uçucu külün (UK) bilyalı değirmende
0, 10 ve 20 dk öğütülmesi ile elde edilen farklı inceliklere sahip örnekler % 10 UK ikame oranı ile hazırlanarak
uçucu kül katkılı beton örnekleri oluşturulmuştur. Daha sonra bu örnekler; % 5 ve % 10 katkılı sülfat çözeltisine
maruz bırakılmış ve beton örneklerinin sülfat direnci üzerine etkisini araştırmak için basınç dayanımı ve ultrasonik
dalga hızı ölçümü testlerine tabi tutulmuş, ağırlık kayıpları incelenmiştir. Elde edilen sonuçlara göre uçucu kül
öğütme süresine bağlı olarak % 5 ve % 10 sülfat çözeltisine maruz bırakılmıştır ve daha sonra katkılı beton
örneklerindeki basınç dayanım değerlerinde artışlar gözlenmiştir. Sülfat çözeltisi miktarının artmasıyla birlikte
beton örneklerinin basınç dayanımının azaldığı ve bu beton örneklerinin referans örneğine göre daha yüksek basınç
dayanımı değerine sahip olduğu görülmüştür. Bununla birlikte; öğütme süresinin artmasıyla ağırlık kayıplarının
azaldığı görülmüştür. Ayrıca; öğütmenin etkisi ile uçucu külün inceliğinin artması sonucu ultrasonik dalga hızı
değerlerinin de arttığı belirlenmiştir.

Supporting Institution

yok

Project Number

proje kapsamında çalışma yürütülmemiştir.

Thanks

Deneysel çalışmalardaki yardımlarında dolayı Gümüşhane Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği öğrencilerine teşekkür ederiz.

References

  • Alişer, B., Mermer Tozu ve Cam Elyaf Katkılı Çimento Harçlarının Sülfat Dayanıklılığının Araştırılması, Fırat Üniversitesi Fen Bilimleri Enstitüsü Yapı Eğitimi Anabilim Dalı Yüksek Lisans Tezi, Elazığ, 2013.
  • Gu, G. P., J. J. Beaudoin, and V. S. Ramachandran., Techniques For Corrosion İnvestigation İn Reinforced Concrete. In Handbook Of Analytical Techniques İn Concrete Science And Technology: Principles, Techniques And Applications, edited by V. S. Ramachandran and J. J. Beaudoin, 441–501. Norwich, NY: William Andrew/Noyes, 2006.
  • Al-Dulaijan, S.U., Maslehuddin, M., Al-Zahrani, M.M., Sharif, A.M., Shameem, M., Ibrahim, M., Sulfate Resistance of Plain and Blended Cements Exposed to Varying Concentrations of Sodium Sulfateauthor Links Open Overlay Panel, Cement and Concrete Composites, May–July 2003.Volume 25, Issues 4–5, Pages 429-437.
  • Baradan B., ve Yazıcı., Betonarme Yapılarda Durabilite ve TS EN 206-1 Standardının Getirdiği Yenilikler” Türkiye Mühendislik Haberleri 2003.Sayı 4/ 426.
  • Prasad, M., Palepu, R., Moulik, S. P., Interaction between Sodium Dodecyl Sulfate (SDS) and Polyvinylpyrrolidone (PVP) ınvestigated with forward and Reverse Component Addition Protocols eemploying Tensiometric, Conductometric, Microcalorimetric, Electrokinetic, and DLS Techniques, Colloid and Polymer Science 2006.volume 284, pages871–878 .
  • M., Karakouzian, N., Ghafoori. Predictive Modeling of Soluble Sulfate Ion Concentration in The Las Vegas Valley. In: Proceeding of the 3rd International Structural Engineering and Construction Conference (ISEC-03), Shunan, Japan, 2005.p. 279–286.
  • McCaffrey, R., Climate Change and the Cement Industry, Global Cement and Lime Magazine, (Environmental Special Issue), 2002.pp. 15–19.
  • Davidovits, J., High-Alkali Cements for 21st Century Concretes, Special Publication, 1994. pp. 383–398.
  • Irassar, E., Di Maio, A., Batic, O., Sulfate Attack On Concrete With Mineral Admixtures. Cem Concr Res; 1996. 26(1):113–123.
  • Senthamarai, R., Devadas Manoharan, P., Gobinath, D., Concrete Made from Ceramic Industry Waste: Durability Properties. Constr Build Mater; 2011.25:2413–2419.
  • Huang, B., Dong, Q., Burdette, E. G., Laboratory Evaluation of Incorporating Waste Ceramic Materials into Portland Cement and Asphaltic Concrete. Constr Build Mater; 2009.23:3451–3456.
  • Pereira, O., Luiz, A.Castro-Gomes Joao P, Santos Pedro MS., The Potential Pozzolanic Activity of Glass and Red-Clay Ceramic Waste As Cement Mortars Components. Constr Build Mater; 2012.31:197–203.
  • Higashiyama, H., Yagishita, F., Sano, M., Takahashi, O., Compressive Strength and Resistance to Chloride Penetration of Mortars Using Ceramic Waste as Fine Aggregate. Constr Build Mater; 2012.26:96–101.
  • Medina, C., Sánchez, R. M., Frías, M., Reuse of Sanitary Ceramic Wastes as Coarse Aggregate in Eco-Efficient Concretes. Cement Concr Compos; 2012.34:48–54.
  • Erdoğdu, Ş., Kurbetçi, Ş., Betonun Performansına Sağladıkları Etkinlik Açısından Kimyasal ve Mineral Katkı Maddeleri, Türkiye Mühendislik Haberleri, 2003.426 (4): 115-120.
  • Franus, W., and Dudek, K., Clay Minerals and Cinoptilolite from the Variegated Shales Formation in the Skole Unit, Polish Flysch Carpath., Geologica Carpathica 1999.50, 23–24.
  • Feng, N., and Peng, G., Applications of Natural Zeolite to Construction and Building Materials in China, Construction and Building Materials 2005.19, 579–584.
  • Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M., An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan, Construction and Building Materials, 2012.35, 1023–1033.
  • Akman M.S., Deniz Yapılarında Beton Teknolojisi, İ.T.Ü. Gemi İnşaatı ve Deniz Bilimleri Fakültesi, İstanbul, 1992.
  • Mehta P.K., Monteiro P.J.M., Concrete Microstructure, Properties and Materials, Indian Edition, India, 1997.
  • Yeğinobalı A., Betonun Dayanıklılığı II, Kimyasal Etkenler, TCMB Çimento Araştırma Enstitüsü Seminer Notları, Ankara, 1999.
  • Rattanachu, P., Tangchirapat, W. Ve Jaturapitakkul, C., Water Permeability and Sulfate Resistance of Eco-Friendly High-Strength Concrete Composed of Ground Bagasse Ash and Recycled Concrete Aggregate, J. Mater. Civ. Eng., 2019.31(6): 04019093.
  • Hossain, K.M.A. ve Lachemi, M., Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment, Cem. Concr. Res. 2006. 36, 1123–1133.
  • Al-Akhras N.M., Durability of mekketakaolin concrete to sulfate attack. Cement and Concrete Research, 2006.36, 1727–1734.
  • Mathis, RP., Freezing and thawing, deicing salt, and sulfate resistance of concrete pavers. Graduate Thesis, Southern Illinois University; 1991.231 p.
  • Skalny, J., Marchand, J, ve Odler, I., Sulfate attack on concrete. USA and Canada: Spon Press; 2002.240 pp.
  • Shaheen, F., Pradhan, B., Role of Chloride Ion and Cation Type Accompanied by Sulfate Ion on Durability Performance of Concrete in Conjoint Chloride–Sulfate Environment, Journal of Materials in Civil Engineering, 2020.Volume 32, Issue 9.
  • Hossain, K. M. A., Resistance of scoria-based blended cement concrete against deterioration and corrosion in mixed sulfate environment. J. Mater. Civ. Eng. 2009.21 (7): 299–308.
  • Al-Amoudi, O. S. B. Sulfate attack and reinforcement corrosion in plain and blended cements exposed to sulfate environments. Constr. Build. Mater. 1998.33 (1): 53–61.
  • Cohen, M.D., Bentur,A., Durability of portland cement-silica fume pastes in magnesium sulfate and sodium sulfate solutions. ACI Mater. J. 1988. 85 (3): 148–157.
  • Al-Amoudi O.S.B., Sufate attack and reinforcement corrosion in plain and blended cements exposed to sulfate environments. Building and Environment, 1997. 33, 53-61.
  • Kılınç K., Uyan M., Beton karışım suyundaki sülfat tuzlarının çimento harcı özelliklerine etkisi. 5. Ulusal Beton Kongresi, Bildiriler Kitabı, İstanbul, 2003. s. 393-402.
  • Neville, A.,The confused world of sulfate attack on concrete. Cement and Concrete Research, 2004.34, 1275–1296.
  • Nehdi, M., and Hayek, M., Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity. Cement and Concrete Research, 2005.35, 731–742.
  • Baradan, B., Yazıcı, H., Ün, H., Beton ve Betonarme Yapılarda Kalıcılık (Durabilite), Türkiye Hazır Beton Birliği Yayınları, İstanbul, 2010.
  • Yazıcı, H.,Yüksek Fırın Cürufu Katkılı Harçların Sülfat Dayanıklılığının İncelenmesi, Deü Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 2006. Cilt: 8 sayı: 1 s. 51-58 Ocak.
  • Nie, Q.K., Zhou, C.J., Li, H.W., Shu, X., Gong, H.R., Huang, B.S., Numerical simulationof fly ash concrete under sulfate attack,Constr. Build. Mater. 2015. 84, 261–268.
  • Enstitüsü, T. S.. TS 802: Beton karışım tasarımı hesap esasları.Ankara: Türk Standardları Enstitüsü 2016.
  • Baradan, B., Yazıcı H, Ün, H., Betonarme Yapılarda Kalıcılık (Durabilite), D.E.Ü. Müh. Fak. Yayın No 298, İzmir, 2002.
  • Lee , S.T., Moon, H.Y., Hooton, R.D. and Kim, J.P., Effect of Solution Concentrations and Replacement Levels of Metakaolin on The Resistance of Mortars Exposed To MgSO4 Solutions. Cement and Concrete Research, 2005.35, 1314–1323.
  • Lawrance C.D., The Influence of Binder Type on Sulfate Resistance. Cement and Concrete Research, 1992.22, 1047-1058.
  • Bonen, D., A Microstructural Study of The Effect Produced by Magnesium Sulphate on Plain and Silica Fume Bearing Portland Cement Mortars. Cement an Concrete Research, 1993. 23, 541-553.
  • Türker, F., Aköz, F., Koral, S., and Yüzer, N., Effects of Magnesiun Sulfate Concentration on The Sulfate Resistance of Mortars With and Without Silica Fume. Cement and Concrete Research, 1997.27, 205-214.
  • Biricik, H., Aköz, F., Türker, F. and Berktay, İ., Resistance to Magnesium Sulfate and Sodium Sulfate Attack of Mortars Containing Wheat Straw Ash. Cement and Concrete Research, 2000. 30, 1189-1197.
  • Shi, J.A., Stegemann, Acid Corrosion Resistance of Different Cement-Ing Materials, Cem. Concr. Res. 30 803–808, 2000.
  • Dikeou, JT., Fly Ash Increase Resistance of Concrete to Sulfate Attack. 1970. Research Report No. 23, United States Department of the Interior, Bureau of Reclamation, 17 p.
  • Dunstan, ER., Sulfate Resistance of Fly Ash Concrete – The R-Value. In: Bryant and Katherine Mather symposium on concrete durability, SP100. American Concrete Institute; 1987. p. 2027–40.
  • Dodson, V.H., Concrete Admixtures, Structural Engineering Series, Van Nostrand Reinhold, New York, 1990.
  • Manu Santhanam, Menashi D. Cohen, Jan Olek, Mechanism of Sulfate Attack: A Fresh Look Part 2. Proposed Mechanism, Cement and Concrete Research, 2003.33, 341-346.
  • Weiping, Ma, Brown, Paul W., Hydrothermal Reactions of Fly Ash with Ca(OH)2 and CaSO4.2H2O, Cement and Concrete Research, 1997.27, 1237-1248.
  • Belie, N.D., Verselder, H.J., Blaere, B.D., Nieuwenburg, D.K., Verschoore, R., Influence of The Cement Type on The Resistance of Con-Crete to Feed Acids, Cem. Concr. Res. 1996. 26, 1717–1725.
  • Chareerat, T., A study on pore volume and physical properties of ordi-nary portland cement containing classified fly ash, M.E. thesis, KhonKaen University, Thailand, 2002.p. 156.
  • Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., and Fairbairn, E. M. R. Pozzolanic activity and filler effect of sugar cane bagasse ash in portland cement and lime mortars. Cem. Concr. Compos. 2008. 30 (5): 410–418.
  • Martirena Hernández, J. F., Middendorf, B., Gehrke, M. and Budelmann, H., o aio1998.
  • Freeman, R.B., Carrasquillo, R.L., Effects of Intergrinding Fly Ash on the Sulfate Resistance of Fly Ash Concrete, Supplementary Papers of Fourth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, İstanbul, Turkey, 1992. 281-297. Rerkpiboon, A., Tangchirapat, W., and Jaturapitakkul., C., Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101 (Part 1): 2015. 983–989.
  • Freeman, R.B., Carrasquillo, R.L., Effects of Intergrinding Fly Ash on the Sulfate Resistance of Fly Ash Concrete, Supplementary Papers of Fourth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, İstanbul, Turkey, 1992. 281-297. Rerkpiboon, A., Tangchirapat, W., and Jaturapitakkul., C., Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101 (Part 1): 2015. 983–989.
  • Chindaprasirt, P., Homwuttiwong, S., Sirivivatnanon, V., Influence of Fly Ash Fineness on Strength, Drying Shrinkage and Sulfate Resistance of Blended Cement Mortar, Cement and Concrete Research, Vol. 34, 2004.,s. 1087-1092.
  • B. Fournier, A. Bilodeau, N. Bouzoubaa, P.-C. Nkinamubanzi, Field and Laboratory Investigations on the Use of Fly Ash and Li-Based Admixtures to Prevent ASR in Concrete, Sixth International Conference on the Durability of Concrete Structures, 2018.18–20 July 2018, University of Leeds.
  • ASTM C 618-05, 2005. Standard Specification for Coal Fly Ash and Raw or CalcinedNatural Pozzolan for Use in Concrete, ASTM (American Society for Testing and Materials), 3, Amerika.
  • Referans60 Shaikh FUA, Supit S, Sarker P. A study on the effect of nano silica on compressive strength of high volume fly ash mortar and concrete. Mater Des. 2014;60:433-442.
  • Referans61 Siddique R. Performance Characteristics of High-Volume Class F Fly Ash Concrete. Cem Concr Res. 2004. 34(3):487-93.
  • Referans62 Naik, T.R., Singh, S.S., Hossain, M.M. Permeability of concrete containing large amounts of fly ash. Cem Concr Res. 1994. 24(5):913-22.
  • Supit, S, Shaikh, FUA. Durability Properties of High Volume Fly Ash Concrete Containing Nano Silica. Mater Struct. 2014. 48:2431-2445.
  • Tkaczewska, E. And Małolepszy, J., Hydration of Coal–Biomass Fly Ash Cement, Construction and Building Materials, Volume 23, Issue 7, July 2009, Pages 2694-2700.
  • Ş. Arel, H.Ş, Shaikh, F.U.A., Effects of Fly Ash Fineness, Nano Silica, and Curing Types on Mechanical and Durability Properties of Fly Ash Mortars, Structural Concrete Journal Of The Fib, 2017. Volume19, Issue2, April 2018, Pages 597-607.
  • Chindaprasirta,P., Homwuttiwongb, S., Sirivivatnanon, V. Influence of fly ash fineness on strength, drying shrinkageand sulfate resistance of blended cement mortar, Cement and Concrete Research, 2004. 34, 1087–1092.
  • Alnkaa, A.A., Farklı Kür Koşullarının Geopolimer Harç Özelliklerine Etkisi, Kastamonu Üniversitesi Fen Bilimleri Enstitüsü, Malzeme bilimi ve Mühendisliği Ana Bilim Dalı Doktora Tezi, Kastamonu, 2019.
  • Balakrishnan, B. And Awal, A.S.M. Durability Properties of Concrete Containing High Volume Malaysian Fly Ash, IJRET: International Journal of Research in Engineering and Technology, 2014. eISSN: 2319-1163 | pISSN:2321-7308, Volume: 03 Issue: 04.
  • Binici, H., Eken, M., Dinçer, A. Silis Dumanı, Uçucu Kül ve Yüksek Fırın Cürufu Katkılı Betonların Bazı Durabilite Özellikleri, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2013. 28(1), 11-20 ss.
  • Kanthe, V.N. Effect of Superplasticizer on Strength and Durability of Rice Husk Ash Concrete, Iranian (Iranica) Journal of Energy and Environment, 2021. 12(3): 204-208.
  • Corral-Higuera, R., Arredondo-Rea, S.P., Neri-Flores, M.A., Gómez-Soberón, J.M., Almeraya Calderón, F., Castorena-González, J.H., Almaral-Sánchez, J.L. Sulfate Attack and Reinforcement Corrosion in Concrete with Recycled Concrete Aggregates and Supplementary Cementing Materials, Int. J. Electrochem. Sci., 2011 6, 613 – 621.
  • Aydin, E., Balkis , A.P. Preliminary Study on the Durability Properties of High-Volume Fly Ash Mortar Composites, Journal of Testing and Evaluation, 2017. Vol. 45 / No. 6 .
  • Rao, M.K., and Kumar, Ch.S.N. Influence of Fly Ash on Hydration Compounds of High-Volume Fy Ash Concrete, AIMS Materials Science, 2021. 8(2): 301–320.
  • Saha, A.K. Effect of Class F Fly Ash on The Durability Properties of Concrete. Sustainable Environ Res, 2018, 28: 25–31.
  • Liu, K., Deng, M and Mo, L. Effect of Fly Ash on Resistance to Sulfate Attack of Cement-based Materials, Key Engineering Materials , (2013). Vol. 539, 124-129.
  • Wang, A., Zhang, C., Sun, W. Fly ash effects: I. The Morphological Effect of Fly Ash. Cement Concrete Res, 2003. 33: 2023–2029. 2003.

EFFECT OF FLY ASH FİNENESS ON SULFATE RESISTANCE

Year 2022, Volume: 9 Issue: 17, 287 - 303, 31.08.2022
https://doi.org/10.54365/adyumbd.1053376

Abstract

Sulphate corrosion occurs due to a chemical reaction between the hydration of cement, which is a concrete compound, and sulphate ions, resulting in deterioration in concrete. Pozzuolanas such as fly ash are used instead of cement to reduce or minimize damage caused by sulphate on concrete. This study uses fly ash tailings from Afsin Elbistan thermal power plant, which has a component close to cement instead of cement, which is one of the main components of concrete. Examples of different fineness obtained by grinding the fly ash (FA) in the ball mill for 0, 10 and 20 minutes were prepared with a FA substitution rate of 10%, creating examples of fly ash-added concrete. These examples were then exposed to a 10% and 5% additive sulphate solution and tested for compressive strength and ultrasonic pulse velocity measurement tests to investigate the effect of concrete samples on sulphate resistance. According to the results obtained, the compressive strength values of concrete samples exposed to a solution of 5% and 10% sulphate have been observed, depending on the fly ash grinding time. It has been found that the concrete samples added have reduced compressive strength by increasing the amount of sulphate solution and have a higher compressive strength value than the reference sample. However, weight losses have been reduced as the grinding time increases. It has also been determined that ultrasonic pulse velocity values have increased as a result of the increase in the fineness of the grinding and the fineness of the flying ash.

Project Number

proje kapsamında çalışma yürütülmemiştir.

References

  • Alişer, B., Mermer Tozu ve Cam Elyaf Katkılı Çimento Harçlarının Sülfat Dayanıklılığının Araştırılması, Fırat Üniversitesi Fen Bilimleri Enstitüsü Yapı Eğitimi Anabilim Dalı Yüksek Lisans Tezi, Elazığ, 2013.
  • Gu, G. P., J. J. Beaudoin, and V. S. Ramachandran., Techniques For Corrosion İnvestigation İn Reinforced Concrete. In Handbook Of Analytical Techniques İn Concrete Science And Technology: Principles, Techniques And Applications, edited by V. S. Ramachandran and J. J. Beaudoin, 441–501. Norwich, NY: William Andrew/Noyes, 2006.
  • Al-Dulaijan, S.U., Maslehuddin, M., Al-Zahrani, M.M., Sharif, A.M., Shameem, M., Ibrahim, M., Sulfate Resistance of Plain and Blended Cements Exposed to Varying Concentrations of Sodium Sulfateauthor Links Open Overlay Panel, Cement and Concrete Composites, May–July 2003.Volume 25, Issues 4–5, Pages 429-437.
  • Baradan B., ve Yazıcı., Betonarme Yapılarda Durabilite ve TS EN 206-1 Standardının Getirdiği Yenilikler” Türkiye Mühendislik Haberleri 2003.Sayı 4/ 426.
  • Prasad, M., Palepu, R., Moulik, S. P., Interaction between Sodium Dodecyl Sulfate (SDS) and Polyvinylpyrrolidone (PVP) ınvestigated with forward and Reverse Component Addition Protocols eemploying Tensiometric, Conductometric, Microcalorimetric, Electrokinetic, and DLS Techniques, Colloid and Polymer Science 2006.volume 284, pages871–878 .
  • M., Karakouzian, N., Ghafoori. Predictive Modeling of Soluble Sulfate Ion Concentration in The Las Vegas Valley. In: Proceeding of the 3rd International Structural Engineering and Construction Conference (ISEC-03), Shunan, Japan, 2005.p. 279–286.
  • McCaffrey, R., Climate Change and the Cement Industry, Global Cement and Lime Magazine, (Environmental Special Issue), 2002.pp. 15–19.
  • Davidovits, J., High-Alkali Cements for 21st Century Concretes, Special Publication, 1994. pp. 383–398.
  • Irassar, E., Di Maio, A., Batic, O., Sulfate Attack On Concrete With Mineral Admixtures. Cem Concr Res; 1996. 26(1):113–123.
  • Senthamarai, R., Devadas Manoharan, P., Gobinath, D., Concrete Made from Ceramic Industry Waste: Durability Properties. Constr Build Mater; 2011.25:2413–2419.
  • Huang, B., Dong, Q., Burdette, E. G., Laboratory Evaluation of Incorporating Waste Ceramic Materials into Portland Cement and Asphaltic Concrete. Constr Build Mater; 2009.23:3451–3456.
  • Pereira, O., Luiz, A.Castro-Gomes Joao P, Santos Pedro MS., The Potential Pozzolanic Activity of Glass and Red-Clay Ceramic Waste As Cement Mortars Components. Constr Build Mater; 2012.31:197–203.
  • Higashiyama, H., Yagishita, F., Sano, M., Takahashi, O., Compressive Strength and Resistance to Chloride Penetration of Mortars Using Ceramic Waste as Fine Aggregate. Constr Build Mater; 2012.26:96–101.
  • Medina, C., Sánchez, R. M., Frías, M., Reuse of Sanitary Ceramic Wastes as Coarse Aggregate in Eco-Efficient Concretes. Cement Concr Compos; 2012.34:48–54.
  • Erdoğdu, Ş., Kurbetçi, Ş., Betonun Performansına Sağladıkları Etkinlik Açısından Kimyasal ve Mineral Katkı Maddeleri, Türkiye Mühendislik Haberleri, 2003.426 (4): 115-120.
  • Franus, W., and Dudek, K., Clay Minerals and Cinoptilolite from the Variegated Shales Formation in the Skole Unit, Polish Flysch Carpath., Geologica Carpathica 1999.50, 23–24.
  • Feng, N., and Peng, G., Applications of Natural Zeolite to Construction and Building Materials in China, Construction and Building Materials 2005.19, 579–584.
  • Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M., An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan, Construction and Building Materials, 2012.35, 1023–1033.
  • Akman M.S., Deniz Yapılarında Beton Teknolojisi, İ.T.Ü. Gemi İnşaatı ve Deniz Bilimleri Fakültesi, İstanbul, 1992.
  • Mehta P.K., Monteiro P.J.M., Concrete Microstructure, Properties and Materials, Indian Edition, India, 1997.
  • Yeğinobalı A., Betonun Dayanıklılığı II, Kimyasal Etkenler, TCMB Çimento Araştırma Enstitüsü Seminer Notları, Ankara, 1999.
  • Rattanachu, P., Tangchirapat, W. Ve Jaturapitakkul, C., Water Permeability and Sulfate Resistance of Eco-Friendly High-Strength Concrete Composed of Ground Bagasse Ash and Recycled Concrete Aggregate, J. Mater. Civ. Eng., 2019.31(6): 04019093.
  • Hossain, K.M.A. ve Lachemi, M., Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment, Cem. Concr. Res. 2006. 36, 1123–1133.
  • Al-Akhras N.M., Durability of mekketakaolin concrete to sulfate attack. Cement and Concrete Research, 2006.36, 1727–1734.
  • Mathis, RP., Freezing and thawing, deicing salt, and sulfate resistance of concrete pavers. Graduate Thesis, Southern Illinois University; 1991.231 p.
  • Skalny, J., Marchand, J, ve Odler, I., Sulfate attack on concrete. USA and Canada: Spon Press; 2002.240 pp.
  • Shaheen, F., Pradhan, B., Role of Chloride Ion and Cation Type Accompanied by Sulfate Ion on Durability Performance of Concrete in Conjoint Chloride–Sulfate Environment, Journal of Materials in Civil Engineering, 2020.Volume 32, Issue 9.
  • Hossain, K. M. A., Resistance of scoria-based blended cement concrete against deterioration and corrosion in mixed sulfate environment. J. Mater. Civ. Eng. 2009.21 (7): 299–308.
  • Al-Amoudi, O. S. B. Sulfate attack and reinforcement corrosion in plain and blended cements exposed to sulfate environments. Constr. Build. Mater. 1998.33 (1): 53–61.
  • Cohen, M.D., Bentur,A., Durability of portland cement-silica fume pastes in magnesium sulfate and sodium sulfate solutions. ACI Mater. J. 1988. 85 (3): 148–157.
  • Al-Amoudi O.S.B., Sufate attack and reinforcement corrosion in plain and blended cements exposed to sulfate environments. Building and Environment, 1997. 33, 53-61.
  • Kılınç K., Uyan M., Beton karışım suyundaki sülfat tuzlarının çimento harcı özelliklerine etkisi. 5. Ulusal Beton Kongresi, Bildiriler Kitabı, İstanbul, 2003. s. 393-402.
  • Neville, A.,The confused world of sulfate attack on concrete. Cement and Concrete Research, 2004.34, 1275–1296.
  • Nehdi, M., and Hayek, M., Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity. Cement and Concrete Research, 2005.35, 731–742.
  • Baradan, B., Yazıcı, H., Ün, H., Beton ve Betonarme Yapılarda Kalıcılık (Durabilite), Türkiye Hazır Beton Birliği Yayınları, İstanbul, 2010.
  • Yazıcı, H.,Yüksek Fırın Cürufu Katkılı Harçların Sülfat Dayanıklılığının İncelenmesi, Deü Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 2006. Cilt: 8 sayı: 1 s. 51-58 Ocak.
  • Nie, Q.K., Zhou, C.J., Li, H.W., Shu, X., Gong, H.R., Huang, B.S., Numerical simulationof fly ash concrete under sulfate attack,Constr. Build. Mater. 2015. 84, 261–268.
  • Enstitüsü, T. S.. TS 802: Beton karışım tasarımı hesap esasları.Ankara: Türk Standardları Enstitüsü 2016.
  • Baradan, B., Yazıcı H, Ün, H., Betonarme Yapılarda Kalıcılık (Durabilite), D.E.Ü. Müh. Fak. Yayın No 298, İzmir, 2002.
  • Lee , S.T., Moon, H.Y., Hooton, R.D. and Kim, J.P., Effect of Solution Concentrations and Replacement Levels of Metakaolin on The Resistance of Mortars Exposed To MgSO4 Solutions. Cement and Concrete Research, 2005.35, 1314–1323.
  • Lawrance C.D., The Influence of Binder Type on Sulfate Resistance. Cement and Concrete Research, 1992.22, 1047-1058.
  • Bonen, D., A Microstructural Study of The Effect Produced by Magnesium Sulphate on Plain and Silica Fume Bearing Portland Cement Mortars. Cement an Concrete Research, 1993. 23, 541-553.
  • Türker, F., Aköz, F., Koral, S., and Yüzer, N., Effects of Magnesiun Sulfate Concentration on The Sulfate Resistance of Mortars With and Without Silica Fume. Cement and Concrete Research, 1997.27, 205-214.
  • Biricik, H., Aköz, F., Türker, F. and Berktay, İ., Resistance to Magnesium Sulfate and Sodium Sulfate Attack of Mortars Containing Wheat Straw Ash. Cement and Concrete Research, 2000. 30, 1189-1197.
  • Shi, J.A., Stegemann, Acid Corrosion Resistance of Different Cement-Ing Materials, Cem. Concr. Res. 30 803–808, 2000.
  • Dikeou, JT., Fly Ash Increase Resistance of Concrete to Sulfate Attack. 1970. Research Report No. 23, United States Department of the Interior, Bureau of Reclamation, 17 p.
  • Dunstan, ER., Sulfate Resistance of Fly Ash Concrete – The R-Value. In: Bryant and Katherine Mather symposium on concrete durability, SP100. American Concrete Institute; 1987. p. 2027–40.
  • Dodson, V.H., Concrete Admixtures, Structural Engineering Series, Van Nostrand Reinhold, New York, 1990.
  • Manu Santhanam, Menashi D. Cohen, Jan Olek, Mechanism of Sulfate Attack: A Fresh Look Part 2. Proposed Mechanism, Cement and Concrete Research, 2003.33, 341-346.
  • Weiping, Ma, Brown, Paul W., Hydrothermal Reactions of Fly Ash with Ca(OH)2 and CaSO4.2H2O, Cement and Concrete Research, 1997.27, 1237-1248.
  • Belie, N.D., Verselder, H.J., Blaere, B.D., Nieuwenburg, D.K., Verschoore, R., Influence of The Cement Type on The Resistance of Con-Crete to Feed Acids, Cem. Concr. Res. 1996. 26, 1717–1725.
  • Chareerat, T., A study on pore volume and physical properties of ordi-nary portland cement containing classified fly ash, M.E. thesis, KhonKaen University, Thailand, 2002.p. 156.
  • Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., and Fairbairn, E. M. R. Pozzolanic activity and filler effect of sugar cane bagasse ash in portland cement and lime mortars. Cem. Concr. Compos. 2008. 30 (5): 410–418.
  • Martirena Hernández, J. F., Middendorf, B., Gehrke, M. and Budelmann, H., o aio1998.
  • Freeman, R.B., Carrasquillo, R.L., Effects of Intergrinding Fly Ash on the Sulfate Resistance of Fly Ash Concrete, Supplementary Papers of Fourth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, İstanbul, Turkey, 1992. 281-297. Rerkpiboon, A., Tangchirapat, W., and Jaturapitakkul., C., Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101 (Part 1): 2015. 983–989.
  • Freeman, R.B., Carrasquillo, R.L., Effects of Intergrinding Fly Ash on the Sulfate Resistance of Fly Ash Concrete, Supplementary Papers of Fourth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, İstanbul, Turkey, 1992. 281-297. Rerkpiboon, A., Tangchirapat, W., and Jaturapitakkul., C., Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101 (Part 1): 2015. 983–989.
  • Chindaprasirt, P., Homwuttiwong, S., Sirivivatnanon, V., Influence of Fly Ash Fineness on Strength, Drying Shrinkage and Sulfate Resistance of Blended Cement Mortar, Cement and Concrete Research, Vol. 34, 2004.,s. 1087-1092.
  • B. Fournier, A. Bilodeau, N. Bouzoubaa, P.-C. Nkinamubanzi, Field and Laboratory Investigations on the Use of Fly Ash and Li-Based Admixtures to Prevent ASR in Concrete, Sixth International Conference on the Durability of Concrete Structures, 2018.18–20 July 2018, University of Leeds.
  • ASTM C 618-05, 2005. Standard Specification for Coal Fly Ash and Raw or CalcinedNatural Pozzolan for Use in Concrete, ASTM (American Society for Testing and Materials), 3, Amerika.
  • Referans60 Shaikh FUA, Supit S, Sarker P. A study on the effect of nano silica on compressive strength of high volume fly ash mortar and concrete. Mater Des. 2014;60:433-442.
  • Referans61 Siddique R. Performance Characteristics of High-Volume Class F Fly Ash Concrete. Cem Concr Res. 2004. 34(3):487-93.
  • Referans62 Naik, T.R., Singh, S.S., Hossain, M.M. Permeability of concrete containing large amounts of fly ash. Cem Concr Res. 1994. 24(5):913-22.
  • Supit, S, Shaikh, FUA. Durability Properties of High Volume Fly Ash Concrete Containing Nano Silica. Mater Struct. 2014. 48:2431-2445.
  • Tkaczewska, E. And Małolepszy, J., Hydration of Coal–Biomass Fly Ash Cement, Construction and Building Materials, Volume 23, Issue 7, July 2009, Pages 2694-2700.
  • Ş. Arel, H.Ş, Shaikh, F.U.A., Effects of Fly Ash Fineness, Nano Silica, and Curing Types on Mechanical and Durability Properties of Fly Ash Mortars, Structural Concrete Journal Of The Fib, 2017. Volume19, Issue2, April 2018, Pages 597-607.
  • Chindaprasirta,P., Homwuttiwongb, S., Sirivivatnanon, V. Influence of fly ash fineness on strength, drying shrinkageand sulfate resistance of blended cement mortar, Cement and Concrete Research, 2004. 34, 1087–1092.
  • Alnkaa, A.A., Farklı Kür Koşullarının Geopolimer Harç Özelliklerine Etkisi, Kastamonu Üniversitesi Fen Bilimleri Enstitüsü, Malzeme bilimi ve Mühendisliği Ana Bilim Dalı Doktora Tezi, Kastamonu, 2019.
  • Balakrishnan, B. And Awal, A.S.M. Durability Properties of Concrete Containing High Volume Malaysian Fly Ash, IJRET: International Journal of Research in Engineering and Technology, 2014. eISSN: 2319-1163 | pISSN:2321-7308, Volume: 03 Issue: 04.
  • Binici, H., Eken, M., Dinçer, A. Silis Dumanı, Uçucu Kül ve Yüksek Fırın Cürufu Katkılı Betonların Bazı Durabilite Özellikleri, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2013. 28(1), 11-20 ss.
  • Kanthe, V.N. Effect of Superplasticizer on Strength and Durability of Rice Husk Ash Concrete, Iranian (Iranica) Journal of Energy and Environment, 2021. 12(3): 204-208.
  • Corral-Higuera, R., Arredondo-Rea, S.P., Neri-Flores, M.A., Gómez-Soberón, J.M., Almeraya Calderón, F., Castorena-González, J.H., Almaral-Sánchez, J.L. Sulfate Attack and Reinforcement Corrosion in Concrete with Recycled Concrete Aggregates and Supplementary Cementing Materials, Int. J. Electrochem. Sci., 2011 6, 613 – 621.
  • Aydin, E., Balkis , A.P. Preliminary Study on the Durability Properties of High-Volume Fly Ash Mortar Composites, Journal of Testing and Evaluation, 2017. Vol. 45 / No. 6 .
  • Rao, M.K., and Kumar, Ch.S.N. Influence of Fly Ash on Hydration Compounds of High-Volume Fy Ash Concrete, AIMS Materials Science, 2021. 8(2): 301–320.
  • Saha, A.K. Effect of Class F Fly Ash on The Durability Properties of Concrete. Sustainable Environ Res, 2018, 28: 25–31.
  • Liu, K., Deng, M and Mo, L. Effect of Fly Ash on Resistance to Sulfate Attack of Cement-based Materials, Key Engineering Materials , (2013). Vol. 539, 124-129.
  • Wang, A., Zhang, C., Sun, W. Fly ash effects: I. The Morphological Effect of Fly Ash. Cement Concrete Res, 2003. 33: 2023–2029. 2003.
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Demet Demir Şahin 0000-0003-0338-6562

Hasan Eker 0000-0003-2644-4681

Mustafa Çullu 0000-0002-0454-7949

Project Number proje kapsamında çalışma yürütülmemiştir.
Publication Date August 31, 2022
Submission Date January 5, 2022
Published in Issue Year 2022 Volume: 9 Issue: 17

Cite

APA Demir Şahin, D., Eker, H., & Çullu, M. (2022). UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 9(17), 287-303. https://doi.org/10.54365/adyumbd.1053376
AMA Demir Şahin D, Eker H, Çullu M. UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. August 2022;9(17):287-303. doi:10.54365/adyumbd.1053376
Chicago Demir Şahin, Demet, Hasan Eker, and Mustafa Çullu. “UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 17 (August 2022): 287-303. https://doi.org/10.54365/adyumbd.1053376.
EndNote Demir Şahin D, Eker H, Çullu M (August 1, 2022) UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9 17 287–303.
IEEE D. Demir Şahin, H. Eker, and M. Çullu, “UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 17, pp. 287–303, 2022, doi: 10.54365/adyumbd.1053376.
ISNAD Demir Şahin, Demet et al. “UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9/17 (August 2022), 287-303. https://doi.org/10.54365/adyumbd.1053376.
JAMA Demir Şahin D, Eker H, Çullu M. UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9:287–303.
MLA Demir Şahin, Demet et al. “UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 17, 2022, pp. 287-03, doi:10.54365/adyumbd.1053376.
Vancouver Demir Şahin D, Eker H, Çullu M. UÇUCU KÜL İNCELİĞİNİN BETONUN SÜLFAT DİRENCİ ÜZERİNE ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9(17):287-303.