Research Article
BibTex RIS Cite

ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ

Year 2024, Volume: 11 Issue: 23, 232 - 247, 31.08.2024
https://doi.org/10.54365/adyumbd.1482163

Abstract

İklim değişikliği ve küresel ısınma neticesinde, azalan yağış ve artan sıcaklık kuraklığın oluşumunu hızlandırmaktadır. Kuraklığın zamansal ve mekansal değerlendirilmesi, kuraklığın neden olacağı olumsuzlukların yaşanmasını veya etkilerinin azaltılmasına katkı sağlamaktadır. Bu çalışmada, Türkiye’nin güneyinde Suriye sınırında bulunan Hatay il sınırları içerisinde bulunan dört farklı meteoroloji gözlem istasyonunda 1970-2022 yılları arasındaki yağış ve SYİ yöntemiyle hesaplanan meteorolojik kuraklık indis değerlerinin zamansal ve mekansal değişimi değerlendirilmiştir. Ayrıca, bu iki parametrenin Kuzey Atlantik Salınımı (KAS), Arktik Salınımı (AS), Akdeniz 1 Salınımı (AKS1) ve Akdeniz 2 Salınımı (AKS2) ile olan ilişkisi belirlenmiştir. Kuraklığın değerlendirilmesinde Standartlaştırılmış Yağış İndeksi (SYİ), parametrelerin trendinin belirlenmesinde ise Mann-Kendall (MK) ve Spearman Rho (SR) yöntemleri kullanılmıştır. Çalışma sonucunda, 12 aylık SYİ indis değerlerinde sadece Antakya istasyonunda kuraklık oluşum oranı %50’den büyük olmuştur. En şiddetli kuraklık Antakya istasyonunda 1989 yılında, İskenderun istasyonunda 1972 yılında, Dörtyol ve Samandağ istasyonlarında ise 2022 yılında yaşanmıştır. Çalışma bölgesinde “Hafif Kurak” ve “Hafif Yağışlı” kuraklık sınıflarının oluşma oranı diğer kuraklık sınıflarından daha büyüktür. İncelenen istasyonlar arasında sadece İskenderun istasyonunda, MK ve SR yöntemlerinde istatiksel olarak artan trend belirlenmiştir. Dörtyol istasyonunda elde edilen yağış ve SYİ değerleriyle atmosferik salınımlar arasında negatif korelasyon bulunmuştur. Yıllık kuraklıklarda AS ve KAS ile tüm istasyonlar arasında negatif ilişki görülmektedir. Sonuç olarak, mekansal değerlendirmelerden gelecek yıllarda İskenderun istasyonunun bulunduğu bölgenin taşkın veya sel açısından büyük riskler taşıdığı, çalışma bölgesinin güney kesiminin ise kuraklık açısından daha riskli olduğu tespit edilmiştir. Bölgede, yağış ve kuraklıkta meydana gelen değişimin incelenen salınımlarla ilişkisinin zayıf olduğu belirlenmiştir.

Supporting Institution

Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi (HÜBAP)

Thanks

Analizde kullanılan verileri sağlayan Meteoroloji Genel Müdürlüğüne (MGM) teşekkür ederiz.

References

  • Robleh HB, Yuce MI, Esit M, Deger IH. Meteorological drought monitoring in Kızılırmak Basin, Türkiye. Environmental Earth Sciences, 2024; 83(9): 265. https://doi.org/10.1007/s12665-024-11550-0.
  • Akturk G, Zeybekoglu U, Yildiz O. Assessment of meteorological drought analysis in the Kizilirmak River Basin Turkey, Arab. J. Geosci. 2022; 15:850. https:// doi. org/ 10. 1007/ s12517- 022-10119-0.
  • Deger IH, Yuce MI, Esi̇t M. An Investigation of Hydrological Drought Characteristics in Kızılırmak Basin, Türkiye: Impacts and trends. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2023; 12:126–139. https:// doi. org/ 10. 17798/ bitlisfen. 12007 42.
  • Tosunoglu F, Can I, Kahya E. Evaluation of spatial and temporal relationships between large‐scale atmospheric oscillations and meteorological drought indexes in Turkey. International Journal of Climatology, (2018); 38(12): 4579-4596. https://doi.org/10.1002/joc.5698.
  • Vazifehkhah S, Kahya E. Hydrological drought associations with extreme phases of the North Atlantic and Arctic Oscillations over Turkey and northern Iran. International Journal of Climatology, 2018; 38(12): 4459-4475. https://doi.org/10.1002/joc.5680.
  • Bouguerra H, Derdous O, Tachi SE, Hatzaki M, Abida H. Spatiotemporal investigation of meteorological drought variability over northern Algeria and its relationship with different atmospheric circulation patterns. Theoretical and Applied Climatology, 2024; 155(2): 1507-1518. https://doi.org/10.1007/s00704-023-04705-9.
  • Yuce MI, Esit M. Drought monitoring in Ceyhan Basin, Turkey. Journal of Applied Water Engineering and Research, 2021; 9(4): 293–314.https://doi.org/10.1080/23249676.2021.1932616.
  • Gumus, V. Evaluating the effect of the SPI and SPEI methods on drought monitoring over Turkey. Journal of Hydrology, 2023; 626, 130386. https://doi.org/10.1016/j.jhydrol.2023.130386.
  • Katipoğlu OM, Acar R, Şengül S. Comparison of meteorological indices for drought monitoring and evaluating: a case study from Euphrates basin, Turkey. Journal of Water and Climate Change, 2020; 11(S1): 29-43.
  • Simsek O, Yildiz-Bozkurt S, Gumus V. Analysis of meteorological drought with different methods in the Black Sea region, Turkey. Acta Geophys. 2024; 72, 1927–1943. https://doi.org/10.1007/s11600-023-01099-0
  • Citakoglu H, Minarecioglu N. Trend analysis of monthly average flows of Kızılırmak Basin. Anatolian Env. and Anim. Sciences, 2019; 4(3): 435-440. https://doi.org/10.35229/jaes.595095.
  • Muse NM, Tayfur G, Safari MJS. Meteorological Drought Assessment and Trend Analysis in Puntland Region of Somalia. Sustainability, 2023; 15(13): 10652.
  • Katipoğlu OM, Yeşilyurt SN, Dalkılıç H.Y. Yeşilırmak havzasındaki hidrolojik kuraklıkların Mann-Kendall ve Yenilikçi Şen yöntemi ile trend analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 2022; 12(2): 422-442. https://doi.org/10.17714/gumusfenbil.1026893.
  • Gümüş V, Şimşek O, Açar MK. Artvin ve Rize İstasyonlarına ait Aylık Toplam Yağış Verilerinin Trendinin Farklı Yöntemlerle Değerlendirilmesi. Harran Üniversitesi Mühendislik Dergisi, 2022; 7(3): 204-216. https://doi.org/10.46578/humder.1207593.
  • Esit M, Yuce MI, Deger İH, Yasa I. Trend and variability analysis in rainfall and temperature records over Van Province, Türkiye. Theor. Appl. Climatol. 2024; 155, 451–472. https://doi.org/10.1007/s00704-023-04644-5.
  • Simsek O. Hydrological drought analysis of Mediterranean basins, Turkey. Arab. J. Geosci. 2021: 14: 2136. https:// doi. org/ 10. 1007/s12517- 021- 08501-5.
  • Soylu Pekpostalci D, Tur R, Danandeh Mehr A. Spatiotemporal variations in meteorological drought across the Mediterranean region of Turkey. Pure Appl Geophys. 2023; 180, 3089–3104 https:// doi. org/ 10. 1007/s00024- 023- 03312-z.
  • Uzun A, Ustaoğlu B. The effects of atmospheric oscillations on crop (olive, grape and cotton) yield in the eastern part of the Mediterranean region, Turkey. International Journal of Environment and Geoinformatics, 2022; 9(1): 147-161. https://doi.org/10.30897/ijegeo.1010181.
  • Rezaei A. Ocean-atmosphere circulation controls on integrated meteorological and agricultural drought over Iran. Journal of Hydrology, 2021; 603, 126928. https://doi.org/10.1016/j.jhydrol.2021.126928.
  • Erkol ZI, Yesilyurt SN. Dalkilic HY. Impacts of climate change on spatial drought distribution in the Mediterranean Basin (Turkey): different climate models and downscaling methods. Theor. Appl. Climatol. 2024; 155, 4065–4087. https://doi.org/10.1007/s00704-024-04867-0.
  • Mckee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. In: In: Proc. 8th Conf. on Applied Climatol, 1993, 17-22 January, Americ Meteorol Soc, Mass.179-184.
  • Edwards D. Mckee T. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. 1997.
  • Wu H, Hayes MJ, Weiss A, Hu Q. An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score. International Journal of Climatology, 2001; 21, 745-758.
  • Helsel DR. Hirsch RM. Statistical Methods in Water Resources Techniques of Water Resources Investigations. 2002. U.S. Geological Survey.
  • Rahmat SN, Jayasuriya N, Bhuiyan M. Trend analysis of drought using standard precipitation index (SPI) in Victoria, Australia. 34th Hydrology & Water Resources Symposium 2012, pp.441-448.
  • Esit, M. Investigation of innovative trend approaches (ITA with significance test and IPTA) comparing to the classical trend method of monthly and annual hydrometeorological variables: a case study of Ankara region, Turkey. Journal of Water and Climate Change, 2023; 14(1): 305-329. https://doi.org/10.2166/wcc.2022.356.
  • Yue S, Pilon P, Cavadias G. Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 2002; 259, 254-271.
  • Yenigün K, Gümüş V, Bulut H. Trends in streamflow of the Euphrates basin, Turkey. In: Proceedings of the Institution of Civil Engineers - Water Management, 2008; 189-198.
  • Hurrell JW. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 1995; 269, 676-679.
  • Barnston AG, Livezey RE. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 1987; 115, 1083-1126.
  • Chen WY, van den Dool H. Sensitivity of Teleconnection Patterns to the Sign of Their Primary Action Center, Mon. Wea. Rev., 2003; 131, 2885-2899.
  • van den Dool, HM, Saha S, Johansson Å. Empirical Orthogonal Teleconnections. J. Climate, 2000; 13, 1421-1435.
  • Osborn TJ. Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather, 2011; 66, 19-21.
  • Higgins RW, Leetmaa A, Xue Y, Barnston A. Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature. J. Climate, 2000, 13, 3994-4017.
  • Higgins RW, Leetmaa A, Kousky VE. Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 2002; 15, 1555-1572.
  • Zhou S, Miller AJ, Wang J, Angell JK. Trends of NAO and AO and their associations with stratospheric processes. Geophys. Res. Lett., 2001; 28, 4107-4110.
  • Çiçek İ, Türkoğlu N, Çalışkan A. Akdeniz Salınımı’nın (AS) Türkiye’de Sıcaklık Üzerine Etkisi. TÜCAUM V. Coğrafya Sempozyumu 2008; 349-356.
  • Sezen C, Partal T. Wavelet combined innovative trend analysis for precipitation data in the Euphrates-Tigris basin, Turkey. Hydrological Sciences Journal, 2020; 65(11): 1909-1927.
  • Palutikof JP, Conte M, Casimiro Mendes J, Goodess CM, Espirito Santo, F. Climate and climate change. In: Brandt, C.J., Thornes, J.B., (eds) Mediterranean desertification and land use. 1996. John Wiley and Sons, London.
  • Conte M, Giuffrida A, Tedesco S. The Mediterranean Oscillation. Impact on precipitation and hydrology in Italy. 1989. Publications of the Academy of Finland, Helsinki.
  • Bayazıt M, Yeğen Oğuz EB. Mühendisler İçin İstatistik, Birsen Yayınevi, İstanbul, 2005. 197.
  • Kebapçıoğlu, E, Partal, T. Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi. Doğal Afetler Ve Çevre Dergisi, 2022; 8(1): 1-13.
  • Şimşek O, Gümüş V, Soydan NG, Yenigün K, Kavşut ME, Topçu E. Hatay ilinde bazı meteorolojik verilerin gidiş analizi. SDU International Journal of Technological Sciences, 2013; 5(2): 132-144.
  • Soylu Pekpostalci D, Tur R, Danandeh Mehr A. Spatiotemporal Variations in Meteorological Drought Across the Mediterranean Region of Turkey. Pure Appl. Geophys. 2023, 180: 3089–3104.
  • Keskiner A.D., Simsek, O. Evaluation of the sensitivity of meteorological drought in the Mediterranean region to different data record lengths. Environmental Monitoring and Assessment, 2024;196 (7): 1-29.

ASSESSMENT OF THE EFFECTS OF ATMOSPHERIC OSCILLATIONS ON CLIMATE CHANGE: THE EXAMPLE OF HATAY PROVINCE

Year 2024, Volume: 11 Issue: 23, 232 - 247, 31.08.2024
https://doi.org/10.54365/adyumbd.1482163

Abstract

As a result of climate change and global warming, decreasing precipitation and increasing temperature accelerate the occurrence of drought. Temporal and spatial evaluation of drought helps prevent or reduce the effects of drought. In this study, the temporal and spatial changes of meteorological drought index values calculated by the rainfall and SPI method between 1970 and 2022 at four different meteorological observation stations within the borders of Hatay province, located on the Syrian border in the south of Turkey, were evaluated. Additionally, the relationship of these two parameters with the North Atlantic (NAO), Arctic (AO), Mediterranean 1 (MIO1) and Mediterranean 2 (MIO2) oscillations was determined. Standardized Precipitation Index (SPI) was used to evaluate drought, and Mann-Kendall (MK) and Spearman Rho (SR) methods were used to determine the trend of the parameters. As a result of the study, the drought occurrence rate was greater than 50% only in Antakya station in the 12-month SYI index values. The most severe drought was experienced at Antakya station in 1989, at İskenderun station in 1972, and at Dörtyol and Samandağ stations in 2022. The occurrence rate of "Mild Dry" and "Mild Rainy" drought classes in the study region is higher than other drought classes. Among the stations examined, a statistically increasing trend was determined only in Iskenderun station in MK and SR methods. A negative correlation was found between precipitation and SPI values obtained at Dörtyol station and atmospheric oscillations. There is a negative relationship between AO and NAO and all stations in annual droughts. As a result, from spatial evaluations, it has been determined that the region where the Iskenderun station is located carries great risks in terms of floods in the coming years, and the southern part of the study area is more risky in terms of drought. It has been determined that the change in precipitation and drought in the region has a weak relationship with the oscillations examined.

References

  • Robleh HB, Yuce MI, Esit M, Deger IH. Meteorological drought monitoring in Kızılırmak Basin, Türkiye. Environmental Earth Sciences, 2024; 83(9): 265. https://doi.org/10.1007/s12665-024-11550-0.
  • Akturk G, Zeybekoglu U, Yildiz O. Assessment of meteorological drought analysis in the Kizilirmak River Basin Turkey, Arab. J. Geosci. 2022; 15:850. https:// doi. org/ 10. 1007/ s12517- 022-10119-0.
  • Deger IH, Yuce MI, Esi̇t M. An Investigation of Hydrological Drought Characteristics in Kızılırmak Basin, Türkiye: Impacts and trends. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2023; 12:126–139. https:// doi. org/ 10. 17798/ bitlisfen. 12007 42.
  • Tosunoglu F, Can I, Kahya E. Evaluation of spatial and temporal relationships between large‐scale atmospheric oscillations and meteorological drought indexes in Turkey. International Journal of Climatology, (2018); 38(12): 4579-4596. https://doi.org/10.1002/joc.5698.
  • Vazifehkhah S, Kahya E. Hydrological drought associations with extreme phases of the North Atlantic and Arctic Oscillations over Turkey and northern Iran. International Journal of Climatology, 2018; 38(12): 4459-4475. https://doi.org/10.1002/joc.5680.
  • Bouguerra H, Derdous O, Tachi SE, Hatzaki M, Abida H. Spatiotemporal investigation of meteorological drought variability over northern Algeria and its relationship with different atmospheric circulation patterns. Theoretical and Applied Climatology, 2024; 155(2): 1507-1518. https://doi.org/10.1007/s00704-023-04705-9.
  • Yuce MI, Esit M. Drought monitoring in Ceyhan Basin, Turkey. Journal of Applied Water Engineering and Research, 2021; 9(4): 293–314.https://doi.org/10.1080/23249676.2021.1932616.
  • Gumus, V. Evaluating the effect of the SPI and SPEI methods on drought monitoring over Turkey. Journal of Hydrology, 2023; 626, 130386. https://doi.org/10.1016/j.jhydrol.2023.130386.
  • Katipoğlu OM, Acar R, Şengül S. Comparison of meteorological indices for drought monitoring and evaluating: a case study from Euphrates basin, Turkey. Journal of Water and Climate Change, 2020; 11(S1): 29-43.
  • Simsek O, Yildiz-Bozkurt S, Gumus V. Analysis of meteorological drought with different methods in the Black Sea region, Turkey. Acta Geophys. 2024; 72, 1927–1943. https://doi.org/10.1007/s11600-023-01099-0
  • Citakoglu H, Minarecioglu N. Trend analysis of monthly average flows of Kızılırmak Basin. Anatolian Env. and Anim. Sciences, 2019; 4(3): 435-440. https://doi.org/10.35229/jaes.595095.
  • Muse NM, Tayfur G, Safari MJS. Meteorological Drought Assessment and Trend Analysis in Puntland Region of Somalia. Sustainability, 2023; 15(13): 10652.
  • Katipoğlu OM, Yeşilyurt SN, Dalkılıç H.Y. Yeşilırmak havzasındaki hidrolojik kuraklıkların Mann-Kendall ve Yenilikçi Şen yöntemi ile trend analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 2022; 12(2): 422-442. https://doi.org/10.17714/gumusfenbil.1026893.
  • Gümüş V, Şimşek O, Açar MK. Artvin ve Rize İstasyonlarına ait Aylık Toplam Yağış Verilerinin Trendinin Farklı Yöntemlerle Değerlendirilmesi. Harran Üniversitesi Mühendislik Dergisi, 2022; 7(3): 204-216. https://doi.org/10.46578/humder.1207593.
  • Esit M, Yuce MI, Deger İH, Yasa I. Trend and variability analysis in rainfall and temperature records over Van Province, Türkiye. Theor. Appl. Climatol. 2024; 155, 451–472. https://doi.org/10.1007/s00704-023-04644-5.
  • Simsek O. Hydrological drought analysis of Mediterranean basins, Turkey. Arab. J. Geosci. 2021: 14: 2136. https:// doi. org/ 10. 1007/s12517- 021- 08501-5.
  • Soylu Pekpostalci D, Tur R, Danandeh Mehr A. Spatiotemporal variations in meteorological drought across the Mediterranean region of Turkey. Pure Appl Geophys. 2023; 180, 3089–3104 https:// doi. org/ 10. 1007/s00024- 023- 03312-z.
  • Uzun A, Ustaoğlu B. The effects of atmospheric oscillations on crop (olive, grape and cotton) yield in the eastern part of the Mediterranean region, Turkey. International Journal of Environment and Geoinformatics, 2022; 9(1): 147-161. https://doi.org/10.30897/ijegeo.1010181.
  • Rezaei A. Ocean-atmosphere circulation controls on integrated meteorological and agricultural drought over Iran. Journal of Hydrology, 2021; 603, 126928. https://doi.org/10.1016/j.jhydrol.2021.126928.
  • Erkol ZI, Yesilyurt SN. Dalkilic HY. Impacts of climate change on spatial drought distribution in the Mediterranean Basin (Turkey): different climate models and downscaling methods. Theor. Appl. Climatol. 2024; 155, 4065–4087. https://doi.org/10.1007/s00704-024-04867-0.
  • Mckee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. In: In: Proc. 8th Conf. on Applied Climatol, 1993, 17-22 January, Americ Meteorol Soc, Mass.179-184.
  • Edwards D. Mckee T. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. 1997.
  • Wu H, Hayes MJ, Weiss A, Hu Q. An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score. International Journal of Climatology, 2001; 21, 745-758.
  • Helsel DR. Hirsch RM. Statistical Methods in Water Resources Techniques of Water Resources Investigations. 2002. U.S. Geological Survey.
  • Rahmat SN, Jayasuriya N, Bhuiyan M. Trend analysis of drought using standard precipitation index (SPI) in Victoria, Australia. 34th Hydrology & Water Resources Symposium 2012, pp.441-448.
  • Esit, M. Investigation of innovative trend approaches (ITA with significance test and IPTA) comparing to the classical trend method of monthly and annual hydrometeorological variables: a case study of Ankara region, Turkey. Journal of Water and Climate Change, 2023; 14(1): 305-329. https://doi.org/10.2166/wcc.2022.356.
  • Yue S, Pilon P, Cavadias G. Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 2002; 259, 254-271.
  • Yenigün K, Gümüş V, Bulut H. Trends in streamflow of the Euphrates basin, Turkey. In: Proceedings of the Institution of Civil Engineers - Water Management, 2008; 189-198.
  • Hurrell JW. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 1995; 269, 676-679.
  • Barnston AG, Livezey RE. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 1987; 115, 1083-1126.
  • Chen WY, van den Dool H. Sensitivity of Teleconnection Patterns to the Sign of Their Primary Action Center, Mon. Wea. Rev., 2003; 131, 2885-2899.
  • van den Dool, HM, Saha S, Johansson Å. Empirical Orthogonal Teleconnections. J. Climate, 2000; 13, 1421-1435.
  • Osborn TJ. Winter 2009/2010 temperatures and a record-breaking North Atlantic Oscillation index. Weather, 2011; 66, 19-21.
  • Higgins RW, Leetmaa A, Xue Y, Barnston A. Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature. J. Climate, 2000, 13, 3994-4017.
  • Higgins RW, Leetmaa A, Kousky VE. Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 2002; 15, 1555-1572.
  • Zhou S, Miller AJ, Wang J, Angell JK. Trends of NAO and AO and their associations with stratospheric processes. Geophys. Res. Lett., 2001; 28, 4107-4110.
  • Çiçek İ, Türkoğlu N, Çalışkan A. Akdeniz Salınımı’nın (AS) Türkiye’de Sıcaklık Üzerine Etkisi. TÜCAUM V. Coğrafya Sempozyumu 2008; 349-356.
  • Sezen C, Partal T. Wavelet combined innovative trend analysis for precipitation data in the Euphrates-Tigris basin, Turkey. Hydrological Sciences Journal, 2020; 65(11): 1909-1927.
  • Palutikof JP, Conte M, Casimiro Mendes J, Goodess CM, Espirito Santo, F. Climate and climate change. In: Brandt, C.J., Thornes, J.B., (eds) Mediterranean desertification and land use. 1996. John Wiley and Sons, London.
  • Conte M, Giuffrida A, Tedesco S. The Mediterranean Oscillation. Impact on precipitation and hydrology in Italy. 1989. Publications of the Academy of Finland, Helsinki.
  • Bayazıt M, Yeğen Oğuz EB. Mühendisler İçin İstatistik, Birsen Yayınevi, İstanbul, 2005. 197.
  • Kebapçıoğlu, E, Partal, T. Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi. Doğal Afetler Ve Çevre Dergisi, 2022; 8(1): 1-13.
  • Şimşek O, Gümüş V, Soydan NG, Yenigün K, Kavşut ME, Topçu E. Hatay ilinde bazı meteorolojik verilerin gidiş analizi. SDU International Journal of Technological Sciences, 2013; 5(2): 132-144.
  • Soylu Pekpostalci D, Tur R, Danandeh Mehr A. Spatiotemporal Variations in Meteorological Drought Across the Mediterranean Region of Turkey. Pure Appl. Geophys. 2023, 180: 3089–3104.
  • Keskiner A.D., Simsek, O. Evaluation of the sensitivity of meteorological drought in the Mediterranean region to different data record lengths. Environmental Monitoring and Assessment, 2024;196 (7): 1-29.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Water Resources Engineering
Journal Section Makaleler
Authors

Emir Cengiz Durgun 0009-0005-7594-2240

Utku Zeybekoğlu 0000-0001-5307-8563

Oğuz Şimşek 0000-0001-6324-0229

Publication Date August 31, 2024
Submission Date May 11, 2024
Acceptance Date August 21, 2024
Published in Issue Year 2024 Volume: 11 Issue: 23

Cite

APA Durgun, E. C., Zeybekoğlu, U., & Şimşek, O. (2024). ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 11(23), 232-247. https://doi.org/10.54365/adyumbd.1482163
AMA Durgun EC, Zeybekoğlu U, Şimşek O. ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. August 2024;11(23):232-247. doi:10.54365/adyumbd.1482163
Chicago Durgun, Emir Cengiz, Utku Zeybekoğlu, and Oğuz Şimşek. “ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 23 (August 2024): 232-47. https://doi.org/10.54365/adyumbd.1482163.
EndNote Durgun EC, Zeybekoğlu U, Şimşek O (August 1, 2024) ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11 23 232–247.
IEEE E. C. Durgun, U. Zeybekoğlu, and O. Şimşek, “ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 23, pp. 232–247, 2024, doi: 10.54365/adyumbd.1482163.
ISNAD Durgun, Emir Cengiz et al. “ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11/23 (August 2024), 232-247. https://doi.org/10.54365/adyumbd.1482163.
JAMA Durgun EC, Zeybekoğlu U, Şimşek O. ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2024;11:232–247.
MLA Durgun, Emir Cengiz et al. “ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 23, 2024, pp. 232-47, doi:10.54365/adyumbd.1482163.
Vancouver Durgun EC, Zeybekoğlu U, Şimşek O. ATMOSFERİK SALINIMLARIN İKLİM DEĞİŞİKLİĞİ ÜZERİNE ETKİLERİNİN DEĞERLENDİRİLMESİ: HATAY İLİ ÖRNEĞİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2024;11(23):232-47.