Research Article
BibTex RIS Cite

DEVELOPING DIGITAL TEACHER COMPETENCY SCALE: A VALIDITY AND RELIABILITY STUDY

Year 2021, Issue: 38, 34 - 68, 31.08.2021
https://doi.org/10.14520/adyusbd.950728

Abstract

The undeniable role of teachers in education has come to a more critical point today with the developing world. From this point of view, it can be said that the effects of digital teachers' qualifications on education are quite high. This huge impact makes digital competencies even more important for teachers. In this study, it is aimed to develop a valid and reliable measurement tool to measure digital teacher competencies. The Digital Teacher Competency Scale (DTCS) consists of 20 items and 4 sub-dimensions: resource development, communication and cooperation, security and evaluation. Findings regarding the construct validity of the scale were obtained by factor analysis. In order to reveal the findings regarding the reliability of the scale, the Cronbach Alpha coefficient was taken into account and it was determined that the scale is a valid and reliable according to the analyzes made.

References

  • Acuna, E., ve Rodriguez, C. (2004). A meta analysis study of outlier detection methods in classification. Technical paper, Department of Mathematics, University of Puerto Rico at Mayaguez, 1-25.
  • Ally M. (2019a). Competency profile of the digital and online teacher in future education. International Review of Research in Open and Distributed Learning, 20(2).
  • Ally M. (2019b) The Digital Teacher in a Mobile and Always-on World. In: Yu S., Niemi H., Mason J. (eds) Shaping Future Schools with Digital Technology. Perspectives on Rethinking and Reforming Education. Springer, Singapore. https://doi.org/10.1007/978-981-13-9439-3_13
  • Bayram, N. (2013). Yapısal eşitlik modellemesine giriş AMOS uygulamaları. Ezgi Kitabevi.
  • Büyüköztürk, Ş. (2015). Sosyal bilimler için veri analizi el kitabı. Ankara: Pegem Yayınları.
  • Caena, F., ve Redecker, C. (2019). Aligning teacher competence frameworks to 21st century challenges: The case for the European Digital Competence Framework for Educators (Digcompedu). European Journal of Education, 54(3), 356-369.
  • Campbell, C., ve Cameron, L. (2016). Scaffolding learning through the use of virtual worlds. AU Press.
  • Cram, A., Lumkin, K., ve Eade, J. (2010). Using LAMS to structure and support learning activities in virtual worlds. In 5th International LAMS Learning Design Conference.
  • DigiComp.Edu (2021) The Digital Competence Framework 2.0. https://ec.europa.eu/jrc/en/digcomp/digital-competence-framework
  • Ferrari, A. (2013). DIGCOMP: A framework for developing and understanding digital competence in Europe.
  • Artacho G., Martínez E, Martin T.S. , Marin J. L., ve Gomez Garcia, G. (2020). Teacher training in lifelong learning—The importance of digital competence in the encouragement of teaching innovation. Sustainability, 12(7), 2852.
  • Gudmundsdottir, G. B., ve Hatlevik, O. E. (2018). Newly qualified teachers’ professional digital competence: implications for teacher education. European Journal of Teacher Education, 41(2), 214-231.
  • Hsu, S. (2010). Developing a scale for teacher integration of information and communication technology in grades 1–9. Journal of Computer Assisted Learning, 26(3), 175-189.
  • Hu, L. ve Bentler, P. M. (1999). Cutoff criteria for fit ındexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
  • Instefjord, E. J., ve Munthe, E. (2017). Educating digitally competent teachers: A study of integration of professional digital competence in teacher education. Teaching and teacher education, 67, 37-45.
  • ISTE (2021) ISTE standards for educators. https://www.iste.org/standards/for-educators
  • Kalaycı, Ş. (2014). SPSS uygulamalı çok değişkenli istatistik teknikleri (6.baskı). Asil.
  • Kline, R. B., (2005). Principles and practice of structural equation modeling. Guilford Press, New York.
  • Kolenick, P. (2018). Adult education in the post-secondary context: Sustainability in the 21st century. Alberta Journal of Educational Research, 64(2), 208-213.
  • König, J., Jäger-Biela, D. J., ve Glutsch, N. (2020). Adapting to online teaching during COVID-19 school closure: teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education, 43(4), 608-622.
  • Mannila, L., Nordén, L. Å., ve Pears, A. (2018). Digital competence, teacher self-efficacy and training needs. In Proceedings of the 2018 ACM Conference on International Computing Education Research (pp. 78-85).
  • McGarr, O. ve McDonagh, A. (2019) Digital Competence in Teacher Education, Output 1 of the Erasmus+ funded Developing Student Teachers’ Digital Competence (DICTE) project. https://dicte.oslomet.no/(9) (PDF) Digital Competence in Teacher Education.
  • McGrail, E. (2005). Teachers, technology, and change: English teachers’ perspectives. Journal of Technology and Teacher Education, 13(1), 5-24. Meydan, C. H. ve Sesen, H. (2011). Structural equation modeling AMOS applications. Detay Yayıncılık.
  • Mitra, S. (2014). The future of schooling: Children and learning at the edge of chaos. Prospects, 44(4), 547-558.
  • Mueller, J., Wood, E., Willoughby, T., Ross, C., ve Specht, J. (2008). Identifying discriminating variables between teachers who fully integrate computers and teachers with limited integration. Computers ve education, 51(4), 1523-1537.
  • Fraile N, M., Peñalva-Vélez, A., ve Mendióroz Lacambra, A. M. (2018). Development of digital competence in secondary education teachers’ training. Education Sciences, 8(3), 104.
  • OECD (2019). OECD skills outlook 2019: Thriving in a digital world.
  • Patterson, M. B. (2018). The forgotten 90%: Adult nonparticipation in education. Adult Education Quarterly, 68(1), 41-62.
  • Pears, A., Dagiene, V., ve Jasute, E. (2017). Baltic and Nordic K-12 Teacher Perspectives on Computational Thinking and Computing. In International Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp. 141-152). Springer, Cham.
  • Plaza, J., ve Caro, C. (2016). La implicación de la familia en la formación ético-cívica de los jóvenes a través de las TIC. Aloma: revista de psicologia, ciències de l'educació i de l'esport Blanquerna, 34(2), 97-106.
  • Popenici, S. A., ve Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 1-13.
  • Redecker, C., ve Punie, Y. (2017). Digital Competence of Educators.
  • Schmidt, V. H. (2017). Disquieting uncertainty. Three glimpses into the future. European Journal of Futures Research, 5(1), 1-10.
  • Schumacker, R. E. ve Lomax, R. G. (2004). A beginner's guide to structural equation modeling. Psychology Press.
  • Şeker, H. ve Gençdoğan, B. (2014). Psikolojide ve eğitimde ölçme aracı geliştirme. (2. Basım). Nobel Yayınevi.
  • Simsek, O., ve Yazar, T. (2016). Education Technology Standards Self-Efficacy (ETSSE) Scale: A validity and reliability study. Eurasian Journal of Educational Research, 16(63).
  • Tabachnick, B. G. ve Fidell, L. S. (2007). Using multivariate statistics. Boston: Allyn and Bacon.
  • Tavşancıl, E. (2005). Tutumların ölçülmesi ve spss ile veri analizi. Nobel Yayıncılık.
  • Toker, T., Akgün, E., Cömert, Z., ve Edip S. (2021) Eğitimciler için dijital yeterlilik ölçeği: uyarlama, geçerlik ve güvenirlik çalışması. Milli Eğitim Dergisi, 50(230), 301-328.
  • Trust, T. (2017). Preparing future teachers to redefine learning with technology. Journal of Digital Learning in Teacher Education, 33(2), 44-45.
  • Wozney, L., Venkatesh, V., ve Abrami, P. (2006). Implementing computer technologies: Teachers' perceptions and practices. Journal of Technology and teacher education, 14(1), 173-207.

DİJİTAL ÖĞRETMEN YETERLİLİK ÖLÇEĞİ GELİŞTİRME: GEÇERLİK VE GÜVENİRLİK ÇALIŞMASI

Year 2021, Issue: 38, 34 - 68, 31.08.2021
https://doi.org/10.14520/adyusbd.950728

Abstract

Öğretmenlerin eğitimde ki yadsınamaz rolü, gelişen dünya ile beraber günümüzde daha kritik bir noktaya gelmiştir. Buradan hareketle, dijital öğretmenlerin sahip oldukları yeterliliklerin eğitime etkisi oldukça yüksektir denebilir. Bu büyük etki dijital yeterlilikleri öğretmenler için daha önemli bir hale getirmektedir. Bu çalışmada dijital öğretmen yeterliliklerini ölçmeye yönelik geçerli ve güvenilir bir ölçme aracı geliştirmek amaçlanmıştır. Dijital Öğretmen Yeterlilik Ölçeği (DÖYÖ) 20 madde, kaynak geliştirme, iletişim ve iş birliği, güvenlik ve değerlendirme olmak üzere 4 alt boyuttan oluşmaktadır. Ölçeğin yapı geçerliliğine ilişkin bulgular yapılan faktör analizi ile elde edilmiştir. Ölçeğin güvenirliğine yönelik bulguların ortaya konabilmesi için Cronbach Alpha kat sayısı dikkate alınmış ve yapılan analizlere göre ölçeğin geçerli ve güvenilir olduğu tespit edilmiştir.

References

  • Acuna, E., ve Rodriguez, C. (2004). A meta analysis study of outlier detection methods in classification. Technical paper, Department of Mathematics, University of Puerto Rico at Mayaguez, 1-25.
  • Ally M. (2019a). Competency profile of the digital and online teacher in future education. International Review of Research in Open and Distributed Learning, 20(2).
  • Ally M. (2019b) The Digital Teacher in a Mobile and Always-on World. In: Yu S., Niemi H., Mason J. (eds) Shaping Future Schools with Digital Technology. Perspectives on Rethinking and Reforming Education. Springer, Singapore. https://doi.org/10.1007/978-981-13-9439-3_13
  • Bayram, N. (2013). Yapısal eşitlik modellemesine giriş AMOS uygulamaları. Ezgi Kitabevi.
  • Büyüköztürk, Ş. (2015). Sosyal bilimler için veri analizi el kitabı. Ankara: Pegem Yayınları.
  • Caena, F., ve Redecker, C. (2019). Aligning teacher competence frameworks to 21st century challenges: The case for the European Digital Competence Framework for Educators (Digcompedu). European Journal of Education, 54(3), 356-369.
  • Campbell, C., ve Cameron, L. (2016). Scaffolding learning through the use of virtual worlds. AU Press.
  • Cram, A., Lumkin, K., ve Eade, J. (2010). Using LAMS to structure and support learning activities in virtual worlds. In 5th International LAMS Learning Design Conference.
  • DigiComp.Edu (2021) The Digital Competence Framework 2.0. https://ec.europa.eu/jrc/en/digcomp/digital-competence-framework
  • Ferrari, A. (2013). DIGCOMP: A framework for developing and understanding digital competence in Europe.
  • Artacho G., Martínez E, Martin T.S. , Marin J. L., ve Gomez Garcia, G. (2020). Teacher training in lifelong learning—The importance of digital competence in the encouragement of teaching innovation. Sustainability, 12(7), 2852.
  • Gudmundsdottir, G. B., ve Hatlevik, O. E. (2018). Newly qualified teachers’ professional digital competence: implications for teacher education. European Journal of Teacher Education, 41(2), 214-231.
  • Hsu, S. (2010). Developing a scale for teacher integration of information and communication technology in grades 1–9. Journal of Computer Assisted Learning, 26(3), 175-189.
  • Hu, L. ve Bentler, P. M. (1999). Cutoff criteria for fit ındexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
  • Instefjord, E. J., ve Munthe, E. (2017). Educating digitally competent teachers: A study of integration of professional digital competence in teacher education. Teaching and teacher education, 67, 37-45.
  • ISTE (2021) ISTE standards for educators. https://www.iste.org/standards/for-educators
  • Kalaycı, Ş. (2014). SPSS uygulamalı çok değişkenli istatistik teknikleri (6.baskı). Asil.
  • Kline, R. B., (2005). Principles and practice of structural equation modeling. Guilford Press, New York.
  • Kolenick, P. (2018). Adult education in the post-secondary context: Sustainability in the 21st century. Alberta Journal of Educational Research, 64(2), 208-213.
  • König, J., Jäger-Biela, D. J., ve Glutsch, N. (2020). Adapting to online teaching during COVID-19 school closure: teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education, 43(4), 608-622.
  • Mannila, L., Nordén, L. Å., ve Pears, A. (2018). Digital competence, teacher self-efficacy and training needs. In Proceedings of the 2018 ACM Conference on International Computing Education Research (pp. 78-85).
  • McGarr, O. ve McDonagh, A. (2019) Digital Competence in Teacher Education, Output 1 of the Erasmus+ funded Developing Student Teachers’ Digital Competence (DICTE) project. https://dicte.oslomet.no/(9) (PDF) Digital Competence in Teacher Education.
  • McGrail, E. (2005). Teachers, technology, and change: English teachers’ perspectives. Journal of Technology and Teacher Education, 13(1), 5-24. Meydan, C. H. ve Sesen, H. (2011). Structural equation modeling AMOS applications. Detay Yayıncılık.
  • Mitra, S. (2014). The future of schooling: Children and learning at the edge of chaos. Prospects, 44(4), 547-558.
  • Mueller, J., Wood, E., Willoughby, T., Ross, C., ve Specht, J. (2008). Identifying discriminating variables between teachers who fully integrate computers and teachers with limited integration. Computers ve education, 51(4), 1523-1537.
  • Fraile N, M., Peñalva-Vélez, A., ve Mendióroz Lacambra, A. M. (2018). Development of digital competence in secondary education teachers’ training. Education Sciences, 8(3), 104.
  • OECD (2019). OECD skills outlook 2019: Thriving in a digital world.
  • Patterson, M. B. (2018). The forgotten 90%: Adult nonparticipation in education. Adult Education Quarterly, 68(1), 41-62.
  • Pears, A., Dagiene, V., ve Jasute, E. (2017). Baltic and Nordic K-12 Teacher Perspectives on Computational Thinking and Computing. In International Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp. 141-152). Springer, Cham.
  • Plaza, J., ve Caro, C. (2016). La implicación de la familia en la formación ético-cívica de los jóvenes a través de las TIC. Aloma: revista de psicologia, ciències de l'educació i de l'esport Blanquerna, 34(2), 97-106.
  • Popenici, S. A., ve Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 1-13.
  • Redecker, C., ve Punie, Y. (2017). Digital Competence of Educators.
  • Schmidt, V. H. (2017). Disquieting uncertainty. Three glimpses into the future. European Journal of Futures Research, 5(1), 1-10.
  • Schumacker, R. E. ve Lomax, R. G. (2004). A beginner's guide to structural equation modeling. Psychology Press.
  • Şeker, H. ve Gençdoğan, B. (2014). Psikolojide ve eğitimde ölçme aracı geliştirme. (2. Basım). Nobel Yayınevi.
  • Simsek, O., ve Yazar, T. (2016). Education Technology Standards Self-Efficacy (ETSSE) Scale: A validity and reliability study. Eurasian Journal of Educational Research, 16(63).
  • Tabachnick, B. G. ve Fidell, L. S. (2007). Using multivariate statistics. Boston: Allyn and Bacon.
  • Tavşancıl, E. (2005). Tutumların ölçülmesi ve spss ile veri analizi. Nobel Yayıncılık.
  • Toker, T., Akgün, E., Cömert, Z., ve Edip S. (2021) Eğitimciler için dijital yeterlilik ölçeği: uyarlama, geçerlik ve güvenirlik çalışması. Milli Eğitim Dergisi, 50(230), 301-328.
  • Trust, T. (2017). Preparing future teachers to redefine learning with technology. Journal of Digital Learning in Teacher Education, 33(2), 44-45.
  • Wozney, L., Venkatesh, V., ve Abrami, P. (2006). Implementing computer technologies: Teachers' perceptions and practices. Journal of Technology and teacher education, 14(1), 173-207.
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ercan Yılmaz 0000-0003-4702-1688

Abdullah Aktürk 0000-0003-1104-2655

Suat Çapuk 0000-0003-2736-9927

Publication Date August 31, 2021
Published in Issue Year 2021 Issue: 38

Cite

APA Yılmaz, E., Aktürk, A., & Çapuk, S. (2021). DİJİTAL ÖĞRETMEN YETERLİLİK ÖLÇEĞİ GELİŞTİRME: GEÇERLİK VE GÜVENİRLİK ÇALIŞMASI. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(38), 34-68. https://doi.org/10.14520/adyusbd.950728