Research Article
BibTex RIS Cite

MCF-7 Hücrelerinde ATP‐Bağlayıcı Kaset Taşıyıcıları Aracılı Kemorezistansın PhTAD-Sübstitüe Dihidropirol Bileşikleri ile Modülasyonu

Year 2022, Volume: 6 Issue: 1, 77 - 85, 22.04.2022
https://doi.org/10.46332/aemj.896830

Abstract

Amaç: ABC proteinleri, antibiyotikler ve ilaçlar gibi birçok substratı taşır. ABC'lerin artması kanserde kemorezistansa yol açmak-tadır.
Bu bilgiler ışığında, çalışmamızda hem PhTAD türevli dihidropirol bileşiklerinin MCF7 hücrelerinde ABC Transporterların gen ekspresyonları üzerindeki etkisini hem de bu bileşikler için insan ABCB1 yapısını hedef alan öngörücü moleküler bağlanma bölgelerini araştırmayı planladık.
Araçlar ve Yöntem: MCF-7 hücrelerindeki ABCB1, ABCC3, ABCC10, ABCC11 ve ABCG2'nin mRNA ekspresyon seviyeleri qPCR ile ölçülmüştür. Moleküler kenetlenme testleri hem AutoDock Tools 4.2 hem de PyMOL 2.4 programları ile gerçekleştirilmiştir. Ayrıca etkileşim analizi ProteinsPlus web servisi üzerinden yapılmıştır.
Tartışma: Bulgularımız, PhTAD ikameli dihidropirol içeren moleküllerin, kanser kemoresiztansının potansiyel bir düzenleyicisi olan ABC Transporterları etkilediğini göstermektedir.
Sonuç: Sonuçlarımız, bileşik (B) I, BII, BIII, BV, BVIII ve BXII'nin ABCB1'i artırdığını, BIV, BVI, BVII, BX, BIX, BXI, BXIII ve BXIV'ün ise ABCB1'i azalttığını ortaya koymuştur. Ayrıca, BI, BIV, BVI ve BVIII, ABCC3'ü yukarı regüle etmesine rağmen, BVII, BX, BXII, BXIII ve BXIV, ABCC3'ü aşağı regüle eder. Ayrıca, tüm bileşikler ABCC10 ekspresyonunu arttırmıştır. Tersine, ABCC11’in ekspresyonu ise tüm bileşikler tarafından azaltılmıştır. Ayrıca BII, BV ve BVI, ABCG2'yi artırırken, BI, BVII, BVIII, BIX, BX, BXI, BXII, BXIII ve BXIV, ABCG2'yi azaltmıştır. Bunun yanında ABCB1, ABCC3, ABCC11 ve ABCG2 miktarları, BVII, BIX, BX, BXI, BXIII ve BXIV ile paralel olarak azalmıştır. Ayrıca, yüksek bağlanma enerjisine sahip BXI ve BXIV'ün moleküler kenetlenme hesaplama sonuçları, ABCB1'in sıkı bir şekilde modüle edildiğini göstermiştir. Özellikle bu bileşikler, ABCB1 üzerindeki birçok hidrojen bağlama ve hidrofobik bölge ile etkileşime girmektedir.

Thanks

Yazarlar, Amasya Üniversitesi Merkez Araştırma Laboratuvarı'na (AUMAULAB) tesislerini kullanma konusundaki anlayışları için teşekkür eder.

References

  • 1. Causes of death. Our World in Data. https://ourworldindata.org/causes-of-death. Date of Access: 23 March, 2021.
  • 2. Vassilev A, DePamphilis ML. Links between DNA replication, stem cells and cancer. Genes. 2017;8(2): 45.
  • 3. Siegel RL, Miller KD, Goding Sauer A, et al. Col-orectal cancer statistics, 2020. CA Cancer J. Clin. 2020;70 (3):145-164.
  • 4. Khattab A, Monga DK. Cancer, Male Breast Can-cer. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2018.
  • 5. Ortega MA, Fraile-Martínez O, García-Montero C, et al. Physical Activity as an Imperative Sup-port in Breast Cancer Management. Cancers. 2021;13(1):55.
  • 6. Wind N, Holen I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int. J. Breast Cancer. 2011;2011:967419.
  • 7. Li ZH, Weng X, Xiong QY, et al. miR-34a ex-pression in human breast cancer is associated with drug resistance. Oncotarget. 2017;8(63):106270.
  • 8. Najjary S, Mohammadzadeh R, Mokhtarzadeh A, Mohammadi A, Kojabad AB, Baradaran B. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene. 2020;738:144453.
  • 9. Ullah MF. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac. J. Cancer Prev. 2008;9(1):1-6.
  • 10. Liang XJ, Chen C, Zhao Y, Wang PC. Circum-venting tumor resistance to chemotherapy by nanotechnology. Zhou J. Multi-Drug Resistance in Cancer. USA: Humana Press- Springer; 2010:467-488.
  • 11. Kadkol H, Jain V, Patil AB. Multi Drug Re-sistance in Cancer Therapy an Overview. J. Crit. Rev. 2019;6(6): 1-6.
  • 12. Thomas H, Coley HM. Overcoming multidrug re-sistance in cancer: an update on the clinical strat-egy of inhibiting p-glycoprotein. Cancer Control. 2003;10(2): 159-165.
  • 13. Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos. 2014;42(4):623-631.
  • 14. Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 2018;8(1):1-18.
  • 15. Scotto KW. Transcriptional regulation of ABC drug transporters. Oncogene. 2003;22(47):7496-7511.
  • 16. Lennarz WJ, Lane MD. Encyclopedia of biologi-cal chemistry. Second Edition. USA: Academic Press; 2013.
  • 17. Shukla S, Wu C-P, Ambudkar SV. Development of inhibitors of ATP-binding cassette drug trans-porters–present status and challenges. Expert. Opin. Drug Metab. Toxicol. 2008;4(2):205-223.
  • 18. Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to over-come MDR. Biomed Pharmacother. 2018;100:335-348.
  • 19. Fung KL, Gottesman MM. A synonymous poly-morphism in a common MDR1 (ABCB1) haplo-type shapes protein function. Biochim. Biophys. Acta-Proteins Proteom 2009;1794(5):860-871.
  • 20. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet. Genomics. 2011;21 (3):152.
  • 21. Tulsyan S, Mittal RD, Mittal B. The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment. Pharmgenomics Pers Med. 2016;9:47-58.
  • 22. Robinson K, Tiriveedhi V. Perplexing role of P-glycoprotein in tumor microenvironment. Front. in Oncol. 2020;10:265.
  • 23. Domenichini A, Adamska A, Falasca M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochim Biophys Acta Gen Subj. 2019; 1863(1):52-60.
  • 24. Boumendjel A, Florin A, Boutonnat J. Reversal agents of multidrug resistance mediated by mul-tidrug resistance-associated proteins (MRPs). Boumendjel A, Boutonnat J, Robert J. ABC transporters and multidrug resistance. New Jer-sey, USA:John Wiley & Sons, Inc.;2009:261-288.
  • 25. Sharma SV, Gajowniczek P, Way IP, et al. A common signaling cascade may underlie “addic-tion” to the Src, BCR-ABL, and EGF receptor on-cogenes. Cancer cell. 2006;10(5):425-435.
  • 26. Baguley BC. Multidrug resistance in cancer. Zhou J. Multi-Drug Resistance in Cancer. Methods in Molecular Biology (Methods and Protocols). USA: Humana Press-Springer; 2010:1-14.
  • 27. Anary-Abbasinejad M, Poorhassan E, Has-sanabadi A. Efficient synthesis of functionalized 2, 5-dihydropyrrole derivatives by Ph3P-promoted condensation between acetylene esters and α-arylamino ketones. Synlett. 2009;2009(12):1929-1932.
  • 28. Yena M, Dzyubenko N. Effect of pyrrole deriva-tive on the rat colonic mucosa compared to 5-fluorouracil. Eureka: Life Sciences. 2016;(5):18-24.
  • 29. Cox CD, Breslin MJ, Whitman DB, et al. Kinesin spindle protein (KSP) inhibitors. Part V: discovery of 2-propylamino-2, 4-diaryl-2, 5-dihydropyrroles as potent, water-soluble KSP in-hibitors, and modulation of their basicity by β-fluorination to overcome cellular efflux by P-glycoprotein. Bioorg. Med. Chem. Lett. 2007;17(10):2697-2702.
  • 30. Petri GL, Spanò V, Spatola R, et al. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem. 2020;112783.
  • 31. Gul M, Elemes Y, Pelit E, et al. Synthesis of PhTAD-substituted dihydropyrrole derivatives via stereospecific C–H amination. Res. Chem. Intermed. 2017;43(2):1031-1045.
  • 32. Ayar A, Aksahin M, Mesci S, Yazgan B, Gül M, Yıldırım T. Antioxidant, cytotoxic activity and pharmacokinetic studies by SwissAdme, Molin-spiration, Osiris and DFT of PhTAD-substituted dihydropyrrole derivatives. Curr Comput-Aid Drug. 2021;18(1).52-63.
  • 33. Morris GM, Huey R, Lindstrom W, et al. Auto-Dock4 and AutoDockTools4: Automated dock-ing with selective receptor flexibility. J. Comput. Chem. 2009;30 (16):2785-2791.
  • 34. DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002;40(1):82-92.
  • 35. Adasme MF, Linnemann KL, Bolz SN, et al. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49(1):530-534.
  • 36. Boger DL, Soenen DR, Boyce CW, Hedrick MP, Jin Q. Total synthesis of ningalin B utilizing a heterocyclic azadiene Diels− Alder reaction and discovery of a new class of potent multidrug re-sistant (MDR) reversal agents. J. Org. Chem. 2000;65(8):2479-2483.
  • 37. Fürstner A, Krause H, Thiel OR. Efficient relay syntheses and assessment of the DNA-cleaving properties of the pyrrole alkaloid derivatives permethyl storniamide A, lycogalic acid A dime-thyl ester, and the halitulin core. Tetrahedron. 2002;58(32):6373-6380.
  • 38. Dasari R, De Carvalho A, Medellin DC, et al. Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of 9‐Epipolygodial against Drug‐Resistant Cancer Cells. Chem Med Chem. 2015;10(12):2014-2026.
  • 39. Finiuk N, Klyuchivska OY, Kuznietsova H, Vashchuk S, Rybalchenko V, Stoika R. Biol. Stud. Inhibitor of Protein Kinases 1-(4-Chlorobenzyl)-3-Chloro-4-(3-Trifluoromethylphenylamino)-1 H-Pyrrole-2, 5-Dione Induces DNA Damage and Apoptosis in Human Colon Carcinoma Cells. Biol. Stud. 2020;14(4):3-14.

ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds

Year 2022, Volume: 6 Issue: 1, 77 - 85, 22.04.2022
https://doi.org/10.46332/aemj.896830

Abstract

Purpose: ABC proteins transport many substrates such as antibiotics and drugs. Increase of ABCs lead chemoresistance in can-cer.
In view of this information, in our study, we planned to investigate both PhTAD-substituted dihydropyrrole compound's impact on gene expressions of ABC Transporters in the MCF7 cells, and predictive molecular binding sites target on human ABCB1 structure for these compounds.
Materials and Methods: The mRNA expression levels of ABCB1, ABCC3, ABCC10, ABCC11, and ABCG2 in the MCF-7 cell were measured by qPCR. Molecular docking assays were realized with both the AutoDock Tools 4.2 and PyMOL 2.4. Also, the interaction analysis was performed by ProteinsPlus web service.
Results: Our results revealed that CI, CII, CIII, CV, CVIII, and CXII increased ABCB1 while compound CIV, CVI, CVII, CX, CIX, CXI, CXIII, and CXIV decreased ABCB1. Besides, CI, CIV, CVI, and CVIII upregulate ABCC3, although CVII, CX, CXII, CXIII, and CXIV downregulate ABCC3. Moreover, ABCC10 expression is induced by all compounds. Conversely, ABCC11 expression is reduced by all compounds. Furthermore, CII, CV, and CVI increased ABCG2, while CI, CVII, CVIII, CIX, CX, CXI, CXII, CXIII, and CXIV decreased ABCG2. Also, ABCB1, ABCC3, ABCC11, and ABCG2 parallelly reduced by CVII, CIX, CX, CXI, CXIII, and CXIV. Also, the molecular docking calculation results of CXI and CXIV with high binding energy have shown that tightly modulated ABCB1. Especially, these compounds interact with many hydrogen bonding and hydrophobic site on ABCB1.
Conclusion: Our findings indicate that the PhTAD-substituted dihydropyrol containing molecules affect ABC transporters as a potential regulator of cancer chemoresistance.

References

  • 1. Causes of death. Our World in Data. https://ourworldindata.org/causes-of-death. Date of Access: 23 March, 2021.
  • 2. Vassilev A, DePamphilis ML. Links between DNA replication, stem cells and cancer. Genes. 2017;8(2): 45.
  • 3. Siegel RL, Miller KD, Goding Sauer A, et al. Col-orectal cancer statistics, 2020. CA Cancer J. Clin. 2020;70 (3):145-164.
  • 4. Khattab A, Monga DK. Cancer, Male Breast Can-cer. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2018.
  • 5. Ortega MA, Fraile-Martínez O, García-Montero C, et al. Physical Activity as an Imperative Sup-port in Breast Cancer Management. Cancers. 2021;13(1):55.
  • 6. Wind N, Holen I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int. J. Breast Cancer. 2011;2011:967419.
  • 7. Li ZH, Weng X, Xiong QY, et al. miR-34a ex-pression in human breast cancer is associated with drug resistance. Oncotarget. 2017;8(63):106270.
  • 8. Najjary S, Mohammadzadeh R, Mokhtarzadeh A, Mohammadi A, Kojabad AB, Baradaran B. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene. 2020;738:144453.
  • 9. Ullah MF. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac. J. Cancer Prev. 2008;9(1):1-6.
  • 10. Liang XJ, Chen C, Zhao Y, Wang PC. Circum-venting tumor resistance to chemotherapy by nanotechnology. Zhou J. Multi-Drug Resistance in Cancer. USA: Humana Press- Springer; 2010:467-488.
  • 11. Kadkol H, Jain V, Patil AB. Multi Drug Re-sistance in Cancer Therapy an Overview. J. Crit. Rev. 2019;6(6): 1-6.
  • 12. Thomas H, Coley HM. Overcoming multidrug re-sistance in cancer: an update on the clinical strat-egy of inhibiting p-glycoprotein. Cancer Control. 2003;10(2): 159-165.
  • 13. Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos. 2014;42(4):623-631.
  • 14. Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 2018;8(1):1-18.
  • 15. Scotto KW. Transcriptional regulation of ABC drug transporters. Oncogene. 2003;22(47):7496-7511.
  • 16. Lennarz WJ, Lane MD. Encyclopedia of biologi-cal chemistry. Second Edition. USA: Academic Press; 2013.
  • 17. Shukla S, Wu C-P, Ambudkar SV. Development of inhibitors of ATP-binding cassette drug trans-porters–present status and challenges. Expert. Opin. Drug Metab. Toxicol. 2008;4(2):205-223.
  • 18. Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to over-come MDR. Biomed Pharmacother. 2018;100:335-348.
  • 19. Fung KL, Gottesman MM. A synonymous poly-morphism in a common MDR1 (ABCB1) haplo-type shapes protein function. Biochim. Biophys. Acta-Proteins Proteom 2009;1794(5):860-871.
  • 20. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet. Genomics. 2011;21 (3):152.
  • 21. Tulsyan S, Mittal RD, Mittal B. The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment. Pharmgenomics Pers Med. 2016;9:47-58.
  • 22. Robinson K, Tiriveedhi V. Perplexing role of P-glycoprotein in tumor microenvironment. Front. in Oncol. 2020;10:265.
  • 23. Domenichini A, Adamska A, Falasca M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochim Biophys Acta Gen Subj. 2019; 1863(1):52-60.
  • 24. Boumendjel A, Florin A, Boutonnat J. Reversal agents of multidrug resistance mediated by mul-tidrug resistance-associated proteins (MRPs). Boumendjel A, Boutonnat J, Robert J. ABC transporters and multidrug resistance. New Jer-sey, USA:John Wiley & Sons, Inc.;2009:261-288.
  • 25. Sharma SV, Gajowniczek P, Way IP, et al. A common signaling cascade may underlie “addic-tion” to the Src, BCR-ABL, and EGF receptor on-cogenes. Cancer cell. 2006;10(5):425-435.
  • 26. Baguley BC. Multidrug resistance in cancer. Zhou J. Multi-Drug Resistance in Cancer. Methods in Molecular Biology (Methods and Protocols). USA: Humana Press-Springer; 2010:1-14.
  • 27. Anary-Abbasinejad M, Poorhassan E, Has-sanabadi A. Efficient synthesis of functionalized 2, 5-dihydropyrrole derivatives by Ph3P-promoted condensation between acetylene esters and α-arylamino ketones. Synlett. 2009;2009(12):1929-1932.
  • 28. Yena M, Dzyubenko N. Effect of pyrrole deriva-tive on the rat colonic mucosa compared to 5-fluorouracil. Eureka: Life Sciences. 2016;(5):18-24.
  • 29. Cox CD, Breslin MJ, Whitman DB, et al. Kinesin spindle protein (KSP) inhibitors. Part V: discovery of 2-propylamino-2, 4-diaryl-2, 5-dihydropyrroles as potent, water-soluble KSP in-hibitors, and modulation of their basicity by β-fluorination to overcome cellular efflux by P-glycoprotein. Bioorg. Med. Chem. Lett. 2007;17(10):2697-2702.
  • 30. Petri GL, Spanò V, Spatola R, et al. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem. 2020;112783.
  • 31. Gul M, Elemes Y, Pelit E, et al. Synthesis of PhTAD-substituted dihydropyrrole derivatives via stereospecific C–H amination. Res. Chem. Intermed. 2017;43(2):1031-1045.
  • 32. Ayar A, Aksahin M, Mesci S, Yazgan B, Gül M, Yıldırım T. Antioxidant, cytotoxic activity and pharmacokinetic studies by SwissAdme, Molin-spiration, Osiris and DFT of PhTAD-substituted dihydropyrrole derivatives. Curr Comput-Aid Drug. 2021;18(1).52-63.
  • 33. Morris GM, Huey R, Lindstrom W, et al. Auto-Dock4 and AutoDockTools4: Automated dock-ing with selective receptor flexibility. J. Comput. Chem. 2009;30 (16):2785-2791.
  • 34. DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002;40(1):82-92.
  • 35. Adasme MF, Linnemann KL, Bolz SN, et al. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49(1):530-534.
  • 36. Boger DL, Soenen DR, Boyce CW, Hedrick MP, Jin Q. Total synthesis of ningalin B utilizing a heterocyclic azadiene Diels− Alder reaction and discovery of a new class of potent multidrug re-sistant (MDR) reversal agents. J. Org. Chem. 2000;65(8):2479-2483.
  • 37. Fürstner A, Krause H, Thiel OR. Efficient relay syntheses and assessment of the DNA-cleaving properties of the pyrrole alkaloid derivatives permethyl storniamide A, lycogalic acid A dime-thyl ester, and the halitulin core. Tetrahedron. 2002;58(32):6373-6380.
  • 38. Dasari R, De Carvalho A, Medellin DC, et al. Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of 9‐Epipolygodial against Drug‐Resistant Cancer Cells. Chem Med Chem. 2015;10(12):2014-2026.
  • 39. Finiuk N, Klyuchivska OY, Kuznietsova H, Vashchuk S, Rybalchenko V, Stoika R. Biol. Stud. Inhibitor of Protein Kinases 1-(4-Chlorobenzyl)-3-Chloro-4-(3-Trifluoromethylphenylamino)-1 H-Pyrrole-2, 5-Dione Induces DNA Damage and Apoptosis in Human Colon Carcinoma Cells. Biol. Stud. 2020;14(4):3-14.
There are 39 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Articles
Authors

Burak Yazgan 0000-0003-0717-7768

Seda Mesci 0000-0002-5440-302X

Maşuk Akşahın 0000-0002-1282-5072

Arif Ayar 0000-0003-0473-4653

Melek Gül 0000-0002-0037-1202

Tuba Yıldırım 0000-0001-8575-4802

Publication Date April 22, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Yazgan, B., Mesci, S., Akşahın, M., Ayar, A., et al. (2022). ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds. Ahi Evran Medical Journal, 6(1), 77-85. https://doi.org/10.46332/aemj.896830
AMA Yazgan B, Mesci S, Akşahın M, Ayar A, Gül M, Yıldırım T. ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds. Ahi Evran Med J. April 2022;6(1):77-85. doi:10.46332/aemj.896830
Chicago Yazgan, Burak, Seda Mesci, Maşuk Akşahın, Arif Ayar, Melek Gül, and Tuba Yıldırım. “ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds”. Ahi Evran Medical Journal 6, no. 1 (April 2022): 77-85. https://doi.org/10.46332/aemj.896830.
EndNote Yazgan B, Mesci S, Akşahın M, Ayar A, Gül M, Yıldırım T (April 1, 2022) ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds. Ahi Evran Medical Journal 6 1 77–85.
IEEE B. Yazgan, S. Mesci, M. Akşahın, A. Ayar, M. Gül, and T. Yıldırım, “ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds”, Ahi Evran Med J, vol. 6, no. 1, pp. 77–85, 2022, doi: 10.46332/aemj.896830.
ISNAD Yazgan, Burak et al. “ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds”. Ahi Evran Medical Journal 6/1 (April 2022), 77-85. https://doi.org/10.46332/aemj.896830.
JAMA Yazgan B, Mesci S, Akşahın M, Ayar A, Gül M, Yıldırım T. ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds. Ahi Evran Med J. 2022;6:77–85.
MLA Yazgan, Burak et al. “ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds”. Ahi Evran Medical Journal, vol. 6, no. 1, 2022, pp. 77-85, doi:10.46332/aemj.896830.
Vancouver Yazgan B, Mesci S, Akşahın M, Ayar A, Gül M, Yıldırım T. ATP‐Binding Cassette Transporters Mediated Chemoresistance in MCF-7 Cells: Modulation by PhTAD-Substituted Dihydropyrrole Compounds. Ahi Evran Med J. 2022;6(1):77-85.

Ahi Evran Medical Journal  is indexed in ULAKBIM TR Index, Turkish Medline, DOAJ, Index Copernicus, EBSCO and Turkey Citation Index. Ahi Evran Medical Journal is periodical scientific publication. Can not be cited without reference. Responsibility of the articles belong to the authors.

    Creative Commons Lisansı

This journal is licensed under the Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı.