Research Article
BibTex RIS Cite

COVID-19 Hastalarında Antioksidanların ve Oksidatif Hasarın Durumu

Year 2023, Volume: 7 Issue: 1, 114 - 123, 16.04.2023
https://doi.org/10.46332/aemj.1152479

Abstract

Amaç: COVID-19, son zamanlarda bir pandemiye neden olan ve insan sağlığını önemli ölçüde etkileyen bir viral hastalıktır. Bu çalışmada COVID-19'da süperoksit dismutaz, glutatyon peroksidaz, glutatyon, toplam tiyol, doğal tiyol, disülfid, oksidatif DNA hasarı ve malondialdehit düzeyleri araştırıldı.

Araçlar ve Yöntem: Bu çalışmaya revers transkriptaz-polimeraz zincir reaksiyonu ile COVID-19 tanısı konan 35 hasta ve 35 sağlıklı gönüllü dahil edildi. Enzim bağlantılı immünosorbent testi ile serum glutatyon, glutatyon peroksidaz, süperoksit dismutaz, doğal tiyol, toplam tiyol ve disülfid seviyeleri ve yüksek basınçlı-sıvı kromatografisi ile malondialdehit ve 8-hidroksi-2-deoksiguanozin/10⁶ deoksiguanozin seviyeleri ölçüldü.

Bulgular: COVID-19 hasta grubunda serum süperoksit dismutaz, glutatyon peroksidaz, malondialdehit, 8-hydroxy-2-deoksiguanozin/10⁶, disülfid düzeyleri sağlıklı kontrol grubuna göre daha yüksek iken, glutathione, toplam tiyol, doğal tiyol düzeyleri daha düşüktü. Ayrıca 8-hydroxy-2-deoxyguanosine/10⁶ deoxyguanosine ile glutatyon, doğal tiyol ve toplam tiyol arasında negatif, disülfid ile pozitif korelasyon vardı.

Sonuç: Bu çalışma, COVID-19 hastalarında serum süperoksit dismutaz, glutatyon peroksidaz, glutatyon, malondialdehit, 8-hydroxy-2-deoxyguanosine/10⁶ deoxyguanosine ve disülfid düzeylerinin arttığını ve glutatyon, toplam tiyol ve doğal tiyol düzeylerinin azaldığını ortaya koydu. Bu sonuçlar, COVID-19 hastalarında, antioksidan belirteç düzeylerinde azalma ve oksidatif stres belirteçlerinde artış olduğunu ortaya koydu.

Supporting Institution

Yok

Project Number

YOK

Thanks

Van Yüzüncü Yıl Üniversitesi Tıp Fakültesi Biyokimya Anabilim Dalı'na katkılarından dolayı teşekkür ederiz.

References

  • 1. Fakhri S, Nouri Z, Moradi SZ, Farzaei MH. Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytother Res. 2020;34(11):2790-2792.
  • 2. Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 2020;54:1-7.
  • 3. Zhang R, Wang X, Ni L et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583.
  • 4. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses. 2020;143:110102.
  • 5. Derouiche S. Oxidative Stress Associated with SARS-Cov-2 (COVID-19) Increases the Severity of the Lung Disease - A Systematic Review. J Infect Dis Epidemiol. 2020;6(3):1-6.
  • 6. Panfoli I. Potential role of endothelial cell surface ectopic redox complexes in COVID-19 disease pathogenesis. Clin Med. 2020;20(5):146-147.
  • 7. Garcia JB, Verdegal RO, Pallardo FV et al. Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants. 2020;9(10):936.
  • 8. Kalyanaraman B. Do free radical NETwork and oxidative stress disparities in African Americans enhance their vulnerability to SARS-CoV-2 infection and COVID-19 severity? Redox Biol. 2020;37: 101721.
  • 9. Huyut Z, Sekeroglu MR, Balahoroglu R, Huyut MT. Characteristics of resveratrol and serotonin on antioxidant capacity and susceptibility to oxidation of red blood cells in stored human blood in a time-dependent manner. J Int Med Res. 2018;46(1):272-283.
  • 10. Sekeroglu MR, Huyut Z, Cokluk E et al. The susceptibility to autoxidation of erythrocytes in diabetic mice: Effects of melatonin and pentoxifylline. J Biochem Mol Toxicol. 2017;31(12):.e21976.
  • 11. Sekeroglu MR, Huyut Z, Him A. The susceptibility of erythrocytes to oxidation during storage of blood: effects of melatonin and propofol. Clin Biochem. 2012;45(4-5):315-319.
  • 12. Simsek E, Biçer CK, Mazlumoglu MR et al. Is otitis media with effusion associated with oxidative stress? Evaluation of thiol/disulfide homeostasis. Am J Otolaryngol. 2019;40(2):164-167.
  • 13. Güzelcicek A, Çakırca G, Erel Ö, Solmaz A. Assessment of thiol/disulfide balance as an oxidative stress marker in children with beta-thalassemia major. Pak J Med Sci. 2019;35(1):161-165.
  • 14. Özdamar K, Şen A, Koyuncu İ. The use of the thiol-disulfide homeostasis as an indicator of oxidative stress in pediatric adenoid hypertrophy patients. Sanamed. 2019;14(1):37-43.
  • 15. SY Durmus , Sahin NM, Ergin M et al. How does thiol/disulfide homeostasis change in children with type 1 diabetes mellitus? Diabetes Res Clin Pract. 2019;149:64-68.
  • 16. Uyanıkoğlu A, Sabuncu T, Yıldız R et al. Impaired thiol/disulfide homeostasis in patients with mild acute pancreatitis. Turk J Gastroenterol. 2019;30(10):899-902.
  • 17. Uyanıkoğlu H, Sak ME, Tatli F et al. Serum ischemia modified albumin level and its relationship with the thiol/disulfide balance in placenta percreta patients. J Obstet Gynaecol. 2018;38(8):1073-1077.
  • 18. Khoschsorur G, Winklhofer-Roob B, Rabl H, Auer T, Peng Z, RJ Schaur. Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials. Chromatographia. 2000;52:781-184.
  • 19. Kaur H, Halliwell B. Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. Biochem. J. 1996;318(1):21-23.
  • 20. Pincemail J, Cavalier E, Charlier C et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants (Basel). 2021;10(2):257.
  • 21. Imai Y, Kuba K, Neely GG et al., Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235-249.
  • 22. Cardin R, Saccoccio G, Masutti F, Bellentani S, Farinati F, Tiribelli C. DNA oxidative damage in leukocytes corre lates with the severity of HCV-related liver disease: validation in an open population study. J. Hepatol. 2001;34(4):587-592.
  • 23. Bolukbas C, Bolukbas FF, Horoz M, Aslan M, Celik H, Erel O. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect Dis. 2005;5(1):1-7.
  • 24. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch. Med. Res. 2020;51(5)384-387.
  • 25. Silvagno F, Vernone A, Pescarmona GP. The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants (Basel). 2020;9(7):624.
  • 26. Taylor EW, Radding W. Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral M(pro) Protease Target Host Selenoproteins and Glutathione Synthesis? Front Nutr. 2020;7:143.
  • 27. Zinellu A, Zinellu E, Sotgiu E et al. Systemic transsulfuration pathway thiol concentrations in chronic obstructive pulmonary disease patients. Eur J Clin Invest: 2020;50(8):13267.
  • 28. Hati S, Bhattacharyya S. Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor. ACS omega. 2020;5(26):16292-16298.
  • 29. Zhao G, Su Y, Sun X et al. A comparative study of the laboratory features of COVID-19 and other viral pneumonias in the recovery stage. J Clin Lab Anal. 2020;34(10):23483.
  • 30. Cobanoglu U, Demir H, Cebi A et al. Lipid peroxidation, DNA damage and coenzyme Q10 in lung cancer patients--markers for risk assessment? Asian Pac J Cancer Prev. 2011;12(6):1399-1403.
  • 31. Avci V, Ayengin K, Alp HH. Oxidative DNA Damage and NOX4 Levels in Children with Undescended Testes. Eur J Pediatr Surg. 2019;29(6):545-550.
  • 32. Chuma M, Hige S, Nakanishi M et al. 8-Hydroxy-2'-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol. 2008;23(9):1431-1436.
  • 33. Wong RH, Yeh CY, Yu MH, Jung DW, Yu CL, Tsun JC. Association of hepatitis virus infection, alcohol consumption and plasma vitamin A levels with urinary 8-hydroxydeoxyguanosine in chemical workers. Mutat Res. 2003;535(2):181-186.

The Status of Antioxidants and Oxidative Damage in Patients with COVID-19

Year 2023, Volume: 7 Issue: 1, 114 - 123, 16.04.2023
https://doi.org/10.46332/aemj.1152479

Abstract

Purpose: COVID-19 is a viral disease that has recently caused a pandemic and significantly affects human health. In this study, superoxide dismutase, glutathione peroxidase, glutathione, total thiol, natural thiol, disulfide, oxidative DNA damage and malondialdehyde levels in COVID-19 were investigated.

Materials and Methods: Thirty-five patients and 35 healthy volunteers were included in this study. The diagnosis of COVID-19 was made by reverse transcriptase-polymerase chain reaction. Serum glutathione, glutathione peroxidase, superoxide dismutase, natural thiol, total thiol and disulphide levels by enzyme-linked immunosorbent assay and malondialdehyde and 8-hydroxy-2-deoxyguanosine/10⁶ deoxyguanosine levels by high-pressure liquid chromatography measured.

Results: While serum superoxide dismutase, glutathione peroxidase, malondialdehyde, 8-hydroxy-2-deoxyguanosine/10⁶ deoxyguanosine, disulfide levels were higher in the COVID-19 patient group than in the healthy control group, glutathione, total thiol, natural thiol levels were lower. In addition, there was a negative correlation between 8-hydroxy-2-deoxyguanosine/10⁶ deoxyguanosine and glutathione, natural thiol and total thiol, and a positive correlation with disulfide.

Conclusion: This study revealed that serum superoxide dismutase, glutathione peroxidase, malondialdehyde, 8-hydroxy-2-deoxyguanosine/10⁶ deoxyguanosine, and disulfide levels increased and glutathione, thiol and natural thiol levels decreased in COVID-19 patients. These results revealed that there was a decrease in antioxidant marker levels and an increase in oxidative stress markers in COVID-19 patients.

Project Number

YOK

References

  • 1. Fakhri S, Nouri Z, Moradi SZ, Farzaei MH. Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytother Res. 2020;34(11):2790-2792.
  • 2. Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 2020;54:1-7.
  • 3. Zhang R, Wang X, Ni L et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583.
  • 4. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses. 2020;143:110102.
  • 5. Derouiche S. Oxidative Stress Associated with SARS-Cov-2 (COVID-19) Increases the Severity of the Lung Disease - A Systematic Review. J Infect Dis Epidemiol. 2020;6(3):1-6.
  • 6. Panfoli I. Potential role of endothelial cell surface ectopic redox complexes in COVID-19 disease pathogenesis. Clin Med. 2020;20(5):146-147.
  • 7. Garcia JB, Verdegal RO, Pallardo FV et al. Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants. 2020;9(10):936.
  • 8. Kalyanaraman B. Do free radical NETwork and oxidative stress disparities in African Americans enhance their vulnerability to SARS-CoV-2 infection and COVID-19 severity? Redox Biol. 2020;37: 101721.
  • 9. Huyut Z, Sekeroglu MR, Balahoroglu R, Huyut MT. Characteristics of resveratrol and serotonin on antioxidant capacity and susceptibility to oxidation of red blood cells in stored human blood in a time-dependent manner. J Int Med Res. 2018;46(1):272-283.
  • 10. Sekeroglu MR, Huyut Z, Cokluk E et al. The susceptibility to autoxidation of erythrocytes in diabetic mice: Effects of melatonin and pentoxifylline. J Biochem Mol Toxicol. 2017;31(12):.e21976.
  • 11. Sekeroglu MR, Huyut Z, Him A. The susceptibility of erythrocytes to oxidation during storage of blood: effects of melatonin and propofol. Clin Biochem. 2012;45(4-5):315-319.
  • 12. Simsek E, Biçer CK, Mazlumoglu MR et al. Is otitis media with effusion associated with oxidative stress? Evaluation of thiol/disulfide homeostasis. Am J Otolaryngol. 2019;40(2):164-167.
  • 13. Güzelcicek A, Çakırca G, Erel Ö, Solmaz A. Assessment of thiol/disulfide balance as an oxidative stress marker in children with beta-thalassemia major. Pak J Med Sci. 2019;35(1):161-165.
  • 14. Özdamar K, Şen A, Koyuncu İ. The use of the thiol-disulfide homeostasis as an indicator of oxidative stress in pediatric adenoid hypertrophy patients. Sanamed. 2019;14(1):37-43.
  • 15. SY Durmus , Sahin NM, Ergin M et al. How does thiol/disulfide homeostasis change in children with type 1 diabetes mellitus? Diabetes Res Clin Pract. 2019;149:64-68.
  • 16. Uyanıkoğlu A, Sabuncu T, Yıldız R et al. Impaired thiol/disulfide homeostasis in patients with mild acute pancreatitis. Turk J Gastroenterol. 2019;30(10):899-902.
  • 17. Uyanıkoğlu H, Sak ME, Tatli F et al. Serum ischemia modified albumin level and its relationship with the thiol/disulfide balance in placenta percreta patients. J Obstet Gynaecol. 2018;38(8):1073-1077.
  • 18. Khoschsorur G, Winklhofer-Roob B, Rabl H, Auer T, Peng Z, RJ Schaur. Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials. Chromatographia. 2000;52:781-184.
  • 19. Kaur H, Halliwell B. Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. Biochem. J. 1996;318(1):21-23.
  • 20. Pincemail J, Cavalier E, Charlier C et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants (Basel). 2021;10(2):257.
  • 21. Imai Y, Kuba K, Neely GG et al., Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235-249.
  • 22. Cardin R, Saccoccio G, Masutti F, Bellentani S, Farinati F, Tiribelli C. DNA oxidative damage in leukocytes corre lates with the severity of HCV-related liver disease: validation in an open population study. J. Hepatol. 2001;34(4):587-592.
  • 23. Bolukbas C, Bolukbas FF, Horoz M, Aslan M, Celik H, Erel O. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect Dis. 2005;5(1):1-7.
  • 24. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch. Med. Res. 2020;51(5)384-387.
  • 25. Silvagno F, Vernone A, Pescarmona GP. The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants (Basel). 2020;9(7):624.
  • 26. Taylor EW, Radding W. Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral M(pro) Protease Target Host Selenoproteins and Glutathione Synthesis? Front Nutr. 2020;7:143.
  • 27. Zinellu A, Zinellu E, Sotgiu E et al. Systemic transsulfuration pathway thiol concentrations in chronic obstructive pulmonary disease patients. Eur J Clin Invest: 2020;50(8):13267.
  • 28. Hati S, Bhattacharyya S. Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor. ACS omega. 2020;5(26):16292-16298.
  • 29. Zhao G, Su Y, Sun X et al. A comparative study of the laboratory features of COVID-19 and other viral pneumonias in the recovery stage. J Clin Lab Anal. 2020;34(10):23483.
  • 30. Cobanoglu U, Demir H, Cebi A et al. Lipid peroxidation, DNA damage and coenzyme Q10 in lung cancer patients--markers for risk assessment? Asian Pac J Cancer Prev. 2011;12(6):1399-1403.
  • 31. Avci V, Ayengin K, Alp HH. Oxidative DNA Damage and NOX4 Levels in Children with Undescended Testes. Eur J Pediatr Surg. 2019;29(6):545-550.
  • 32. Chuma M, Hige S, Nakanishi M et al. 8-Hydroxy-2'-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol. 2008;23(9):1431-1436.
  • 33. Wong RH, Yeh CY, Yu MH, Jung DW, Yu CL, Tsun JC. Association of hepatitis virus infection, alcohol consumption and plasma vitamin A levels with urinary 8-hydroxydeoxyguanosine in chemical workers. Mutat Res. 2003;535(2):181-186.
There are 33 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Articles
Authors

İrfan Binici 0000-0001-6268-7707

Hamit Hakan Alp 0000-0002-9202-4944

Zübeyir Huyut 0000-0002-7623-1492

Esra Gürbüz 0000-0002-3123-0963

Hülya Günbatar 0000-0002-3504-8915

Şükrü Akmeşe 0000-0003-4992-0281

Mustafa Kasım Karahocagil 0000-0002-5171-7306

Halil İbrahim Akbay 0000-0002-4303-7837

Project Number YOK
Early Pub Date March 14, 2023
Publication Date April 16, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Binici, İ., Alp, H. H., Huyut, Z., Gürbüz, E., et al. (2023). The Status of Antioxidants and Oxidative Damage in Patients with COVID-19. Ahi Evran Medical Journal, 7(1), 114-123. https://doi.org/10.46332/aemj.1152479
AMA Binici İ, Alp HH, Huyut Z, Gürbüz E, Günbatar H, Akmeşe Ş, Karahocagil MK, Akbay Hİ. The Status of Antioxidants and Oxidative Damage in Patients with COVID-19. Ahi Evran Med J. April 2023;7(1):114-123. doi:10.46332/aemj.1152479
Chicago Binici, İrfan, Hamit Hakan Alp, Zübeyir Huyut, Esra Gürbüz, Hülya Günbatar, Şükrü Akmeşe, Mustafa Kasım Karahocagil, and Halil İbrahim Akbay. “The Status of Antioxidants and Oxidative Damage in Patients With COVID-19”. Ahi Evran Medical Journal 7, no. 1 (April 2023): 114-23. https://doi.org/10.46332/aemj.1152479.
EndNote Binici İ, Alp HH, Huyut Z, Gürbüz E, Günbatar H, Akmeşe Ş, Karahocagil MK, Akbay Hİ (April 1, 2023) The Status of Antioxidants and Oxidative Damage in Patients with COVID-19. Ahi Evran Medical Journal 7 1 114–123.
IEEE İ. Binici, H. H. Alp, Z. Huyut, E. Gürbüz, H. Günbatar, Ş. Akmeşe, M. K. Karahocagil, and H. İ. Akbay, “The Status of Antioxidants and Oxidative Damage in Patients with COVID-19”, Ahi Evran Med J, vol. 7, no. 1, pp. 114–123, 2023, doi: 10.46332/aemj.1152479.
ISNAD Binici, İrfan et al. “The Status of Antioxidants and Oxidative Damage in Patients With COVID-19”. Ahi Evran Medical Journal 7/1 (April 2023), 114-123. https://doi.org/10.46332/aemj.1152479.
JAMA Binici İ, Alp HH, Huyut Z, Gürbüz E, Günbatar H, Akmeşe Ş, Karahocagil MK, Akbay Hİ. The Status of Antioxidants and Oxidative Damage in Patients with COVID-19. Ahi Evran Med J. 2023;7:114–123.
MLA Binici, İrfan et al. “The Status of Antioxidants and Oxidative Damage in Patients With COVID-19”. Ahi Evran Medical Journal, vol. 7, no. 1, 2023, pp. 114-23, doi:10.46332/aemj.1152479.
Vancouver Binici İ, Alp HH, Huyut Z, Gürbüz E, Günbatar H, Akmeşe Ş, Karahocagil MK, Akbay Hİ. The Status of Antioxidants and Oxidative Damage in Patients with COVID-19. Ahi Evran Med J. 2023;7(1):114-23.

Ahi Evran Medical Journal  is indexed in ULAKBIM TR Index, Turkish Medline, DOAJ, Index Copernicus, EBSCO and Turkey Citation Index. Ahi Evran Medical Journal is periodical scientific publication. Can not be cited without reference. Responsibility of the articles belong to the authors.

    Creative Commons Lisansı

This journal is licensed under the Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı.