Research Article
BibTex RIS Cite

COVID-19 Durumuna Göre Hemodiyaliz Erişim Sorunu Riskinin Değerlendirilmesi

Year 2023, Volume: 7 Issue: 3, 269 - 274, 20.12.2023
https://doi.org/10.46332/aemj.1231208

Abstract

Amaç: COVID-19 nedeniyle yoğun bakıma kabul edilen hastalarda %30'a varan oranda trombotik komplikasyonlar bildirilmiştir. Bununla birlikte, COVID-19'lu kişilerde hemodiyaliz erişim sorununa ilişkin veriler sınırlıdır. Bu çalışma, özellikle COVID-19 durumu açısından hemodiyaliz erişim sorunu sıklığını ve belirleyicilerini araştırmayı amaçlamıştır.

Araçlar ve yöntem: Bu çok merkezli kesitsel çalışma, kalıcı hemodiyalize giren kişiler arasında yürütüldü. Hastalar erişim sorunu olan ve olmayanlar olarak iki gruba ayrıldı. Çalışmanın birincil sonuç ölçütleri, iki grup arasındaki hasta özellikleri, laboratuvar ölçümleri ve COVID-19 pozitifliğindeki farklılıklardı. İkincil sonuç ölçüsü, hemodiyaliz erişim başarısızlığı ile bağımsız olarak ilişkili faktörlerin tanımlanması olarak tanımlandı.

Bulgular: 26 (%12.2) hastada hemodiyaliz erişim sorunu oluştu. Tip 2 diyabet (%76.9'a [n=20] karşı %50 [n=93], p=0.018), diyaliz sırasında hipotansiyon (%88.5'e [n=23] karşı %58.1 [n=108], p=0.006) ve COVID-19 pozitifliği (%73.1’e [n=19] karşı %15,1 [n=28], p<0.001) erişim sorunu olan hastalarda anlamlı olarak daha sıktı. Çok değişkenli lojistik regresyon, bu faktörlerin üçünün de bağımsız olarak daha yüksek hemodiyaliz erişimi başarısızlığı olasılığı ile ilişkili olduğunu gösterdi.

Sonuç: Hemodiyaliz erişim sorunu, COVID-19'lu kişilerde COVID-19 olmayanlara göre daha sık görülmektedir.

References

  • 1. Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The lancet. 2020;395(10225):709-733.
  • 2. Cabrera VJ, Hansson J, Kliger AS, Finkelstein FO. Symptom management of the patient with CKD: the role of dialysis. Clin J Am Soc Nephrol. 2017;12(4):687-693.
  • 3. Hakim RM, Himmelfarb J. Hemodialysis access failure: a call to action-revisited. Kidney Int. 2009;76(10):1040-1048.
  • 4. Koirala N, Anvari E, McLennan G. Monitoring and surveillance of hemodialysis access. Semin. Interv. Radiol. 2016;33(1):25-30.
  • 5. Allon M, Bailey R, Ballard R, et al. A multidisciplinary approach to hemodialysis access: prospective evaluation. Kidney Int. 1998;53(2):473-479.
  • 6. Quencer KB, Friedman T. Declotting the thrombosed access. Tech Vasc Interv Radiol. 2017; 20(1):38-47.
  • 7. AlSamman M, Caggiula A, Ganguli S, Misak M, Pourmand A. Non-respiratory presentations of COVID-19, a clinical review. Am J Emerg Med. 2020;38(11):2444-2454.
  • 8. Silistre ES, Hatipoglu HU, Yesilbas O, Gurbuz FS, Ozturk E, Yalcinkaya A. Investigating the psychological impact of COVID-19 on healthcare workers in the intensive care unit. J Surg Med. 2022;6(1):29-35.
  • 9. Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020;26(7):1017-1032.
  • 10. Terpos E, Ntanasis‐Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID‐19. Am J Hematol. 2020;95(7):834-847.
  • 11. Sulowicz W, Radziszewski A. Pathogenesis and treatment of dialysis hypotension. Kidney Int. 2006;70:36-39.
  • 12. Wang K, Wang P, Liang X, Lu X, Liu Z. Epidemiology of haemodialysis catheter complications: a survey of 865 dialysis patients from 14 haemodialysis centres in Henan province in China. BMJ Open. 2015;5(11):e007136.
  • 13. Yan Y, Ye D, Yang L, et al. A meta-analysis of the association between diabetic patients and AVF failure in dialysis. Renal Failure. 2018;40(1):379-383.
  • 14. Colling ME, Tourdot BE, Kanthi Y. Inflammation, Infection and Venous Thromboembolism. Circ Res. 2021;128(12):2017-2036.
  • 15. Samadi A, Sabuncuoglu S, Samadi M, et al. A comprehensive review on oxysterols and related diseases. Curr Med Chem. 2021;28(1):110-136.
  • 16. Klok F, Kruip M, Van der Meer N, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-147.
  • 17. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847.
  • 18. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-1099.
  • 19. Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021;76(4):412-420.
  • 20. Yalcinkaya A, Samadi A, Lay I, Unal S, Sabuncuoglu S, Oztas Y. Oxysterol concentrations are associated with cholesterol concentrations and anemia in pediatric patients with sickle cell disease. Scand J Clin Lab Invest. 2019;79(6):381-387.
  • 21. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-128.
  • 22. Gale AJ. Continuing education course# 2: current understanding of hemostasis. Toxicol Pathol. 2011;39(1):273-280.
  • 23. Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID‐19. J Thromb Haemost. 2020;18(7):1548-1555.
  • 24. Merkler AE, Parikh NS, Mir S, et al. Risk of Ischemic Stroke in Patients with coronavirus disease 2019 (COVID-19) versus Patients with Influenza. JAMA Neurol. 2020;77(11):13661372.
  • 25. Solomon MD, McNulty EJ, Rana JS, et al. The Covid-19 pandemic and the incidence of acute myocardial infarction. N Engl J Med. 2020;383 (7):691-693.
  • 26. Porfidia A, Pola R. Venous thromboembolism in COVID‐19 patients. J Thromb Haemost. 2020;18(6):1516-1517.
  • 27. Mestres G, Puigmacià R, Blanco C, Yugueros X, Esturrica M, Riambau V. Risk of peripheral arterial thrombosis in COVID-19. J Vasc Surg. 2020;72(2):756-757.
  • 28. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020;173(5):350-361.
  • 29. Cho MS, Javed Z, Patel R, et al. Impact of COVID-19 pandemic on hemodialysis access thrombosis. J Vasc Access. 2022: 11297298221 116236.
  • 30. Ouyang J, Bajracharya S, John S, et al. Clotting of Hemodialysis Access in Patients with COVID-19 in an Inner-City Hospital. Nephron. 2022;146(2):179-184.

Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status

Year 2023, Volume: 7 Issue: 3, 269 - 274, 20.12.2023
https://doi.org/10.46332/aemj.1231208

Abstract

Purpose: Thrombotic complications have been reported in up to 30% of patients admitted to the intensive care unit for COVID-19. However, data on hemodialysis access failure in patients with COVID-19 are limited. This study aimed to investigate the frequency of hemodialysis access failure and its determinants, especially with respect to COVID-19 status.

Materials and Methods: This multi-center cross-sectional study was conducted among subjects undergoing permanent hemodialysis. Patients were divided into two groups, those with and without access failure. The primary outcome measures of the study were differences in patient characteristics, laboratory measurements and COVID-19 positivity between the two groups. The secondary outcome measure was defined as the identification of factors independently associated with hemodialysis access failure.

Results: Hemodialysis access failure occurred in 26 (12.2%) patients. Type 2 diabetes (76.9% [n=20] vs. 50% [n=93], p=0.018), hypotension during dialysis (88.5 [n=23] vs. 58.1% [n=108], p=0.006) and COVID-19 positivity (73.1% [n=19] vs. 15.1% [n=28], p<0.001) were significantly more frequent among patients with access failure. Multivariable logistic regression showed that all three factors were independently associated with a higher likelihood of hemodialysis access failure.

Conclusion: Hemodialysis access failure is encountered more frequently in patients with COVID-19 compared to those without COVID-19.

References

  • 1. Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The lancet. 2020;395(10225):709-733.
  • 2. Cabrera VJ, Hansson J, Kliger AS, Finkelstein FO. Symptom management of the patient with CKD: the role of dialysis. Clin J Am Soc Nephrol. 2017;12(4):687-693.
  • 3. Hakim RM, Himmelfarb J. Hemodialysis access failure: a call to action-revisited. Kidney Int. 2009;76(10):1040-1048.
  • 4. Koirala N, Anvari E, McLennan G. Monitoring and surveillance of hemodialysis access. Semin. Interv. Radiol. 2016;33(1):25-30.
  • 5. Allon M, Bailey R, Ballard R, et al. A multidisciplinary approach to hemodialysis access: prospective evaluation. Kidney Int. 1998;53(2):473-479.
  • 6. Quencer KB, Friedman T. Declotting the thrombosed access. Tech Vasc Interv Radiol. 2017; 20(1):38-47.
  • 7. AlSamman M, Caggiula A, Ganguli S, Misak M, Pourmand A. Non-respiratory presentations of COVID-19, a clinical review. Am J Emerg Med. 2020;38(11):2444-2454.
  • 8. Silistre ES, Hatipoglu HU, Yesilbas O, Gurbuz FS, Ozturk E, Yalcinkaya A. Investigating the psychological impact of COVID-19 on healthcare workers in the intensive care unit. J Surg Med. 2022;6(1):29-35.
  • 9. Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020;26(7):1017-1032.
  • 10. Terpos E, Ntanasis‐Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID‐19. Am J Hematol. 2020;95(7):834-847.
  • 11. Sulowicz W, Radziszewski A. Pathogenesis and treatment of dialysis hypotension. Kidney Int. 2006;70:36-39.
  • 12. Wang K, Wang P, Liang X, Lu X, Liu Z. Epidemiology of haemodialysis catheter complications: a survey of 865 dialysis patients from 14 haemodialysis centres in Henan province in China. BMJ Open. 2015;5(11):e007136.
  • 13. Yan Y, Ye D, Yang L, et al. A meta-analysis of the association between diabetic patients and AVF failure in dialysis. Renal Failure. 2018;40(1):379-383.
  • 14. Colling ME, Tourdot BE, Kanthi Y. Inflammation, Infection and Venous Thromboembolism. Circ Res. 2021;128(12):2017-2036.
  • 15. Samadi A, Sabuncuoglu S, Samadi M, et al. A comprehensive review on oxysterols and related diseases. Curr Med Chem. 2021;28(1):110-136.
  • 16. Klok F, Kruip M, Van der Meer N, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-147.
  • 17. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847.
  • 18. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-1099.
  • 19. Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021;76(4):412-420.
  • 20. Yalcinkaya A, Samadi A, Lay I, Unal S, Sabuncuoglu S, Oztas Y. Oxysterol concentrations are associated with cholesterol concentrations and anemia in pediatric patients with sickle cell disease. Scand J Clin Lab Invest. 2019;79(6):381-387.
  • 21. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-128.
  • 22. Gale AJ. Continuing education course# 2: current understanding of hemostasis. Toxicol Pathol. 2011;39(1):273-280.
  • 23. Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID‐19. J Thromb Haemost. 2020;18(7):1548-1555.
  • 24. Merkler AE, Parikh NS, Mir S, et al. Risk of Ischemic Stroke in Patients with coronavirus disease 2019 (COVID-19) versus Patients with Influenza. JAMA Neurol. 2020;77(11):13661372.
  • 25. Solomon MD, McNulty EJ, Rana JS, et al. The Covid-19 pandemic and the incidence of acute myocardial infarction. N Engl J Med. 2020;383 (7):691-693.
  • 26. Porfidia A, Pola R. Venous thromboembolism in COVID‐19 patients. J Thromb Haemost. 2020;18(6):1516-1517.
  • 27. Mestres G, Puigmacià R, Blanco C, Yugueros X, Esturrica M, Riambau V. Risk of peripheral arterial thrombosis in COVID-19. J Vasc Surg. 2020;72(2):756-757.
  • 28. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020;173(5):350-361.
  • 29. Cho MS, Javed Z, Patel R, et al. Impact of COVID-19 pandemic on hemodialysis access thrombosis. J Vasc Access. 2022: 11297298221 116236.
  • 30. Ouyang J, Bajracharya S, John S, et al. Clotting of Hemodialysis Access in Patients with COVID-19 in an Inner-City Hospital. Nephron. 2022;146(2):179-184.
There are 30 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Articles
Authors

Ali Bulut 0000-0002-3804-1559

Aydın Güçlü 0000-0002-7853-2141

Bekir Bulut 0000-0002-4844-4204

Early Pub Date October 11, 2023
Publication Date December 20, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

APA Bulut, A., Güçlü, A., & Bulut, B. (2023). Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status. Ahi Evran Medical Journal, 7(3), 269-274. https://doi.org/10.46332/aemj.1231208
AMA Bulut A, Güçlü A, Bulut B. Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status. Ahi Evran Med J. December 2023;7(3):269-274. doi:10.46332/aemj.1231208
Chicago Bulut, Ali, Aydın Güçlü, and Bekir Bulut. “Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status”. Ahi Evran Medical Journal 7, no. 3 (December 2023): 269-74. https://doi.org/10.46332/aemj.1231208.
EndNote Bulut A, Güçlü A, Bulut B (December 1, 2023) Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status. Ahi Evran Medical Journal 7 3 269–274.
IEEE A. Bulut, A. Güçlü, and B. Bulut, “Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status”, Ahi Evran Med J, vol. 7, no. 3, pp. 269–274, 2023, doi: 10.46332/aemj.1231208.
ISNAD Bulut, Ali et al. “Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status”. Ahi Evran Medical Journal 7/3 (December 2023), 269-274. https://doi.org/10.46332/aemj.1231208.
JAMA Bulut A, Güçlü A, Bulut B. Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status. Ahi Evran Med J. 2023;7:269–274.
MLA Bulut, Ali et al. “Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status”. Ahi Evran Medical Journal, vol. 7, no. 3, 2023, pp. 269-74, doi:10.46332/aemj.1231208.
Vancouver Bulut A, Güçlü A, Bulut B. Assessing Hemodialysis Access Failure Risk in Subjects Based on COVID-19 Status. Ahi Evran Med J. 2023;7(3):269-74.

Ahi Evran Medical Journal  is indexed in ULAKBIM TR Index, Turkish Medline, DOAJ, Index Copernicus, EBSCO and Turkey Citation Index. Ahi Evran Medical Journal is periodical scientific publication. Can not be cited without reference. Responsibility of the articles belong to the authors.

    Creative Commons Lisansı

This journal is licensed under the Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı.