Review
BibTex RIS Cite

Microbial Biosurfactants: Properties, Types, and Production

Year 2021, Volume: 2 Issue: 2, 7 - 12, 31.12.2021

Abstract

Surfactants are surface active agents that reduce the surface tension between immiscible phases. They are amphiphilic molecules which can be produced by chemical and biological methods. Compared with chemical surfactants with the same functionality, biosurfactants have advantages such as being able to operate under extreme temperature, pH and salinity conditions, being non-toxic or very low toxic and biodegradable. In addition, since they are of biological origin, they can be produced from renewable substrates and structurally modified by genetic engineering and biochemical methods, and they can reach different markets with innovative formulations. Recently, interest in biological surfactants has increased considerably. With their unique physicochemical properties and various biological activities, they have application areas in detergent, cosmetics, medicine, food, bioremediation and agriculture sectors. However, despite the huge market demand, the production of biosurfactants is not as competitive as their synthetic counterparts. In order to improve biosurfactant production, different parameters should be considered. In this review, the types of biosurfactants and the factors affecting microbial biosurfactant production are discussed.

Supporting Institution

Atatürk University

References

  • [1] I. M. Banat, A. Franzetti, I. Gandolfi, G. Bestetti, M. G. Martinotti, L. Fracchia, T.J. Smyth, R. Marchant, "Microbial biosurfactants production, applications and future potential", Appl. Microbiol. Biotechnol., vol. 87, no. 2, pp. 427–444, Jun. 2010.
  • [2] Z. Velioğlu and R. Öztürk Ürek, "Biosurfactant production by Pleurotus ostreatus in submerged and solid-state fermentation systems", Turkish J. Biol., vol. 39, pp. 160–166, 2015.
  • [3] M. Günther, S. Zibek, and S. Rupp, "Fungal Glycolipids as Biosurfactants", Curr. Biotechnol., vol. 6, no. 3, Jul. 2017.
  • [4] R. Jahan, A. M. Bodratti, M. Tsianou, and P. Alexandridis, "Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications", Adv. Colloid Interface Sci., vol. 275, p. 102061, Jan. 2020.
  • [5] C. E. Drakontis and S. Amin, "Biosurfactants: Formulations, properties, and applications", Curr. Opin. Colloid Interface Sci., vol. 48, pp. 77–90, Aug. 2020.
  • [6] K. Liu, Y. Sun, M. Cao, J. Wang, J. R. Lu, and H. Xu, "Rational design, properties, and applications of biosurfactants: a short review of recent advances", Curr. Opin. Colloid Interface Sci., vol. 45, pp. 57–67, Feb. 2020.
  • [7] J. M. Campos, T. L. Montenegro Stamford, L. A. Sarubbo, J. M. de Luna, R. D. Rufino, and I. M. Banat, "Microbial biosurfactants as additives for food industries", Biotechnol. Prog., vol. 29, no. 5, pp. 1097–1108, Sep. 2013.
  • [8] I. Mnif and D. Ghribi, "Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry", J. Sci. Food Agric., vol. 96, no. 13, pp. 4310–4320, Oct. 2016.
  • [9] M. Bouassida, N. Fourati, I. Ghazala, S. Ellouze-Chaabouni, and D. Ghribi, "Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: Compatibility study with detergent ingredients and washing performance", Eng. Life Sci., vol. 18, no. 1, pp. 70–77, Jan. 2018.
  • [10] T. Janek, Ż. Czyżnikowska, M. Łukaszewicz, and J. Gałęzowska, "The effect of Pseudomonas fluorescens biosurfactant pseudofactin II on the conformational changes of bovine serum albumin: Pharmaceutical and biomedical applications", J. Mol. Liq., vol. 288, p. 111001, Aug. 2019.
  • [11] M. A. Nasiri and D. Biria, "Extraction of the indigenous crude oil dissolved biosurfactants and their potential in enhanced oil recovery", Colloids Surf. A: Physicochem. Eng. Asp., vol. 603, p. 125216, Oct. 2020.
  • [12] D. P. Sachdev and S. S. Cameotra, "Biosurfactants in agriculture", Appl. Microbiol. Biotechnol., vol. 97, no. 3, pp. 1005–1016, Feb. 2013.
  • [13] L. R. Rodrigues and J. A. Teixeira, "Biomedical and therapeutic applications of biosurfactants", in: Biosurfactants. R. Sen, Eds. New York, NY, Springer, 2010, pp. 75–87.
  • [14] S. H. Wang, T. W. H. Tang, E. Wu, D. W. Wang, C. F. Wang, and Y. D. Liao, "Inhibition of bacterial adherence to biomaterials by coating antimicrobial peptides with anionic surfactant", Colloids Surf. B Biointerfaces, vol. 196, p. 111364, Dec. 2020.
  • [15] C. Xu, H. Wang, D. Wang, Y. Zhu, X. Zhu, and H. Yu, "Study on the mechanism of polyethylene oxide groups improving the foamability of anionic surfactants in hard water", Colloids Surf. A: Physicochem. Eng. Asp., vol. 613, p. 126046, Mar. 2021.
  • [16] D. L. Fredell, "Biological properties and applications of cationic surfactants." CRC Press, 1994.
  • [17] E. Rosenberg and E. Z. Ron, "High- and low-molecular-mass microbial surfactants", Appl. Microbiol. Biotechnol., vol. 52, no. 2, pp. 154–162, Aug. 1999.
  • [18] K. S. M. Rahman, T. J. Rahman, S. McClean, R. Marchant, and I. M. Banat, "Rhamnolipid Biosurfactant Production by Strains of Pseudomonas aeruginosa Using Low-Cost Raw Materials", Biotechnol. Prog., vol. 18, no. 6, pp. 1277–1281, Dec. 2002.
  • [19] M. Benincasa, A. Abalos, I. Oliveira, and A. Manresa, "Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock", Antonie Leeuwenhoek, vol. 85, no. 1, pp. 1–8, Jan. 2004.
  • [20] S. Bages-Estopa, D. A. White, J. B. Winterburn, C. Webb, and P. J. Martin, "Production and separation of a trehalolipid biosurfactant", Biochem. Eng. J., vol. 139, pp. 85–94, Nov. 2018.
  • [21] M. Paściak, P. Sanchez-Carballo, A. Duda-Madej, B. Lindner, A. Gamian, and O. Holst, "Structural characterization of the major glycolipids from Arthrobacter globiformis and Arthrobacter scleromae", Carbohydr. Res., vol. 345, no. 10, pp. 1497–1503, Jul. 2010.
  • [22] H.-J. Asmer, S. Lang, F. Wagner, and V. Wray, "Microbial production, structure elucidation and bioconversion of sophorose lipids", J. Am. Oil Chem. Soc., vol. 65, pp. 1460–1466, Sep. 1988.
  • [23] V. K. Gaur, R. k. Regar, N. Dhiman, K. Gautam, J. K. Srivastava, S. Patnaik, M. Kamthan, N. Manickam, "Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: Application as food emulsifier and antibacterial agent", Bioresour. Technol., vol. 285, p. 121314, Aug. 2019.
  • [24] C. Carrillo, J. A. Teruel, F. J. Aranda, and A. Ortiz, "Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin", Biochim. Biophys. Acta - Biomembr., vol. 1611, no. 1–2, pp. 91–97, Apr. 2003.
  • [25] J. R. Mireles, A. Toguchi, and R. M. Harshey, "Salmonella enterica Serovar Typhimurium Swarming Mutants with Altered Biofilm-Forming Abilities: Surfactin Inhibits Biofilm Formation", J. Bacteriol., vol. 183, no. 20, pp. 5848–5854, Oct. 2001.
  • [26] H. J. Rehm, and I. Reiff, "Mechanisms and occurence of microbial oxidation of long-chain alkanes" Adv. Biochem. Eng., vol. 19, pp. 175-215, 1981.
  • [27] D. J. McClements and C. E. Gumus, "Natural emulsifiers — Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance", Adv. Colloid Interface Sci., vol. 234, pp. 3–26, Aug. 2016.
  • [28] D. R. Cameron, D. G. Cooper, and R. J. Neufeld, "The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier", Appl. Environ. Microbiol., vol. 54, no. 6, pp. 1420–1425, Jun. 1988.
  • [29] E. Rosenberg, A. Zuckerberg, C. Rubinovitz, and D. L. Gutnick, "Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties", Appl. Environ. Microbiol., vol. 37, pp. 402–408, Mar. 1979.
  • [30] S. Gurkok, "Important parameters necessary in the bioreactor for the mass production of biosurfactants", in Green Sustainable Process for Chemical and Environmental Engineering and Science, Elsevier, pp. 347–365, 2021.
  • [31] F. Hua and H. Wang, "Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant", J. Appl. Microbiol., vol. 112, no. 1, pp. 25–37, Jan. 2012.
  • [32] S. J. Varjani and V. N. Upasani, "Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant", Bioresour. Technol., vol. 232, pp. 389–397, May 2017.
  • [33] A. Nurfarahin, M. Mohamed, and L. Phang, "Culture Medium Development for Microbial-Derived Surfactants Production—An Overview", Molecules, vol. 23, p. 1049, May 2018.
  • [34] M. Ozdal, S. Gurkok, and O. G. Ozdal, "Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone", 3 Biotech, vol. 7, p. 117, Jun. 2017.
  • [35] Á. Domínguez Rivera, M. Á. Martínez Urbina, and V. E. López y López, "Advances on research in the use of agro-industrial waste in biosurfactant production", World J. Microbiol. Biotechnol., vol. 35, p. 155, Oct. 2019.
  • [36] D. Santos, R. Rufino, J. Luna, V. Santos, and L. Sarubbo, "Biosurfactants: Multifunctional Biomolecules of the 21st Century", Int. J. Mol. Sci., vol. 17, no. 3, p. 401, Mar. 2016.
  • [37] C. N. Mulligan and B. F. Gibbs, "Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa", Appl. Environ. Microbiol., vol. 55, no. 11, pp. 3016–3019, Nov. 1989.
  • [38] J.-Y. Wu, K.-L. Yeh, W.-B. Lu, C.-L. Lin, and J.-S. Chang, "Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site", Bioresour. Technol., vol. 99, pp. 1157–1164, Mar. 2008.
  • [39] M. Özdal, S. Gürkök, Ö. G. Özdal, and E. B. Kurbanoğlu, "Rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and ram horn peptone", AIP Conf Proc., vol. 1833, pp. 020102, Apr. 2017.
  • [40] N. Ebadipour, T. B. Lotfabad, S. Yaghmaei, and R. RoostaAzad, "Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology", Prep. Biochem. Biotechnol., vol. 46, pp. 30–38, Jan. 2016.
  • [41] X. Huang, J. Liu, Y. Wang, J. Liu, and L. Lu, "The positive effects of Mn 2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332", Biotechnol. Biotechnol. Equip., vol. 29, no. 2, pp. 381–389, Mar. 2015.
  • [42] G. J. Pacheco, E. M. P. Ciapina, E. de B. Gomes, and N. Pereira Junior, "Biosurfactant production by Rhodococcus erythropolis and its application to oil removal", Brazilian J. Microbiol., vol. 41, no. 3, pp. 685–693, Oct. 2010.
  • [43] J. Zhou, R. Xue, S. Liu, N. Xu, F. Xin, W. Zhang, M. Jiang, W. Dong, "High Di-rhamnolipid Production Using Pseudomonas aeruginosa KT1115, Separation of Mono/Di-rhamnolipids, and Evaluation of Their Properties", Front. Bioeng. Biotechnol., vol. 7, Oct. 2019.
  • [44] R. Thavasi, S. Jayalakshmi, T. Balasubramanian, and I. M. Banat, "Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources", World J. Microbiol. Biotechnol., vol. 24, pp. 917–925, Jul. 2008.
  • [45] R. Thavasi, V. R. M. Subramanyam Nambaru, S. Jayalakshmi, T. Balasubramanian, and I. M. Banat, "Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources", Indian J. Microbiol., vol. 51, pp. 30–36, Jan. 2011.
  • [46] E. J. Gudina, E. C. Fernandes, A. I. Rodrigues, J. A. Teixeira, and L. R. Rodrigues, "Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium", Front. Microbiol., vol. 6, Feb. 2015.
  • [47] K. A. Peele, V. R. T. Ch., and V. P. Kodali, "Emulsifying activity of a biosurfactant produced by a marine bacterium", 3 Biotech, vol. 6, no. 2, p. 177, Dec. 2016.
  • [48] L. Zhu, X. Yang, C. Xue, Y. Chen, L. Qu, and W. Lu, "Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process", Bioresour. Technol., vol. 117, pp. 208–213, Aug. 2012.
  • [49] G. S. El-Housseiny, K. M. Aboshanab, M. M. Aboulwafa, and N. A. Hassouna, "Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation", AMB Express, vol. 9, no. 1, p. 7, Dec. 2019.
  • [50] T. A. A. Moussa, M. S. Mohamed, and N. Samak, "Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN", Brazilian J. Chem. Eng., vol. 31, no. 4, pp. 867–880, Dec. 2014.
Year 2021, Volume: 2 Issue: 2, 7 - 12, 31.12.2021

Abstract

References

  • [1] I. M. Banat, A. Franzetti, I. Gandolfi, G. Bestetti, M. G. Martinotti, L. Fracchia, T.J. Smyth, R. Marchant, "Microbial biosurfactants production, applications and future potential", Appl. Microbiol. Biotechnol., vol. 87, no. 2, pp. 427–444, Jun. 2010.
  • [2] Z. Velioğlu and R. Öztürk Ürek, "Biosurfactant production by Pleurotus ostreatus in submerged and solid-state fermentation systems", Turkish J. Biol., vol. 39, pp. 160–166, 2015.
  • [3] M. Günther, S. Zibek, and S. Rupp, "Fungal Glycolipids as Biosurfactants", Curr. Biotechnol., vol. 6, no. 3, Jul. 2017.
  • [4] R. Jahan, A. M. Bodratti, M. Tsianou, and P. Alexandridis, "Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications", Adv. Colloid Interface Sci., vol. 275, p. 102061, Jan. 2020.
  • [5] C. E. Drakontis and S. Amin, "Biosurfactants: Formulations, properties, and applications", Curr. Opin. Colloid Interface Sci., vol. 48, pp. 77–90, Aug. 2020.
  • [6] K. Liu, Y. Sun, M. Cao, J. Wang, J. R. Lu, and H. Xu, "Rational design, properties, and applications of biosurfactants: a short review of recent advances", Curr. Opin. Colloid Interface Sci., vol. 45, pp. 57–67, Feb. 2020.
  • [7] J. M. Campos, T. L. Montenegro Stamford, L. A. Sarubbo, J. M. de Luna, R. D. Rufino, and I. M. Banat, "Microbial biosurfactants as additives for food industries", Biotechnol. Prog., vol. 29, no. 5, pp. 1097–1108, Sep. 2013.
  • [8] I. Mnif and D. Ghribi, "Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry", J. Sci. Food Agric., vol. 96, no. 13, pp. 4310–4320, Oct. 2016.
  • [9] M. Bouassida, N. Fourati, I. Ghazala, S. Ellouze-Chaabouni, and D. Ghribi, "Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: Compatibility study with detergent ingredients and washing performance", Eng. Life Sci., vol. 18, no. 1, pp. 70–77, Jan. 2018.
  • [10] T. Janek, Ż. Czyżnikowska, M. Łukaszewicz, and J. Gałęzowska, "The effect of Pseudomonas fluorescens biosurfactant pseudofactin II on the conformational changes of bovine serum albumin: Pharmaceutical and biomedical applications", J. Mol. Liq., vol. 288, p. 111001, Aug. 2019.
  • [11] M. A. Nasiri and D. Biria, "Extraction of the indigenous crude oil dissolved biosurfactants and their potential in enhanced oil recovery", Colloids Surf. A: Physicochem. Eng. Asp., vol. 603, p. 125216, Oct. 2020.
  • [12] D. P. Sachdev and S. S. Cameotra, "Biosurfactants in agriculture", Appl. Microbiol. Biotechnol., vol. 97, no. 3, pp. 1005–1016, Feb. 2013.
  • [13] L. R. Rodrigues and J. A. Teixeira, "Biomedical and therapeutic applications of biosurfactants", in: Biosurfactants. R. Sen, Eds. New York, NY, Springer, 2010, pp. 75–87.
  • [14] S. H. Wang, T. W. H. Tang, E. Wu, D. W. Wang, C. F. Wang, and Y. D. Liao, "Inhibition of bacterial adherence to biomaterials by coating antimicrobial peptides with anionic surfactant", Colloids Surf. B Biointerfaces, vol. 196, p. 111364, Dec. 2020.
  • [15] C. Xu, H. Wang, D. Wang, Y. Zhu, X. Zhu, and H. Yu, "Study on the mechanism of polyethylene oxide groups improving the foamability of anionic surfactants in hard water", Colloids Surf. A: Physicochem. Eng. Asp., vol. 613, p. 126046, Mar. 2021.
  • [16] D. L. Fredell, "Biological properties and applications of cationic surfactants." CRC Press, 1994.
  • [17] E. Rosenberg and E. Z. Ron, "High- and low-molecular-mass microbial surfactants", Appl. Microbiol. Biotechnol., vol. 52, no. 2, pp. 154–162, Aug. 1999.
  • [18] K. S. M. Rahman, T. J. Rahman, S. McClean, R. Marchant, and I. M. Banat, "Rhamnolipid Biosurfactant Production by Strains of Pseudomonas aeruginosa Using Low-Cost Raw Materials", Biotechnol. Prog., vol. 18, no. 6, pp. 1277–1281, Dec. 2002.
  • [19] M. Benincasa, A. Abalos, I. Oliveira, and A. Manresa, "Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock", Antonie Leeuwenhoek, vol. 85, no. 1, pp. 1–8, Jan. 2004.
  • [20] S. Bages-Estopa, D. A. White, J. B. Winterburn, C. Webb, and P. J. Martin, "Production and separation of a trehalolipid biosurfactant", Biochem. Eng. J., vol. 139, pp. 85–94, Nov. 2018.
  • [21] M. Paściak, P. Sanchez-Carballo, A. Duda-Madej, B. Lindner, A. Gamian, and O. Holst, "Structural characterization of the major glycolipids from Arthrobacter globiformis and Arthrobacter scleromae", Carbohydr. Res., vol. 345, no. 10, pp. 1497–1503, Jul. 2010.
  • [22] H.-J. Asmer, S. Lang, F. Wagner, and V. Wray, "Microbial production, structure elucidation and bioconversion of sophorose lipids", J. Am. Oil Chem. Soc., vol. 65, pp. 1460–1466, Sep. 1988.
  • [23] V. K. Gaur, R. k. Regar, N. Dhiman, K. Gautam, J. K. Srivastava, S. Patnaik, M. Kamthan, N. Manickam, "Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: Application as food emulsifier and antibacterial agent", Bioresour. Technol., vol. 285, p. 121314, Aug. 2019.
  • [24] C. Carrillo, J. A. Teruel, F. J. Aranda, and A. Ortiz, "Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin", Biochim. Biophys. Acta - Biomembr., vol. 1611, no. 1–2, pp. 91–97, Apr. 2003.
  • [25] J. R. Mireles, A. Toguchi, and R. M. Harshey, "Salmonella enterica Serovar Typhimurium Swarming Mutants with Altered Biofilm-Forming Abilities: Surfactin Inhibits Biofilm Formation", J. Bacteriol., vol. 183, no. 20, pp. 5848–5854, Oct. 2001.
  • [26] H. J. Rehm, and I. Reiff, "Mechanisms and occurence of microbial oxidation of long-chain alkanes" Adv. Biochem. Eng., vol. 19, pp. 175-215, 1981.
  • [27] D. J. McClements and C. E. Gumus, "Natural emulsifiers — Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance", Adv. Colloid Interface Sci., vol. 234, pp. 3–26, Aug. 2016.
  • [28] D. R. Cameron, D. G. Cooper, and R. J. Neufeld, "The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier", Appl. Environ. Microbiol., vol. 54, no. 6, pp. 1420–1425, Jun. 1988.
  • [29] E. Rosenberg, A. Zuckerberg, C. Rubinovitz, and D. L. Gutnick, "Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties", Appl. Environ. Microbiol., vol. 37, pp. 402–408, Mar. 1979.
  • [30] S. Gurkok, "Important parameters necessary in the bioreactor for the mass production of biosurfactants", in Green Sustainable Process for Chemical and Environmental Engineering and Science, Elsevier, pp. 347–365, 2021.
  • [31] F. Hua and H. Wang, "Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant", J. Appl. Microbiol., vol. 112, no. 1, pp. 25–37, Jan. 2012.
  • [32] S. J. Varjani and V. N. Upasani, "Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant", Bioresour. Technol., vol. 232, pp. 389–397, May 2017.
  • [33] A. Nurfarahin, M. Mohamed, and L. Phang, "Culture Medium Development for Microbial-Derived Surfactants Production—An Overview", Molecules, vol. 23, p. 1049, May 2018.
  • [34] M. Ozdal, S. Gurkok, and O. G. Ozdal, "Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone", 3 Biotech, vol. 7, p. 117, Jun. 2017.
  • [35] Á. Domínguez Rivera, M. Á. Martínez Urbina, and V. E. López y López, "Advances on research in the use of agro-industrial waste in biosurfactant production", World J. Microbiol. Biotechnol., vol. 35, p. 155, Oct. 2019.
  • [36] D. Santos, R. Rufino, J. Luna, V. Santos, and L. Sarubbo, "Biosurfactants: Multifunctional Biomolecules of the 21st Century", Int. J. Mol. Sci., vol. 17, no. 3, p. 401, Mar. 2016.
  • [37] C. N. Mulligan and B. F. Gibbs, "Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa", Appl. Environ. Microbiol., vol. 55, no. 11, pp. 3016–3019, Nov. 1989.
  • [38] J.-Y. Wu, K.-L. Yeh, W.-B. Lu, C.-L. Lin, and J.-S. Chang, "Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site", Bioresour. Technol., vol. 99, pp. 1157–1164, Mar. 2008.
  • [39] M. Özdal, S. Gürkök, Ö. G. Özdal, and E. B. Kurbanoğlu, "Rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and ram horn peptone", AIP Conf Proc., vol. 1833, pp. 020102, Apr. 2017.
  • [40] N. Ebadipour, T. B. Lotfabad, S. Yaghmaei, and R. RoostaAzad, "Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology", Prep. Biochem. Biotechnol., vol. 46, pp. 30–38, Jan. 2016.
  • [41] X. Huang, J. Liu, Y. Wang, J. Liu, and L. Lu, "The positive effects of Mn 2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332", Biotechnol. Biotechnol. Equip., vol. 29, no. 2, pp. 381–389, Mar. 2015.
  • [42] G. J. Pacheco, E. M. P. Ciapina, E. de B. Gomes, and N. Pereira Junior, "Biosurfactant production by Rhodococcus erythropolis and its application to oil removal", Brazilian J. Microbiol., vol. 41, no. 3, pp. 685–693, Oct. 2010.
  • [43] J. Zhou, R. Xue, S. Liu, N. Xu, F. Xin, W. Zhang, M. Jiang, W. Dong, "High Di-rhamnolipid Production Using Pseudomonas aeruginosa KT1115, Separation of Mono/Di-rhamnolipids, and Evaluation of Their Properties", Front. Bioeng. Biotechnol., vol. 7, Oct. 2019.
  • [44] R. Thavasi, S. Jayalakshmi, T. Balasubramanian, and I. M. Banat, "Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources", World J. Microbiol. Biotechnol., vol. 24, pp. 917–925, Jul. 2008.
  • [45] R. Thavasi, V. R. M. Subramanyam Nambaru, S. Jayalakshmi, T. Balasubramanian, and I. M. Banat, "Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources", Indian J. Microbiol., vol. 51, pp. 30–36, Jan. 2011.
  • [46] E. J. Gudina, E. C. Fernandes, A. I. Rodrigues, J. A. Teixeira, and L. R. Rodrigues, "Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium", Front. Microbiol., vol. 6, Feb. 2015.
  • [47] K. A. Peele, V. R. T. Ch., and V. P. Kodali, "Emulsifying activity of a biosurfactant produced by a marine bacterium", 3 Biotech, vol. 6, no. 2, p. 177, Dec. 2016.
  • [48] L. Zhu, X. Yang, C. Xue, Y. Chen, L. Qu, and W. Lu, "Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process", Bioresour. Technol., vol. 117, pp. 208–213, Aug. 2012.
  • [49] G. S. El-Housseiny, K. M. Aboshanab, M. M. Aboulwafa, and N. A. Hassouna, "Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation", AMB Express, vol. 9, no. 1, p. 7, Dec. 2019.
  • [50] T. A. A. Moussa, M. S. Mohamed, and N. Samak, "Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN", Brazilian J. Chem. Eng., vol. 31, no. 4, pp. 867–880, Dec. 2014.
There are 50 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Reviews
Authors

Sümeyra Gürkök 0000-0002-2707-4371

Murat Özdal 0000-0001-8800-1128

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

EndNote Gürkök S, Özdal M (December 1, 2021) Microbial Biosurfactants: Properties, Types, and Production. Anatolian Journal of Biology 2 2 7–12.