Review Article
BibTex RIS Cite

Role of macrophages during skin wound healing in terms of angiogenesis

Year 2022, Volume: 3 Issue: 2, 7 - 10, 31.12.2022

Abstract

Angiogenesis is the establishment of new vessels from previous ones in a developing or healing tissue for oxygen and nutrient supply and also removal of metabolic wastes. In order to develop a proper vasculature so many factors such as cells, growth factors, cytokines, enzymes have to function properly. One of the key factors in this process is macrophages which are involved in inflammation as well as angiogenesis. The disturbances of switching from that inflammatory to angiogenic character so called macrophage polarization may cause some abnormalities of healing and angiogenesis.

Supporting Institution

There is no supporting institution

References

  • A. Basu, S. Munir, M. A. Mulaw, K. Singh, D. Crisan, et al., “A Novel S100A8/A9 Induced Fingerprint of Mesenchymal Stem Cells associated with Enhanced Wound Healing”, Scientific Reports, Vol. ED-1, 6205, April, 2018.
  • S. Das, A. B. Baker, “Biomaterials and Nanotherapeutics for enhancing Skin wound Healing”, Frontiers In Bioengineering and Biotechnology, Vol. ED-4, 82, Oct, 2016.
  • A. P. Veith, K. Henderson, A. Spencer, A. D. Sligar, A. B. Baker. “Therapeutic strategies for enhancing angiogenesis in wound healing”, Advanced Drug Delivery Reviews, Vol. ED-146, pp. 97–125, Jun, 2019.
  • Z. Azari, S. Nazarnezhad, T. J. Webster, S. J. Hoseini, P. B. Milan, et al., “Stem cell-mediated angiogenesis in skin tissue engineering and wound healing”, Wound Repair Regen., Vol. ED-4, pp. 421-435, Jul, 2022.
  • P. Carmeliet and R. K. Jain. “Molecular mechanisms and clinical applications of angiogenesis”, Nature, Vol.ED-7347, pp. 298-307, May, 2011.
  • G. Pintucci, S. Froum, J. Pinnell, P. Mignatti, S. Rafii, D. Green,”Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF)”, Thromb Haemost., Vol. ED-5, pp. 834-842, Nov, 2002.
  • S. Yoshida, A. Yoshida, H. Matsui, Y. Takada, T. Ishibashi, “Involvement of macrophage chemotactic protein-1 and interleukin-1β during inflammatory but not basic fibroblast growth factor–dependent neovascularization in the mouse cornea”, Lab Invest., Vol. ED-7, pp. 927-938, Jul, 2003.
  • M. M. Alvarez, J.C. Liu, G. T. de Santiago, B. H. Cha, A. Vishwakarma., et al., “Delivery strategies to control inflammatory response: modulating M1-M2 polarization in tissue engineering applications”, J Control Release., Vol. ED-240, pp. 349–363, Oct, 2016.
  • K. L. Spiller, R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, et al., “The role of macrophage phenotype in vascularization of tissue engineering scaffolds”, Biomaterials, Vol. ED-15, pp. 4477–4488, May, 2014.
  • S. Nassiri, I. Zakeri, M. S. Weingarten, “Relative expression of proinflammatory and antiinflammatory genes reveals differences between healing and nonhealing human chronic diabetic foot ulcers”, J. Invest. Dermatol, Vol. ED-6, pp. 1700–1703, Jun, 2015.
  • A. Kimball, M. Schaller, A. Joshi, F. M. Davis, A. denDekker, et al., “Ly6C(Hi)blood monocyte/macrophage drive chronic inflammation and impair woundchealing in diabetes mellitus”, Arterioscler. Thromb. Vasc. Biol, Vol. ED-5, pp. 1102–1114, May, 2018.
  • Z. E. Clayton, R. P. Tan, M. M. Miravet, K. Lennartsson, J. P. Cooke, et al., “Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model”, Biosci Rep., Vol. ED-4, BSR20180563, Jul, 2018.
  • S. Ghodrat, S. J. Hoseini, S. Asadpour, S. Nazarnezhad, F. A. Eghtedar, et al., “Stem cell-based therapies for cardiac diseases: the critical role of angiogenic exosomes”, Biofactors, Vol. ED-3, pp. 270-291, May, 2021.
  • J. Zeng, X. Chen, J. Zhang, Y. Qin, K. Zhang, X. Li, et al., “Stem cell spheroids production for wound healing with a reversible porous hydrogel”, Materials Today Advances, Vol. ED-15, 100269, August, 2022.
  • S. Araujo, M. F. Sganzella, R. N. Sagiorato, M. N. Leite, G. F. Caetano, et al., “Human adipose-derived stem cells in fibrin glue carrier modulate wound healing phases in rats”, Current Research in Biotechnology, Vol. ED- 4, pp. 503–513, 2022.
  • J. Li, C. Wei, Y. Yang, Z. Gao, Z. Guo, et al., “Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21–5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6”, Burns., Vol. ED-8, pp. 1893–1908, Dec, .2022.
  • H. D. Zomer, T. dS. Jeremias, B. Ratner, A. G. Trentin. “Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing” Cytotherapy., Vol. ED-5, pp. 247-260, May, 2020.
  • J. Tang, H. Li, H. Peng, Z. Zhang, C. Liu, et al., “Pre-clinical evaluation of thermosensitive decellularized adipose tissue/ platelet-rich plasma interpenetrating polymer network hydrogel for wound healing”, Mater Today Bio, Vol. ED-17, pp. 100498, Nov, 2022.
  • X. Zeng, B. Chen, L. Wang, Y. Sun, Z. Jin, et al., “Chitosan@Puerarin hydrogel for accelerated wound healing in diabetic subjects by miR-29ab1 mediated inflammatory axis suppression”, Bioact Mater., Vol. ED-19, pp.653–665, May, 2023.
  • L. Chen, Z. Li, Y. Zheng, F. Zhou, J. Zhao, et al., “3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization”. Bioact Mater., Vol. Ed-10, pp. 236–246, Sep, 2022.
  • L. Yan, K. Han, B. Pang, H. Jin, X. Zhao, et al., “Surfactin-reinforced gelatin methacrylate hydrogel accelerates diabetic wound healing by regulating the macrophage polarization and promoting angiogenesis”, Chemical Engineering Journal, Vol. ED-414, pp. 128836, June, 2021.
  • J. Wu, A. Chen, Y. Zhou, S. Zheng, Y. Yang, et al., “Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages”, Biomaterials. Vol. ED-222, pp. 119398, Nov, 2019.
  • R. Toita, E. Shimizu, M. Murata, J-H. Kang. Protective and healing effects of apoptotic mimic-induced M2-like macrophage polarization on pressure ulcers in young and middle-aged mice. J Control Release, Vol. ED-330, pp.705-714, Feb, 2021.
  • S. Das, M. Majid, A. B. Baker. “Syndecan-4 enhances PDGF-BB activity in diabetic wound healing”, Acta Biomater, Vol. ED-42, pp. 56-65, Sep, 2016.
  • S. Bajpai, M. Mishra, H. Kumar, K. Tripathi, S. K. Singh, et al., “Effect of Selenium on Connexin Expression, Angiogenesis, and Antioxidant Status in Diabetic Wound Healing”, Biol Trace Elem Res”, Vol. ED-1:3, pp. 327-338, Dec, 2011.
  • L. Li, Y. Yang, Z. Yang, M. Zheng, G. Luo, et al., “Effects of ALA-PDT on the macrophages in wound healing and its related mechanisms in vivo and in vitro”, Photodiagnosis Photodyn Ther., Vol. ED-38, pp. 102816, Jun, 2022.
Year 2022, Volume: 3 Issue: 2, 7 - 10, 31.12.2022

Abstract

References

  • A. Basu, S. Munir, M. A. Mulaw, K. Singh, D. Crisan, et al., “A Novel S100A8/A9 Induced Fingerprint of Mesenchymal Stem Cells associated with Enhanced Wound Healing”, Scientific Reports, Vol. ED-1, 6205, April, 2018.
  • S. Das, A. B. Baker, “Biomaterials and Nanotherapeutics for enhancing Skin wound Healing”, Frontiers In Bioengineering and Biotechnology, Vol. ED-4, 82, Oct, 2016.
  • A. P. Veith, K. Henderson, A. Spencer, A. D. Sligar, A. B. Baker. “Therapeutic strategies for enhancing angiogenesis in wound healing”, Advanced Drug Delivery Reviews, Vol. ED-146, pp. 97–125, Jun, 2019.
  • Z. Azari, S. Nazarnezhad, T. J. Webster, S. J. Hoseini, P. B. Milan, et al., “Stem cell-mediated angiogenesis in skin tissue engineering and wound healing”, Wound Repair Regen., Vol. ED-4, pp. 421-435, Jul, 2022.
  • P. Carmeliet and R. K. Jain. “Molecular mechanisms and clinical applications of angiogenesis”, Nature, Vol.ED-7347, pp. 298-307, May, 2011.
  • G. Pintucci, S. Froum, J. Pinnell, P. Mignatti, S. Rafii, D. Green,”Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF)”, Thromb Haemost., Vol. ED-5, pp. 834-842, Nov, 2002.
  • S. Yoshida, A. Yoshida, H. Matsui, Y. Takada, T. Ishibashi, “Involvement of macrophage chemotactic protein-1 and interleukin-1β during inflammatory but not basic fibroblast growth factor–dependent neovascularization in the mouse cornea”, Lab Invest., Vol. ED-7, pp. 927-938, Jul, 2003.
  • M. M. Alvarez, J.C. Liu, G. T. de Santiago, B. H. Cha, A. Vishwakarma., et al., “Delivery strategies to control inflammatory response: modulating M1-M2 polarization in tissue engineering applications”, J Control Release., Vol. ED-240, pp. 349–363, Oct, 2016.
  • K. L. Spiller, R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, et al., “The role of macrophage phenotype in vascularization of tissue engineering scaffolds”, Biomaterials, Vol. ED-15, pp. 4477–4488, May, 2014.
  • S. Nassiri, I. Zakeri, M. S. Weingarten, “Relative expression of proinflammatory and antiinflammatory genes reveals differences between healing and nonhealing human chronic diabetic foot ulcers”, J. Invest. Dermatol, Vol. ED-6, pp. 1700–1703, Jun, 2015.
  • A. Kimball, M. Schaller, A. Joshi, F. M. Davis, A. denDekker, et al., “Ly6C(Hi)blood monocyte/macrophage drive chronic inflammation and impair woundchealing in diabetes mellitus”, Arterioscler. Thromb. Vasc. Biol, Vol. ED-5, pp. 1102–1114, May, 2018.
  • Z. E. Clayton, R. P. Tan, M. M. Miravet, K. Lennartsson, J. P. Cooke, et al., “Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model”, Biosci Rep., Vol. ED-4, BSR20180563, Jul, 2018.
  • S. Ghodrat, S. J. Hoseini, S. Asadpour, S. Nazarnezhad, F. A. Eghtedar, et al., “Stem cell-based therapies for cardiac diseases: the critical role of angiogenic exosomes”, Biofactors, Vol. ED-3, pp. 270-291, May, 2021.
  • J. Zeng, X. Chen, J. Zhang, Y. Qin, K. Zhang, X. Li, et al., “Stem cell spheroids production for wound healing with a reversible porous hydrogel”, Materials Today Advances, Vol. ED-15, 100269, August, 2022.
  • S. Araujo, M. F. Sganzella, R. N. Sagiorato, M. N. Leite, G. F. Caetano, et al., “Human adipose-derived stem cells in fibrin glue carrier modulate wound healing phases in rats”, Current Research in Biotechnology, Vol. ED- 4, pp. 503–513, 2022.
  • J. Li, C. Wei, Y. Yang, Z. Gao, Z. Guo, et al., “Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21–5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6”, Burns., Vol. ED-8, pp. 1893–1908, Dec, .2022.
  • H. D. Zomer, T. dS. Jeremias, B. Ratner, A. G. Trentin. “Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing” Cytotherapy., Vol. ED-5, pp. 247-260, May, 2020.
  • J. Tang, H. Li, H. Peng, Z. Zhang, C. Liu, et al., “Pre-clinical evaluation of thermosensitive decellularized adipose tissue/ platelet-rich plasma interpenetrating polymer network hydrogel for wound healing”, Mater Today Bio, Vol. ED-17, pp. 100498, Nov, 2022.
  • X. Zeng, B. Chen, L. Wang, Y. Sun, Z. Jin, et al., “Chitosan@Puerarin hydrogel for accelerated wound healing in diabetic subjects by miR-29ab1 mediated inflammatory axis suppression”, Bioact Mater., Vol. ED-19, pp.653–665, May, 2023.
  • L. Chen, Z. Li, Y. Zheng, F. Zhou, J. Zhao, et al., “3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization”. Bioact Mater., Vol. Ed-10, pp. 236–246, Sep, 2022.
  • L. Yan, K. Han, B. Pang, H. Jin, X. Zhao, et al., “Surfactin-reinforced gelatin methacrylate hydrogel accelerates diabetic wound healing by regulating the macrophage polarization and promoting angiogenesis”, Chemical Engineering Journal, Vol. ED-414, pp. 128836, June, 2021.
  • J. Wu, A. Chen, Y. Zhou, S. Zheng, Y. Yang, et al., “Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages”, Biomaterials. Vol. ED-222, pp. 119398, Nov, 2019.
  • R. Toita, E. Shimizu, M. Murata, J-H. Kang. Protective and healing effects of apoptotic mimic-induced M2-like macrophage polarization on pressure ulcers in young and middle-aged mice. J Control Release, Vol. ED-330, pp.705-714, Feb, 2021.
  • S. Das, M. Majid, A. B. Baker. “Syndecan-4 enhances PDGF-BB activity in diabetic wound healing”, Acta Biomater, Vol. ED-42, pp. 56-65, Sep, 2016.
  • S. Bajpai, M. Mishra, H. Kumar, K. Tripathi, S. K. Singh, et al., “Effect of Selenium on Connexin Expression, Angiogenesis, and Antioxidant Status in Diabetic Wound Healing”, Biol Trace Elem Res”, Vol. ED-1:3, pp. 327-338, Dec, 2011.
  • L. Li, Y. Yang, Z. Yang, M. Zheng, G. Luo, et al., “Effects of ALA-PDT on the macrophages in wound healing and its related mechanisms in vivo and in vitro”, Photodiagnosis Photodyn Ther., Vol. ED-38, pp. 102816, Jun, 2022.
There are 26 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Reviews
Authors

Hakan Ocak

Asuman Özen

Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

EndNote Ocak H, Özen A (December 1, 2022) Role of macrophages during skin wound healing in terms of angiogenesis. Anatolian Journal of Biology 3 2 7–10.