Research Article
BibTex RIS Cite

Combination of Fuzzy C-Means and Thresholding for Breast Tumor Segmentation Using Medical Images

Year 2021, Volume: 5 Issue: 2, 225 - 236, 31.12.2021
https://doi.org/10.53600/ajesa.1008865

Abstract

Breast tumor segmentation is a crucial stage in breast cancer therapy and follow-up. Radiologists can minimize the high workload of breast cancer analysis by automating this difficult process. After pre-processing source pictures, this article established a system for accurately segmenting breast tumors and non-infected areas (breast) on medical imaging using combination of Fuzzy c-Means and Thresholding (FCMT). This is a computer-aided diagnostic method that works on each individual breast slice without any training for segmentation. On a database of 79 images of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). To increase the image quality, we used pre-processing techniques such as contrast augmentation before applying the FCMT for segmentation. To assess the effectiveness of the devised approach, the Mean Square Error, dice coefficient, Structured Similarity Index, Peak Signal-to-Noise Ratio, accuracy, and sensitivity were computed. On the same dataset, we compared our technique to different segmentation methods. With a dice coefficient of 0.9568 and an accuracy of 0.9731, our approach surpassed the other substantially. The suggested approach is more resilient and accurate in segmenting tumor progression on medical pictures, according to the findings of the experiments.

References

  • Alias, A., and B. Paulchamy. 2014. Detection of Breast Cancer Using Artificial Neural Networks. International Journal of Innovative Research in Science, 3(3).
  • Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6), 679-698.
  • Cheng, H.D., J. Shan, W. Ju, Y. Guo, and L. Zhang. 2010. “Automated breast cancer detection and classification using ultrasound images”, Pattern Recognition No 43, pp. 299-317, 2010.
  • Kang, X., T.J. Herron, U. Turken, and D.L. Woods. 2012. Diffusion properties of cortical and pericortical tissue: regional variations, reliability and methodological issues. Magnetic Resonance Imaging, 30(8), 1111-1122.
  • Kanojia, M.G., and S. Abraham. 2016. “Breast Cancer Detection Using RBF Neural Network”, 2nd International Conference on Contemporary Computing and Informatics (IC3I), IEEE, 363978-1-5090- 5256-1/16, 2016.
  • Redcay, E., D.P. Kennedy, and E. Courchesne. 2007. fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage, 38(4), 696-707.
  • Schultz, T., H. Theisel, and H.P. Seidel. 2007. Topological visualization of brain diffusion MRI data. IEEE Transactions on Visualization & Computer Graphics, (6), 1496-1503.
  • Selvakumar, J., A. Lakshmi, and T. Arivoli. 2012. Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm. In Advances in Engineering, Science and Management (ICAESM), 2012 International Conference on (pp. 186-190). IEEE.
  • Sharma, P., M. Diwakar, and S. Choudhary. 2012. Application of edge detection for brain tumor detection. International Journal of Computer Applications, 58(16).
  • Stosic, Z., and P. Rutesic. 2018. An Improved Canny Edge Detection Algorithm for Detecting Brain Tumors in MRI Images. International Journal of Signal Processing, 3.
  • Wu, W., A.Y. Chen, L. Zhao, and J.J. Corso. 2014. Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. International journal of computer assisted radiology and surgery, 9(2), 241-253.
  • Zanaty, E.A. 2012. Determination of gray matter (GM) and white matter (WM) volume in brain magnetic resonance images (MRI). International Journal of Computer Applications, 45(3), 16-22.

Tıbbi Görüntüleri Kullanarak Meme Tümörü Segmentasyonu İçin Bulanık C-Ortalamaları ve Eşik Değerinin Kombinasyonu

Year 2021, Volume: 5 Issue: 2, 225 - 236, 31.12.2021
https://doi.org/10.53600/ajesa.1008865

Abstract

Meme tümörü segmentasyonu, meme kanseri tedavisi ve takibinde çok önemli bir aşamadır. Radyologlar, bu a indirebilirler. Kaynak resimleri zorlu süreci otomatikleştirerek meme kanseri analizinin yüksek iş yükünü en az ön işleme tabi tuttuktan sonra, bu makale, Fuzzy c-Means ve Thresholding (FCMT) kombinasyonunu kullanarak tıbbi görüntülemede meme tümörlerini ve enfekte olmayan alanları (meme) doğru bir şekilde segmentlere ayırmak için bir sistem kurdu. Bu, segmentasyon için herhangi bir eğitim almadan her bir göğüs dilimi üzerinde çalışan bilgisayar destekli bir teşhis yöntemidir. 79 Bilgisayarlı Tomografi (BT) ve Manyetik Rezonans Görüntüleme (MRI) görüntüsünün bulunduğu bir veritabanında. Görüntü kalitesini artırmak için, FCMT’yi segmentasyon için uygulamadan önce kontrast artırma gibi ön işleme teknikleri kullandık. Tasarlanan yaklaşımın etkinliğini değerlendirmek için Ortalama Kare Hatası, zar katsayısı, Yapılandırılmış Benzerlik İndeksi, Tepe Sinyal-Gürültü Oranı, doğruluk ve hassasiyet hesaplandı. Aynı veri setinde, tekniğimizi farklı segmentasyon yöntemleriyle karşılaştırdık. 0.9568 zar katsayısı ve 0.9731 doğruluk ile yaklaşımımız diğerini önemli ölçüde aştı. Deneylerin bulgularına göre, önerilen yaklaşım, tıbbi resimlerde tümör ilerlemesini segmentlere ayırmada daha esnek ve doğrudur.

References

  • Alias, A., and B. Paulchamy. 2014. Detection of Breast Cancer Using Artificial Neural Networks. International Journal of Innovative Research in Science, 3(3).
  • Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6), 679-698.
  • Cheng, H.D., J. Shan, W. Ju, Y. Guo, and L. Zhang. 2010. “Automated breast cancer detection and classification using ultrasound images”, Pattern Recognition No 43, pp. 299-317, 2010.
  • Kang, X., T.J. Herron, U. Turken, and D.L. Woods. 2012. Diffusion properties of cortical and pericortical tissue: regional variations, reliability and methodological issues. Magnetic Resonance Imaging, 30(8), 1111-1122.
  • Kanojia, M.G., and S. Abraham. 2016. “Breast Cancer Detection Using RBF Neural Network”, 2nd International Conference on Contemporary Computing and Informatics (IC3I), IEEE, 363978-1-5090- 5256-1/16, 2016.
  • Redcay, E., D.P. Kennedy, and E. Courchesne. 2007. fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage, 38(4), 696-707.
  • Schultz, T., H. Theisel, and H.P. Seidel. 2007. Topological visualization of brain diffusion MRI data. IEEE Transactions on Visualization & Computer Graphics, (6), 1496-1503.
  • Selvakumar, J., A. Lakshmi, and T. Arivoli. 2012. Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm. In Advances in Engineering, Science and Management (ICAESM), 2012 International Conference on (pp. 186-190). IEEE.
  • Sharma, P., M. Diwakar, and S. Choudhary. 2012. Application of edge detection for brain tumor detection. International Journal of Computer Applications, 58(16).
  • Stosic, Z., and P. Rutesic. 2018. An Improved Canny Edge Detection Algorithm for Detecting Brain Tumors in MRI Images. International Journal of Signal Processing, 3.
  • Wu, W., A.Y. Chen, L. Zhao, and J.J. Corso. 2014. Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. International journal of computer assisted radiology and surgery, 9(2), 241-253.
  • Zanaty, E.A. 2012. Determination of gray matter (GM) and white matter (WM) volume in brain magnetic resonance images (MRI). International Journal of Computer Applications, 45(3), 16-22.
There are 12 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Research Article
Authors

Barish İzaddin 0000-0002-3821-0287

Ayça Kurnaz Türkben 0000-0002-8541-9964

Publication Date December 31, 2021
Submission Date October 12, 2021
Acceptance Date December 1, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA İzaddin, B., & Kurnaz Türkben, A. (2021). Combination of Fuzzy C-Means and Thresholding for Breast Tumor Segmentation Using Medical Images. AURUM Journal of Engineering Systems and Architecture, 5(2), 225-236. https://doi.org/10.53600/ajesa.1008865