Research Article
BibTex RIS Cite

Organic carbon and nutrients stocks in forest floor litter and soil of alder (Alnus glutinosa L.) stands in Bursa, Karacabey forested wetlands

Year 2024, , 54 - 64, 11.07.2024
https://doi.org/10.53516/ajfr.1453879

Abstract

Background and aims Litter and soils are the most important pools of organic carbon and nutrients in forest ecosystems. The complete and accurate assessments of the carbon and nutrient stocks of these pools and the influencing factors is a major concern that has drawn widespread attention in the fight against global climate change and in the management of forests worldwide. However, research results on flooded forest ecosystems are limited. In this study, it was aimed to determine the organic carbon and nutrient stocks of the litter and soil of pure alder stands in Bursa, Karacabey forested wetlands.
Methods Litter sampling was carried out in alder stands at two different development ages (Kzc3 and Kzd3) in floodplain (where water remains on the surface for a long period) and terrestrial (where water remains on the surface for a short period) sites. Soil samples were taken from five different soil depth levels (0-10 cm, 10-20 cm, 20-30 cm, 30-60 cm, 60-100 cm) in the same sites. The samples were analyzed for organic carbon and nutrient concentrations, and then the organic carbon and nutrient stocks (t/ha) of the study sites were calculated.
Results Carbon and nutrient stocks of alder in the floodplain sites and Kzc3 stands with higher forest floor litter was higher than in terrestrial sites and Kzd3 stands. Soil organic carbon and nutrient stocks were also high in the floodplain sites. However, in both sites, soil organic carbon and nutrient stocks of Kzc3 stands were found to be lower than those of Kzd3 stands. It was seen that in alder stands, organic carbon and nitrogen were stored in the topsoil (0-30 cm), while other macro- and micro-nutrients were mostly stored in the subsoil (>30 cm).
Conclusions The results of this study will help to understand the organic carbon and nutrient stocks and impact factors in the litter and soil of forested wetland ecosystems. In addition, the results are important to provide preliminary data that can form a basis for studies within the scope of the contribution and impact of forested wetlands to the mitigation of climate change in the future, the development and planning of nutrient cycles and tree and vegetation cover.

Project Number

121O702

References

  • Akay, A.E., Gencal, B., Taş, İ., 2017. Spatiotemporal change detection using landsat imagery: The case study of Karacabey flooded forest, Bursa, Turkey, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W4,. 4th International GeoAdvances Workshop, 14-15 October, Safranbolu, Karabük, Turkey.
  • Ashby, S.L., 2002. Assessing water quality functions of wetlands. Water Quality Research Program Technical Notes Collection (ERDC WQTN-AM-13), U.S. Army Engineer Research and Development Center, Vicksburg, MS. www.wes.army.mil/el/elpubs/wqtncont.html
  • Atwood, T.B., Connolly, R.M., Almahasheer, H., Carnell, P.E., Duarte, C.M., Ewers Lewis, C.J., Irigoien, X., Kelleway, J.J., Lavery, P.S., Macreadie, P.I., Serrano, O., Sanders, C.J., Santos, I., Steven, A.D.L., Lovelock, C.E., 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7, 523–528.
  • Balboa-Murias, M.A., Rojo, A., Álvarez, J.G., Merino, A., 2006. Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Annals of Forest Science, 63 (5), 557-565. hal-00884009.
  • Binkley, D., Valentine, D., 1991. Fifty-year biogeochernical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecology and Management, 40, 13-25.
  • Bledsoe, R.B., Goodwillie, C., Peralta, A.L., 2020. Long-term nutrient enrichment of an oligotroph-dominated wetland increases bacterial diversity in bulk soils and plant rhizospheres. mSphere, 5(3), e00035-20.
  • Breithaupt, J.L., Smoak, J.M., Smith, T.J., Sanders, C.J,. 2014. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research. Biogeosciences 119 (10), 2032–2048.
  • Brinson, M.M., Lugo, A.E., Brown, S., 1981. Primaryproductivity, decomposition and consumer activity infreshwater wetlands. Annual Review of Ecology and Systematics, 12, 123–161.
  • Chapman, K., 1986. Interaction between tree species: decomposition and nutrient release from litters. PhD thesis, University of Lancaster, UK.
  • Cole, D.W., Rapp, M., 1981. Elemental cycling in forest ecosystems. Pages 411-450 in D. E. Reichle, ed. Dynamic properties of forest ecosystems. Vol. 23. Cambridge University Press, Cambridge, U.K.
  • Couteaux, M.M., Bottner, P., Berg, B., 1995. Litterdecomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63–66.
  • Çakır, M., Akburak, S., 2017. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University, 67(2), 185-200.
  • Dangal, S.P., Das, A.K., Paudel, S.K., 2017. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal. J. Environ. Manage. 196, 511–517.
  • Day, F.P.Jr., 1982. Litter decomposition rates in the seasonally floodedGreat Dismal Swamp. Ecology, 63, 670-678.
  • Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I., Marbà, N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961–968.
  • Foster, N.W., Bhatti, J.S., 2006. Forest Ecosystems: Nutrient cycling, In: Encyclopedia of soilscience. Eds. Lal, R., Taylor and Francis, New York, USA. pp.718–719.
  • Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A.,Schlesinger, W.H., Shoch, D., Siikamaki, J.V., Smith, P., Woodbury, P., Zganjar, C.,Blackman, A., Campari, J., Conant, R.T., Delgado, C., Elias, P., Gopalakrishna, T.,Hamsik, M.R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S.M.,Minnemeyer, S., Polasky, S., Potapov, P., Putz, F.E., Sanderman, J., Silvius, M. Wollenberg, E., Fargione, J., 2017. Natural climate solutions. Proc. Natl. Acad. Sci.114, 11645–11650.
  • Güner, D., Özkan, K., 2019. Türkiye’deki karaçam ağaçlandırma alanlarında besin stoklarının belirlenmesi. Ormancılık Araştırma Dergisi, 6 (2), 192-207.
  • Havlin, J.L., Beaton, J.D., Tisdale, S.L., Nelson, W.L., 1999. Soil fertility and fertilizers: An introduction to nutrient management. 6th ed. Upper Saddle River, N. J.: Prentice Hall.
  • Homann, P.S., van Miegroet, H., Cole, D., Wand Wolfe, G.V., 1992. Cation distribution, cycling, and removal from mineral soil in Douglas-fir and red alder forests. Biogeochemistry, 16, 121-150.
  • Holmquist, J.R., Windham-Myers, L., Bliss, N., Crooks, S., Morris, J.T., Megonigal, J. P., Woodrey, M., 2018. Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Scientific Reports, 8(1), 9478.
  • Jackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M.G., Piñeiro, G., 2017. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48 (1), 419-445.
  • Jawed, A.A. 2017. Kestanenin verimliliğinde toprak ve iklim özelliklerinin kastamonu yöresi için değerlendirilmesi. Kastamonu Üniversitesi, Fen Bil. Enst. Orman Mühendisliği Anabilim Dalı.
  • Larmola, T., Alm, J., Juutinen, S., Koppisch, D., Augustin, J., Martikainen, P.J., Silvola, J., 2006. Spatial patterns of litter decomposition in the littoral zone of boreal lakes. Freshwater Biology, 51, 2252–2264.
  • Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., 2009. Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment, 134, 251–256.
  • Lehmann, J., Schroth, G., 2003. Nutrient Leaching. In: Schroth, G., Sinclair, F., Eds., Trees, Crops and Soil Fertility, CABI Publishing, Wallingford, 151-166.
  • Jia, X., Shao, M. A., Zhu, Y., Luo, Y., 2017. Soil moisture decline due to afforestation across the Loess Plateau, China. Journal of Hydrology, 546, 113-122.
  • Liu, X., Zhang, W., Cao, J., Shen, H., Zeng, X., Yu, Z., Zhao, X., 2013. Carbon storages in plantation ecosystems in sand source areas of North Beijing, China. PloS one, 8(12), e82208.
  • Lovelock, C.E., Feller, I.C., Ellis, J., Schwarz, A.M., Hancock, N., Nichols, P., Sorrell, B., 2007. Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 153(3), 633–641.
  • Jobbagy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436.
  • Mahendrappa, M.K., 1980. Relationships between different estimates of mineralizable N in the organic materials under black spruce stands. Can. J. For. Res., l0(4), 527-522.
  • Markham, J.H., 2008. Variability of nitrogen fixing Frankia on Alnus species. Botany, 86, 501–510.
  • Moffat, A.J., 2000. Effects of inoculation with Frankia on the growth and nutrition of alder species and interplanted Japanese larch on restored mineral workings. Forestry, 73(3), 215-223.
  • Novák, J., Dušek, D., Kacálek, D., Slodıčák, M., 2017. Analysis of biomass in young Scots pine stands as a basis for sustainable forest management in Czech lowlands. Journal of Forest Science, 63(12), 555-561.
  • Pang, Y., Tian, J., Zhao, X., Chao, Z., Wang, Y., Zhang, X., et al., 2020. The linkages of plant, litter and soil C: N: P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. Peer J, 8, e9274.
  • Poulter, B., Fluet-Chouinard, E., Hugelius, G., Koven, C., Fatoyinbo, L., Page, S.E., Rosentreter, J.A., Smart, L.S., Taillie, P.J., Thomas, N., Zhang, Z., Wijedasa, L.S., 2021. Chapter 1: A review of global wetland carbon stocks and management challenges. In wetland carbon and environmental management. (eds K.W. Krauss, Z. Zhu and C.L. Stagg).
  • Prusty, B.A.K., Chandra, R., Azeez, P.A., 2009. Distribution of carbon, nitrogen, phosphorus, and sulfur in the soil in a multiple habitat system in India. Soil Research, 47(2), 177–189.
  • Reddy, K.R., Patrick Jr., W.H., 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7, 87-94.
  • Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of Wetlands: Science and Applications’ (CRC Press: Boca Raton).
  • Reddy, K.R., DeLaune, R. Craft, C.B., 2010. Nutrients in wetlands: Implications to water quality under changing climatic conditions. Final Report submitted to U. S. Environmental Protection Agency. EPA Contract No. EP-C-09-001.
  • Richardson, J.B., Petrenko, C.L., Friedland, A.J., 2017. Base cations and micronutrients in forest soils along three clear-cut chronosequences in the northeastern United States, Nutr. Cycl. Agroecosys., 109, 161–179.
  • Saderne, V., Cusack, M., Serrano, O., Almahasheer, H., Krishnakumar, P.K., Rabaoui, L., Qurban, M.A., Duarte, C.M., 2020. Role of vegetated coastal ecosystems as nitrogen and phosphorous filters and sinks in the coasts of Saudi Arabia. Environmental Research Letters, 15(3), 034058.
  • Sanders, C.J., Eyre, B.D., Santos, I.R., Machado, W., Luiz-Silva, W., Smoak, J.M., Breithaupt, J.L., Ketterer, M.E., Sanders, L., Marotta, H., Silva-Filho, E., 2014. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophysical Research Letters, 41(7), 2475–2480.
  • Sariyildiz, T., Savaci, G., Kravkaz, I. S., 2015. Effects of tree species, stand age and landuse change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest, 9(1), 165-170.
  • Sarıyıldız, T., Savacı, G., Parlak, S., Gencal, B., 2022. Uludağ Göknarı (Abies nordmanniana subsp. bornmülleriana Mattf.) meşcerelerinin toprak organik karbon, toplam azot ve besin element konsantrasyonları ve stokları üzerinde bakı ve yükseltinin etkisi. Artvin Orman Fakültesi Dergisi. 23(2),159-174.
  • Sarıyıldız, T., Savacı, G., 2023. Farklı orman ağaç türleri altındaki toprak özelliklerinin ve besin stoklarının yükselti, bakı ve toprak derinliğine göre değişimi. Bartın Orman Fakültesi Dergisi, 25(2), 279-294.
  • Sarıyıldız, T., Tanı, M., 2023. Root biomass and root carbon and nitrogen stocks of ash, alder, and oak stands in Karacabey floodplain forest. Forestist, 73(1), 97-107.
  • Schlesinger, W.H., 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 51-81.
  • Seedre, M., Kopáček, J., Janda, P., Bače, R., Svoboda, M., 2015. Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian forest, effects of stand age and elevation. Forest Ecol. Manag., 346(2), 106–113.
  • Tahmaz, C., 2016. Mineral toprakta depolanan karbon ve azota ağaç türlerinin etkisi. (Yüksek Lisans Tezi). Kastamonu Üniversitesi, Fen Bil. Enst. Orman Mühendisliği Anabilim Dalı, 83 pages.
  • Tesfay, F., Kibret, K., Gebrekirstos, A., Hadgu, K.M., 2020. Litterfall production and associated carbon and nitrogen flux along exclosure chronosequence at Kewet district, central lowland of Ethiopia. Environmental Systems Research, 9, 11.
  • Tolunay, D., Çömez, A., 2008. Türkiye ormanlarında toprak ve ölü örtüde depolanmış organik karbon miktarları. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu. 22-25 Ekim 2008, Hatay. 750-765.
  • Wang, B.R., Zeng, Q.C., An, S.S., Zhang, H.X., Bai, X.J., 2017. C:N:P stoichiometry characteristics of plants-litter-soils in two kind types of natural secondary forest on the Ziwuling region of the Loess Plateau. Acta Ecol. Sin., 37, 5461–5473.
  • Zhang, Z., Fluet-Chouinard, E., Jensen, K., McDonald, K., Hugelius, G., Gumbricht, T., Carroll, M., Prigent, C., Bartsch, A., Poulter, B., 2021. Development of the global dataset of wetland area and dynamics for methane modeling (WAD2M), Earth Syst. Sci. Data, 13, 2001–2023.
  • Zhou, X., Dong K., Tang Y., Huang H., Peng G., Wang D., 2023. Research progress on the decomposition process of plant litter in wetlands: A review. Water, 15, 18, 3246.

Bursa, Karacabey subasar ormanı kızılağaç (Alnus glutinosa L.) meşcerelerinin ölü örtü ve topraklarının organik karbon ve besin stokları

Year 2024, , 54 - 64, 11.07.2024
https://doi.org/10.53516/ajfr.1453879

Abstract

Giriş ve Hedefler Orman ekosistemlerinde ölü örtü ve topraklar organik karbon ile besinlerin en önemli havuzlarıdır. Bu havuzların karbon ve besin stoklarına etki eden faktörlerin doğru bir şekilde ortaya konulması, dünya çapında küresel iklim değişikliğiyle mücadele yanında ormanların doğru bir şekilde yönetilmesinde büyük bir ilgi görmektedir. Bununla beraber, subasar orman ekosistemlerine ait araştırma sonuçları sınırlıdır. Bu çalışmada, Bursa, Karacabey subasar ormanlarındaki saf kızılağaç (Alnus glutinosa L.) meşcerelerinin ölü örtü ve topraklarının organik karbon ile besin stoklarının belirlenmesi amaçlanmıştır.
Yöntemler Ölü örtü örneklemesi sulak (suyun yüzeyde uzun dönem kaldığı) ve karasal (suyun yüzeyde kısa dönem kaldığı) ortamdaki kızılağacın iki farklı gelişme çağındaki (Kzc3 ve Kzd3) meşcerelerinde yapılmıştır. Toprak örnekleri de aynı ortamlarda beş farklı toprak derinlik kademesinden (0-10 cm, 10-20 cm, 20-30 cm, 30-60 cm, 60-100 cm) alınmıştır. Alınan örnekler organik karbon ve besin konsantrasyonları bakımından analiz edilmiş ve sonrasında çalışma alanlarının organik karbon ve besin stokları (t/ha) hesaplanmıştır.
Bulgular Kızılağaç meşcerelerinde, ölü örtü birikiminin yüksek olduğu sulak ortam ile Kzc3 meşcerelerinde ölü örtü karbon ve besin stokları, karasal ortam ve Kzd3 meşcerelerinden daha yüksek bulunmuştur. Benzer şekilde, toprak organik karbon ve besin stokları da sulak ortamda yüksek belirlenmiştir. Bununla beraber, her iki ortamda, Kzc3 meşcerelerinin toprak organik karbon ve besin stokları Kzd3 meşcerelerine göre daha düşük tespit edilmiştir. Kızılağaç meşcerelerinde, organik karbon ve azotun mineral toprağın 0-30 cm derinlik kademesinde, diğer besinlerin ise daha çok mineral toprağın >30 cm derinlik kademesinde stoklandığı belirlenmiştir.
Sonuçlar Çalışma sonuçları, yüksek karbon ve besin stoklama potansiyeline sahip olduğu bilinen subasar orman ekosistemlerinin ölü örtü ve topraklarındaki organik karbon ve besin stoklarını ve etki eden faktörleri anlamaya yardımcı olacaktır. Ayrıca sonuçlar, subasar ormanların iklim değişikliğinin azaltılmasına katkısı ve etkisi ile subasar ormanlardaki besin döngüsü ve ağaç ve bitki örtüsünün geliştirilmesi ve planlanması kapsamında gelecekte yapılacak çalışmalara altlık oluşturabilecek öncül veriler sağlaması bakımından önemlidir.

Supporting Institution

TÜBİTAK

Project Number

121O702

Thanks

Bu araştırma TÜBİTAK 1001 121O702 numaralı Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı tarafından desteklenmiştir. Desteklerinden dolayı TÜBİTAK'a teşekkür ederiz.

References

  • Akay, A.E., Gencal, B., Taş, İ., 2017. Spatiotemporal change detection using landsat imagery: The case study of Karacabey flooded forest, Bursa, Turkey, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W4,. 4th International GeoAdvances Workshop, 14-15 October, Safranbolu, Karabük, Turkey.
  • Ashby, S.L., 2002. Assessing water quality functions of wetlands. Water Quality Research Program Technical Notes Collection (ERDC WQTN-AM-13), U.S. Army Engineer Research and Development Center, Vicksburg, MS. www.wes.army.mil/el/elpubs/wqtncont.html
  • Atwood, T.B., Connolly, R.M., Almahasheer, H., Carnell, P.E., Duarte, C.M., Ewers Lewis, C.J., Irigoien, X., Kelleway, J.J., Lavery, P.S., Macreadie, P.I., Serrano, O., Sanders, C.J., Santos, I., Steven, A.D.L., Lovelock, C.E., 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7, 523–528.
  • Balboa-Murias, M.A., Rojo, A., Álvarez, J.G., Merino, A., 2006. Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Annals of Forest Science, 63 (5), 557-565. hal-00884009.
  • Binkley, D., Valentine, D., 1991. Fifty-year biogeochernical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecology and Management, 40, 13-25.
  • Bledsoe, R.B., Goodwillie, C., Peralta, A.L., 2020. Long-term nutrient enrichment of an oligotroph-dominated wetland increases bacterial diversity in bulk soils and plant rhizospheres. mSphere, 5(3), e00035-20.
  • Breithaupt, J.L., Smoak, J.M., Smith, T.J., Sanders, C.J,. 2014. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research. Biogeosciences 119 (10), 2032–2048.
  • Brinson, M.M., Lugo, A.E., Brown, S., 1981. Primaryproductivity, decomposition and consumer activity infreshwater wetlands. Annual Review of Ecology and Systematics, 12, 123–161.
  • Chapman, K., 1986. Interaction between tree species: decomposition and nutrient release from litters. PhD thesis, University of Lancaster, UK.
  • Cole, D.W., Rapp, M., 1981. Elemental cycling in forest ecosystems. Pages 411-450 in D. E. Reichle, ed. Dynamic properties of forest ecosystems. Vol. 23. Cambridge University Press, Cambridge, U.K.
  • Couteaux, M.M., Bottner, P., Berg, B., 1995. Litterdecomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63–66.
  • Çakır, M., Akburak, S., 2017. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University, 67(2), 185-200.
  • Dangal, S.P., Das, A.K., Paudel, S.K., 2017. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal. J. Environ. Manage. 196, 511–517.
  • Day, F.P.Jr., 1982. Litter decomposition rates in the seasonally floodedGreat Dismal Swamp. Ecology, 63, 670-678.
  • Duarte, C.M., Losada, I.J., Hendriks, I.E., Mazarrasa, I., Marbà, N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961–968.
  • Foster, N.W., Bhatti, J.S., 2006. Forest Ecosystems: Nutrient cycling, In: Encyclopedia of soilscience. Eds. Lal, R., Taylor and Francis, New York, USA. pp.718–719.
  • Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A.,Schlesinger, W.H., Shoch, D., Siikamaki, J.V., Smith, P., Woodbury, P., Zganjar, C.,Blackman, A., Campari, J., Conant, R.T., Delgado, C., Elias, P., Gopalakrishna, T.,Hamsik, M.R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S.M.,Minnemeyer, S., Polasky, S., Potapov, P., Putz, F.E., Sanderman, J., Silvius, M. Wollenberg, E., Fargione, J., 2017. Natural climate solutions. Proc. Natl. Acad. Sci.114, 11645–11650.
  • Güner, D., Özkan, K., 2019. Türkiye’deki karaçam ağaçlandırma alanlarında besin stoklarının belirlenmesi. Ormancılık Araştırma Dergisi, 6 (2), 192-207.
  • Havlin, J.L., Beaton, J.D., Tisdale, S.L., Nelson, W.L., 1999. Soil fertility and fertilizers: An introduction to nutrient management. 6th ed. Upper Saddle River, N. J.: Prentice Hall.
  • Homann, P.S., van Miegroet, H., Cole, D., Wand Wolfe, G.V., 1992. Cation distribution, cycling, and removal from mineral soil in Douglas-fir and red alder forests. Biogeochemistry, 16, 121-150.
  • Holmquist, J.R., Windham-Myers, L., Bliss, N., Crooks, S., Morris, J.T., Megonigal, J. P., Woodrey, M., 2018. Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Scientific Reports, 8(1), 9478.
  • Jackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M.G., Piñeiro, G., 2017. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48 (1), 419-445.
  • Jawed, A.A. 2017. Kestanenin verimliliğinde toprak ve iklim özelliklerinin kastamonu yöresi için değerlendirilmesi. Kastamonu Üniversitesi, Fen Bil. Enst. Orman Mühendisliği Anabilim Dalı.
  • Larmola, T., Alm, J., Juutinen, S., Koppisch, D., Augustin, J., Martikainen, P.J., Silvola, J., 2006. Spatial patterns of litter decomposition in the littoral zone of boreal lakes. Freshwater Biology, 51, 2252–2264.
  • Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., 2009. Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment, 134, 251–256.
  • Lehmann, J., Schroth, G., 2003. Nutrient Leaching. In: Schroth, G., Sinclair, F., Eds., Trees, Crops and Soil Fertility, CABI Publishing, Wallingford, 151-166.
  • Jia, X., Shao, M. A., Zhu, Y., Luo, Y., 2017. Soil moisture decline due to afforestation across the Loess Plateau, China. Journal of Hydrology, 546, 113-122.
  • Liu, X., Zhang, W., Cao, J., Shen, H., Zeng, X., Yu, Z., Zhao, X., 2013. Carbon storages in plantation ecosystems in sand source areas of North Beijing, China. PloS one, 8(12), e82208.
  • Lovelock, C.E., Feller, I.C., Ellis, J., Schwarz, A.M., Hancock, N., Nichols, P., Sorrell, B., 2007. Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 153(3), 633–641.
  • Jobbagy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436.
  • Mahendrappa, M.K., 1980. Relationships between different estimates of mineralizable N in the organic materials under black spruce stands. Can. J. For. Res., l0(4), 527-522.
  • Markham, J.H., 2008. Variability of nitrogen fixing Frankia on Alnus species. Botany, 86, 501–510.
  • Moffat, A.J., 2000. Effects of inoculation with Frankia on the growth and nutrition of alder species and interplanted Japanese larch on restored mineral workings. Forestry, 73(3), 215-223.
  • Novák, J., Dušek, D., Kacálek, D., Slodıčák, M., 2017. Analysis of biomass in young Scots pine stands as a basis for sustainable forest management in Czech lowlands. Journal of Forest Science, 63(12), 555-561.
  • Pang, Y., Tian, J., Zhao, X., Chao, Z., Wang, Y., Zhang, X., et al., 2020. The linkages of plant, litter and soil C: N: P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. Peer J, 8, e9274.
  • Poulter, B., Fluet-Chouinard, E., Hugelius, G., Koven, C., Fatoyinbo, L., Page, S.E., Rosentreter, J.A., Smart, L.S., Taillie, P.J., Thomas, N., Zhang, Z., Wijedasa, L.S., 2021. Chapter 1: A review of global wetland carbon stocks and management challenges. In wetland carbon and environmental management. (eds K.W. Krauss, Z. Zhu and C.L. Stagg).
  • Prusty, B.A.K., Chandra, R., Azeez, P.A., 2009. Distribution of carbon, nitrogen, phosphorus, and sulfur in the soil in a multiple habitat system in India. Soil Research, 47(2), 177–189.
  • Reddy, K.R., Patrick Jr., W.H., 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7, 87-94.
  • Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of Wetlands: Science and Applications’ (CRC Press: Boca Raton).
  • Reddy, K.R., DeLaune, R. Craft, C.B., 2010. Nutrients in wetlands: Implications to water quality under changing climatic conditions. Final Report submitted to U. S. Environmental Protection Agency. EPA Contract No. EP-C-09-001.
  • Richardson, J.B., Petrenko, C.L., Friedland, A.J., 2017. Base cations and micronutrients in forest soils along three clear-cut chronosequences in the northeastern United States, Nutr. Cycl. Agroecosys., 109, 161–179.
  • Saderne, V., Cusack, M., Serrano, O., Almahasheer, H., Krishnakumar, P.K., Rabaoui, L., Qurban, M.A., Duarte, C.M., 2020. Role of vegetated coastal ecosystems as nitrogen and phosphorous filters and sinks in the coasts of Saudi Arabia. Environmental Research Letters, 15(3), 034058.
  • Sanders, C.J., Eyre, B.D., Santos, I.R., Machado, W., Luiz-Silva, W., Smoak, J.M., Breithaupt, J.L., Ketterer, M.E., Sanders, L., Marotta, H., Silva-Filho, E., 2014. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophysical Research Letters, 41(7), 2475–2480.
  • Sariyildiz, T., Savaci, G., Kravkaz, I. S., 2015. Effects of tree species, stand age and landuse change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest, 9(1), 165-170.
  • Sarıyıldız, T., Savacı, G., Parlak, S., Gencal, B., 2022. Uludağ Göknarı (Abies nordmanniana subsp. bornmülleriana Mattf.) meşcerelerinin toprak organik karbon, toplam azot ve besin element konsantrasyonları ve stokları üzerinde bakı ve yükseltinin etkisi. Artvin Orman Fakültesi Dergisi. 23(2),159-174.
  • Sarıyıldız, T., Savacı, G., 2023. Farklı orman ağaç türleri altındaki toprak özelliklerinin ve besin stoklarının yükselti, bakı ve toprak derinliğine göre değişimi. Bartın Orman Fakültesi Dergisi, 25(2), 279-294.
  • Sarıyıldız, T., Tanı, M., 2023. Root biomass and root carbon and nitrogen stocks of ash, alder, and oak stands in Karacabey floodplain forest. Forestist, 73(1), 97-107.
  • Schlesinger, W.H., 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 51-81.
  • Seedre, M., Kopáček, J., Janda, P., Bače, R., Svoboda, M., 2015. Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian forest, effects of stand age and elevation. Forest Ecol. Manag., 346(2), 106–113.
  • Tahmaz, C., 2016. Mineral toprakta depolanan karbon ve azota ağaç türlerinin etkisi. (Yüksek Lisans Tezi). Kastamonu Üniversitesi, Fen Bil. Enst. Orman Mühendisliği Anabilim Dalı, 83 pages.
  • Tesfay, F., Kibret, K., Gebrekirstos, A., Hadgu, K.M., 2020. Litterfall production and associated carbon and nitrogen flux along exclosure chronosequence at Kewet district, central lowland of Ethiopia. Environmental Systems Research, 9, 11.
  • Tolunay, D., Çömez, A., 2008. Türkiye ormanlarında toprak ve ölü örtüde depolanmış organik karbon miktarları. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu. 22-25 Ekim 2008, Hatay. 750-765.
  • Wang, B.R., Zeng, Q.C., An, S.S., Zhang, H.X., Bai, X.J., 2017. C:N:P stoichiometry characteristics of plants-litter-soils in two kind types of natural secondary forest on the Ziwuling region of the Loess Plateau. Acta Ecol. Sin., 37, 5461–5473.
  • Zhang, Z., Fluet-Chouinard, E., Jensen, K., McDonald, K., Hugelius, G., Gumbricht, T., Carroll, M., Prigent, C., Bartsch, A., Poulter, B., 2021. Development of the global dataset of wetland area and dynamics for methane modeling (WAD2M), Earth Syst. Sci. Data, 13, 2001–2023.
  • Zhou, X., Dong K., Tang Y., Huang H., Peng G., Wang D., 2023. Research progress on the decomposition process of plant litter in wetlands: A review. Water, 15, 18, 3246.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Forest Ecosystems
Journal Section Articles
Authors

Temel Sarıyıldız 0000-0003-3451-3229

Mert Tanı 0000-0002-1182-9215

Project Number 121O702
Publication Date July 11, 2024
Submission Date March 16, 2024
Acceptance Date June 6, 2024
Published in Issue Year 2024

Cite

APA Sarıyıldız, T., & Tanı, M. (2024). Bursa, Karacabey subasar ormanı kızılağaç (Alnus glutinosa L.) meşcerelerinin ölü örtü ve topraklarının organik karbon ve besin stokları. Anadolu Orman Araştırmaları Dergisi, 10(1), 54-64. https://doi.org/10.53516/ajfr.1453879
AMA Sarıyıldız T, Tanı M. Bursa, Karacabey subasar ormanı kızılağaç (Alnus glutinosa L.) meşcerelerinin ölü örtü ve topraklarının organik karbon ve besin stokları. AOAD. July 2024;10(1):54-64. doi:10.53516/ajfr.1453879
Chicago Sarıyıldız, Temel, and Mert Tanı. “Bursa, Karacabey Subasar Ormanı kızılağaç (Alnus Glutinosa L.) meşcerelerinin ölü örtü Ve topraklarının Organik Karbon Ve Besin Stokları”. Anadolu Orman Araştırmaları Dergisi 10, no. 1 (July 2024): 54-64. https://doi.org/10.53516/ajfr.1453879.
EndNote Sarıyıldız T, Tanı M (July 1, 2024) Bursa, Karacabey subasar ormanı kızılağaç (Alnus glutinosa L.) meşcerelerinin ölü örtü ve topraklarının organik karbon ve besin stokları. Anadolu Orman Araştırmaları Dergisi 10 1 54–64.
IEEE T. Sarıyıldız and M. Tanı, “Bursa, Karacabey subasar ormanı kızılağaç (Alnus glutinosa L.) meşcerelerinin ölü örtü ve topraklarının organik karbon ve besin stokları”, AOAD, vol. 10, no. 1, pp. 54–64, 2024, doi: 10.53516/ajfr.1453879.
ISNAD Sarıyıldız, Temel - Tanı, Mert. “Bursa, Karacabey Subasar Ormanı kızılağaç (Alnus Glutinosa L.) meşcerelerinin ölü örtü Ve topraklarının Organik Karbon Ve Besin Stokları”. Anadolu Orman Araştırmaları Dergisi 10/1 (July 2024), 54-64. https://doi.org/10.53516/ajfr.1453879.
JAMA Sarıyıldız T, Tanı M. Bursa, Karacabey subasar ormanı kızılağaç (Alnus glutinosa L.) meşcerelerinin ölü örtü ve topraklarının organik karbon ve besin stokları. AOAD. 2024;10:54–64.
MLA Sarıyıldız, Temel and Mert Tanı. “Bursa, Karacabey Subasar Ormanı kızılağaç (Alnus Glutinosa L.) meşcerelerinin ölü örtü Ve topraklarının Organik Karbon Ve Besin Stokları”. Anadolu Orman Araştırmaları Dergisi, vol. 10, no. 1, 2024, pp. 54-64, doi:10.53516/ajfr.1453879.
Vancouver Sarıyıldız T, Tanı M. Bursa, Karacabey subasar ormanı kızılağaç (Alnus glutinosa L.) meşcerelerinin ölü örtü ve topraklarının organik karbon ve besin stokları. AOAD. 2024;10(1):54-6.