Research Article
BibTex RIS Cite

Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği

Year 2020, Volume: 6 Issue: 2, 68 - 81, 30.12.2020

Abstract

Çoğunlukla eğimli arazilerin yer aldığı ormanlık alanlarda, alternatif bir geçim kaynağı olduğundan tütün yetiştiriciliği için önemli miktarda ormanlık alan tahrip edilerek tarım arazisine dönüştürülmüştür. Daimi bitki örtüsünün tahrip edilmesinin ardından, toprağın işlenerek tarımsal üretimde kullanılması, uzun yıllar boyunca depolanan organik maddenin azalmasına, toprakların bozulmaya karşı dirençlerinin zayıflamasına ve erozyona hassas hale gelmesine yol açmıştır. Bu çalışma, Orta Karadeniz Bölgesinde, çoğunlukla potansiyel orman alanı olan, günümüzde ise buğday/ayçiçeği-tütün rotasyonunda kullanılan arazilerin toprakların temel özellikleri, karbon stoku ve bazı besin elementleri içeriklerinin belirlenmesi ve bu özelliklerin mesafeye bağlı değişkenliklerinin analizi amacı ile gerçekleştirilmiştir. Toplam 73911,35 ha genişliğindeki çalışma alanında yer alan 324 tütün ekili arazinin yüzey toprağı (0-20 cm ) örneklenmiştir. Temel toprak özellikleri, makro besin elementleri ve karbon depolama durumları belirlendikten sonra jeoistatistiksel yöntemler ile mekânsal dağılımlar modellenmiş ve haritalar üretilmiştir. Topraklarının reaksiyonu, orta asidik (4,89) ile hafif alkali (8,46) arasında değişmekte olup, tuzluluk sorunu bulunmamaktadır. Kireç içeriği az (%0,72) ile çok (%46,18) arasında değişmektedir. Ortalama %8,94 olan kireç içeriği, çalışma alanında değişkenliği en yüksek (VK=%106,9) toprak özelliği olarak öne çıkmaktadır. Karbon stoku, 6,05 ile 113,42 Mg C ha-1 toprak-1 arasında olup, ortalama C stoku miktarı 27,98 Mg C ha-1 toprak-1 olarak hesaplanmıştır. Çok yüksek değişkenliğe sahip olmasına rağmen toprakların fosfor konsantrasyonları tütün yetiştiriciliği için yeterli düzeydedir. Çalışılan alanda en küçük oto korelasyona sahip özellik Cstok (193 m) ve en uzun değerin ise kireç (17,2 km) ve değişebilir Mg (18,71 km)’un olduğu görülmektedir. Oldukça geniş ve karmaşık arazilerde çalışılırken, çalışılan alanının toprak oluşum faktörleri bakımından daha homojen bölgelere ayrılmasının mekansal yapının tanımlanması ve alansal dağılımın oluşturulmasında kullanılan modellerin güvenirliğini arttıracağı düşünülmektedir.

Supporting Institution

Öz Ege Tütün Sanayi ve Ticaret Anonim Şirketi ve Socotab Yaprak Tütün Sanayi ve Ticaret Anonim Şirketi

Thanks

Bu çalışma Öz Ege Tütün Sanayi ve Ticaret Anonim Şirketi ve Socotab Yaprak Tütün Sanayi ve Ticaret Anonim Şirketinin destekleri ile yürütülmüştür.

References

  • Anonim 2020a. Tobacco growers information. NC State University, Cooperative extension. http://tobacco.ces.ncsu.edu (Accessed 01.06.2020).
  • Anonim, 2020b. Soil pH. Queensland Department of Environment and Heritage Protection. www.qld.gov.au (Accessed 03.06.2020).
  • Behera, S.K., Mathur, R.K., Shukla, A.K., Suresh, K., Prakash, C., 2018. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena, 165, 251-259.
  • Bogunovic, I., Trevisani, S., Seput, M., Juzbasic, D., Durdevic, B., 2017. Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. Catena, 154, 50-62.
  • Brevik, E.C., Fenton, T.E., Jaynes, D.B., 2003. Evaluation of the accuracy of a central Iowa soil survey and implications for precision soil management. Precis. Agric. 4, 323–334.
  • Brevik, E.C., Sauer, T.J., 2015. The past, present, and future of soils and human health studies. Soil 1, 35–46.
  • Budak, M., Günal, H., Çelik, İ., Nurullah, Acir., Sirri, M., 2018a. Dicle Havzası toprak özelliklerinin yersel değişimlerinin jeoistatistik ve coğrafi bilgi sistemleri ile belirlenmesi ve haritalanması. Türkiye Tarımsal Araştırmalar Dergisi, 5(2), 103-115.
  • Budak, M., Günal, H., Çelik, İ., Yıldız, H., Acir, N., Acar, M., 2018b. Soil quality assesment of upper Tigris basin. Carpathian Journal of Earth and Environmental Sciences, 13(1), 301-316.
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., 1994. Field‐scale variability of soil properties in central Iowa soils. Soil science society of America journal, 58(5), 1501-1511.
  • Çelik, İ., Günal, H., Acar, M., Acir, N., Bereket Barut, Z., Budak, M., 2020. Evaluating the long‐term effects of tillage systems on soil structural quality using visual assessment and classical methods. Soil Use and Management, 36(2), 223-239.
  • DeFries, R.S., Field, C.B., Fung, I., Collatz, G.J., Bounoua, L., 1999. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycle 13, 803–815.
  • De Paz, J.M., Albert, C., Visconti, F., Jiménez, M.G., Ingelmo, F., Molina, M.J., 2015. A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics and GIS. Precis. Agric. 16
  • Ellis, E.A., Baerenklau, K.A., Marcos-Martínez, R. Chávez, E., 2010. Land use/land cover change dynamics and drivers in a low-grade marginal coffee growing region of Veracruz, Mexico. Agroforestry Systems, 80(1), 61-84.
  • ESRI, 2014. ArcGIS 10.2.1 for Desktop Functionality Matrix, @ http://goo.gl/u1Yw5i, (Accessed 6.11.2020).
  • FAO. 1990. Micronutrient, Assessment at the Country Level: An International Study. FAO Soil Bulletin by Sillanpaa. Rome.
  • Ferreiro, J.P., de Almeida, V.P., Alves, M.C., de Abreu, C.A., Vieira, S.R., Vázquez, E.V., 2016. Spatial variability of soil organic matter and cation exchange capacity in an Oxisol under different land uses. Comm. in Soil Sci. Plant Analysis, 47, 75-89.
  • Gamma Design Software, 2004. GS+: Geostatistics for the environmental sciences. Plainwell. Mich. USA.
  • Gee, G.W., Bouder, J.W., 1986. Particle Size Analysis. In: A. Clute (Ed.) Methods of Soil Analysis. Part I Agronomy No: 9 Am Soc. of Agron. Madison, Wisconsin, USA.
  • Gibbs, H.K., Ruesch, A. S., Achard, F., Clayton, M.K., Holmgren, P., Ramankutty, N., Foley, J.A., 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732-16737.
  • Glendell, M., Granger, S.J., Bol, R., Brazier, R.E., 2014. Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma, 214, 25-41.
  • Gürel, F., Erşahin, S., 2020. Ilgaz Ormanlarında Saf Uludağ Göknarı ve Saf Uludağ Göknarı-Sarıçam Meşcerelerinde Bazı Toprak Özelliklerinin Uzaysal Değişkenliği. Journal of Bartin Faculty of Forestry, 22(2), 544-555.
  • Han, S.K., Han, H.S., Page-Dumroese, D.S., Johnson, L.R., 2009. Soil compaction associated with cut-to-length and whole-tree harvesting of a conifer forest. Can. J. For. Res. 39, 976-989.
  • Houghton, R.A., Nassikas, A.A., 2017 Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31, 456–472.
  • Jackson, M., 1958. Soil chemical analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA. pp. 1-498. Kacar, B., 2009. Toprak analizleri Ankara: Nobel Yayın Dağıtım. p. 467.
  • Keestra, S., Pereira, P., Novara, A., Brevik, E.C., Azorin-Molina, C., Parras-Alcántara, L., Jordán, A., Cerdà, A., 2016. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 551, 357-366.
  • Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C. Aitkenhead‐Peterson, J., 2017. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degradation & Development, 28(1), 128-141.
  • Korucu, T., Arslan, S., Günal, H. Şahin, M., 2009. Spatial and temporal variation of soil moisture content and penetration resistance as affected by post harvest period and stubble burning of wheat. Fresenius Environmental Bulletin, 18(9A), 1736-1747.
  • Kucuker, M.A., Guney, M., Oral, H.V., Copty, N.K. Onay, T.T., 2015. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey. Journal of environmental management, 147, 227-235.
  • Lal, R. 2003. Soil erosion and the global carbon budget. Environ Int 29, 437–450.
  • Lal, R., 2018. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global change biology, 24(8), 3285-3301.
  • Lopez-Granados, F., Jurado-Exposito, M., Atenciano, S., Gracia-Ferrer, A., De La Orden, M.S., Gracia-Toreres, L., 2002. Spatial variability of agricultural soil parameters in Southern Spain. Plant Soil 246, 97-105.
  • Lorenz, K. Lal, R., 2018. Carbon Sequestration in Cropland Soils. In Carbon Sequestration in Agricultural Ecosystems. Springer, Chapter 3. pp. 137-173.
  • MEA, 2005. Ecosystems and human well‐being: Synthesis Millennium Ecosystem Assessment. Washington DC: Island Press.
  • Mishra, U., Ussiri, D. A., Lal, R., 2010. Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA. Soil and Tillage Research, 107(2), 88-96.
  • Nelson, D.W., Sommers, L.E., 1982. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Page, A.L., Miller, R.H. Keeney, D.R. (Ed) 2nd Ed. SSS of Am. Inc. Pub., Madison, Wisconsin.
  • Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dept. of Agric. Cric. 939.
  • Olson, K.R., Al-Kaisi, M., Lal, R., Lowery, B., 2014. Experimental considerations, treatments and methods in determining soil organic carbon sequestration rates. Soil Science Society of America Journal, 78, 348–360. Poeplau, C. Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33-41.
  • Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A., 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles, 22(1).
  • Ratnayake, R.R., Perera, B.M.A.C.A., Rajapaksha, R.P.S.K., Ekanayake, E.M.H.G.S., Kumara, R.K.G.K., Gunaratne, H.M.A.C., 2017. Soil carbon sequestration and nutrient status of tropical rice based cropping systems: Rice-Rice, Rice-Soya, Rice-Onion and Rice-Tobacco in Sri Lanka. Catena, 150, 17-23.
  • Reza, S. K., Nayak, D. C., Chattopadhyay, T., Mukhopadhyay, S., Singh, S. K., Srinivasan, R., 2016. Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach. Archives of agronomy and soil science, 62(7), 972-981.
  • Rhoades, J.D., Manteghi, N.A., Shouse, P.J., Alves, W.J., 1989. Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Sci. Soc. Am. J. 53, 433–439.
  • Rosemary, F., Indraratne, S.P., Weerasooriya, R., Mishra, U., 2017. Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena, 150, 53-61.
  • Tang, X.L., Xia, M.P., Pérez-Cruzado, C., Guan, F.Y., Fan, S.H., 2017. Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Scientific Reports, 7, 1–13.
  • Saxton, K.E., Rawls, W., Romberger, J.S., Papendick, R.I., 1986. Estimating generalized soil‐water characteristics from texture. Soil Sci. Soc. Ame. J., 50(4), 1031-1036.
  • Schloeder, C.A., Zimmerman, N.E., Jacobs, M.J., 2001. Comparison of methods for interpolating soil properties using limited data. Soil science society of America journal, 65(2), 470-479.
  • Sürücü, A., Ahmed, T.K., Gunal, E., Budak, M., 2019. Spatial Variability of Some Soil Properties in an Agricultural Field of Halabja City of Sulaimania Governorate, Iraq. Fresen. Environ. Bull. 29,193-206.
  • Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Ramamurthy, V., Lalitha, M., Kalaiselvi, B., 2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil & Tillage Research, 169, 25–34.
  • Yang, S.H., Liu, F., Song, X.D., Lu, Y.Y., Li, D.C., Zhao, Y.G. and Zhang, G.L., 2019. Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging: A case study in the Heihe River Basin, northwest China. Ecological Indicators, 102, 252-264.
  • Wang, Y., Zhang, X. Huang, C., 2009. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150(1-2), 141-149.
  • Weil, R.R., Brady, N.C., 2017. The nature and properties of soils. 15th Edition. Prentice Hall International. Pearson. Wilding, L.G., 1985. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. In: D.R. Nielsen and J. Bouma (Eds), Soil Spatial Variability, Pudoc, Wageningen, pp. 166- 193.

Spatial Variability of Carbon Storage Potential and Plant Nutrition Status of Tobacco Planting Areas in the Central Black Sea Region

Year 2020, Volume: 6 Issue: 2, 68 - 81, 30.12.2020

Abstract

Significant amount of forest areas, located on mostly sloping lands has been degraded and converted into agricultural land for tobacco cultivation being an alternative source of income. Cultivation of soils following the destruction of permanent vegetation and the use in agricultural production have led to decrease in sequestered organic matter in long-time, thus, the decrease in resistance of soils to degradation increased the vulnerability to erosion. This study was carried out to determine the basic properties, carbon stock and some nutrient content of soils, which are located mostly in potential forest lands and currently used in wheat/sunflower-tobacco rotation in the Central Black Sea Region, and to analyze spatial variability of these soil properties. Surface soils (0-20 cm) of 324 tobacco cultivated lands in total of 73911,35 ha land were sampled. Basic soil properties, macronutrients and carbon storage status of soil samples were determined, spatial distributions were modeled and maps were produced using geostatistical methods. Soil reaction ranged from moderately acidic (4, 89) to moderately alkaline (8,46), and no salinity problem encountered in the study area. Lime content ranged from low (0,72%) to an excessive (46,18%). Lime content with an average of 8,94% stands out as the soil property with the highest variability (CV=106,9%) in the study area. Carbon stock level was between 6,05 and 113,42 Mg C ha-1 soil-1, and the average C stock was calculated as 27,98 Mg C ha-1 soil-1. Despite being high variability, available phosphorus concentrations of soils was sufficient for tobacco cultivation. The shortest autocorrelation was obtained for Cstok (193 m) and the longest value was for lime (17,2 km) and exchangeable Mg (18,71 km). The results revealed that separation of a large and complex area into more homogeneous zones in terms of soil formation factors will increase the reliability of the models used in defining the spatial structure and creating the spatial distribution.

References

  • Anonim 2020a. Tobacco growers information. NC State University, Cooperative extension. http://tobacco.ces.ncsu.edu (Accessed 01.06.2020).
  • Anonim, 2020b. Soil pH. Queensland Department of Environment and Heritage Protection. www.qld.gov.au (Accessed 03.06.2020).
  • Behera, S.K., Mathur, R.K., Shukla, A.K., Suresh, K., Prakash, C., 2018. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena, 165, 251-259.
  • Bogunovic, I., Trevisani, S., Seput, M., Juzbasic, D., Durdevic, B., 2017. Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. Catena, 154, 50-62.
  • Brevik, E.C., Fenton, T.E., Jaynes, D.B., 2003. Evaluation of the accuracy of a central Iowa soil survey and implications for precision soil management. Precis. Agric. 4, 323–334.
  • Brevik, E.C., Sauer, T.J., 2015. The past, present, and future of soils and human health studies. Soil 1, 35–46.
  • Budak, M., Günal, H., Çelik, İ., Nurullah, Acir., Sirri, M., 2018a. Dicle Havzası toprak özelliklerinin yersel değişimlerinin jeoistatistik ve coğrafi bilgi sistemleri ile belirlenmesi ve haritalanması. Türkiye Tarımsal Araştırmalar Dergisi, 5(2), 103-115.
  • Budak, M., Günal, H., Çelik, İ., Yıldız, H., Acir, N., Acar, M., 2018b. Soil quality assesment of upper Tigris basin. Carpathian Journal of Earth and Environmental Sciences, 13(1), 301-316.
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., 1994. Field‐scale variability of soil properties in central Iowa soils. Soil science society of America journal, 58(5), 1501-1511.
  • Çelik, İ., Günal, H., Acar, M., Acir, N., Bereket Barut, Z., Budak, M., 2020. Evaluating the long‐term effects of tillage systems on soil structural quality using visual assessment and classical methods. Soil Use and Management, 36(2), 223-239.
  • DeFries, R.S., Field, C.B., Fung, I., Collatz, G.J., Bounoua, L., 1999. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycle 13, 803–815.
  • De Paz, J.M., Albert, C., Visconti, F., Jiménez, M.G., Ingelmo, F., Molina, M.J., 2015. A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics and GIS. Precis. Agric. 16
  • Ellis, E.A., Baerenklau, K.A., Marcos-Martínez, R. Chávez, E., 2010. Land use/land cover change dynamics and drivers in a low-grade marginal coffee growing region of Veracruz, Mexico. Agroforestry Systems, 80(1), 61-84.
  • ESRI, 2014. ArcGIS 10.2.1 for Desktop Functionality Matrix, @ http://goo.gl/u1Yw5i, (Accessed 6.11.2020).
  • FAO. 1990. Micronutrient, Assessment at the Country Level: An International Study. FAO Soil Bulletin by Sillanpaa. Rome.
  • Ferreiro, J.P., de Almeida, V.P., Alves, M.C., de Abreu, C.A., Vieira, S.R., Vázquez, E.V., 2016. Spatial variability of soil organic matter and cation exchange capacity in an Oxisol under different land uses. Comm. in Soil Sci. Plant Analysis, 47, 75-89.
  • Gamma Design Software, 2004. GS+: Geostatistics for the environmental sciences. Plainwell. Mich. USA.
  • Gee, G.W., Bouder, J.W., 1986. Particle Size Analysis. In: A. Clute (Ed.) Methods of Soil Analysis. Part I Agronomy No: 9 Am Soc. of Agron. Madison, Wisconsin, USA.
  • Gibbs, H.K., Ruesch, A. S., Achard, F., Clayton, M.K., Holmgren, P., Ramankutty, N., Foley, J.A., 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732-16737.
  • Glendell, M., Granger, S.J., Bol, R., Brazier, R.E., 2014. Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma, 214, 25-41.
  • Gürel, F., Erşahin, S., 2020. Ilgaz Ormanlarında Saf Uludağ Göknarı ve Saf Uludağ Göknarı-Sarıçam Meşcerelerinde Bazı Toprak Özelliklerinin Uzaysal Değişkenliği. Journal of Bartin Faculty of Forestry, 22(2), 544-555.
  • Han, S.K., Han, H.S., Page-Dumroese, D.S., Johnson, L.R., 2009. Soil compaction associated with cut-to-length and whole-tree harvesting of a conifer forest. Can. J. For. Res. 39, 976-989.
  • Houghton, R.A., Nassikas, A.A., 2017 Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31, 456–472.
  • Jackson, M., 1958. Soil chemical analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA. pp. 1-498. Kacar, B., 2009. Toprak analizleri Ankara: Nobel Yayın Dağıtım. p. 467.
  • Keestra, S., Pereira, P., Novara, A., Brevik, E.C., Azorin-Molina, C., Parras-Alcántara, L., Jordán, A., Cerdà, A., 2016. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 551, 357-366.
  • Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C. Aitkenhead‐Peterson, J., 2017. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degradation & Development, 28(1), 128-141.
  • Korucu, T., Arslan, S., Günal, H. Şahin, M., 2009. Spatial and temporal variation of soil moisture content and penetration resistance as affected by post harvest period and stubble burning of wheat. Fresenius Environmental Bulletin, 18(9A), 1736-1747.
  • Kucuker, M.A., Guney, M., Oral, H.V., Copty, N.K. Onay, T.T., 2015. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey. Journal of environmental management, 147, 227-235.
  • Lal, R. 2003. Soil erosion and the global carbon budget. Environ Int 29, 437–450.
  • Lal, R., 2018. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global change biology, 24(8), 3285-3301.
  • Lopez-Granados, F., Jurado-Exposito, M., Atenciano, S., Gracia-Ferrer, A., De La Orden, M.S., Gracia-Toreres, L., 2002. Spatial variability of agricultural soil parameters in Southern Spain. Plant Soil 246, 97-105.
  • Lorenz, K. Lal, R., 2018. Carbon Sequestration in Cropland Soils. In Carbon Sequestration in Agricultural Ecosystems. Springer, Chapter 3. pp. 137-173.
  • MEA, 2005. Ecosystems and human well‐being: Synthesis Millennium Ecosystem Assessment. Washington DC: Island Press.
  • Mishra, U., Ussiri, D. A., Lal, R., 2010. Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA. Soil and Tillage Research, 107(2), 88-96.
  • Nelson, D.W., Sommers, L.E., 1982. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Page, A.L., Miller, R.H. Keeney, D.R. (Ed) 2nd Ed. SSS of Am. Inc. Pub., Madison, Wisconsin.
  • Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dept. of Agric. Cric. 939.
  • Olson, K.R., Al-Kaisi, M., Lal, R., Lowery, B., 2014. Experimental considerations, treatments and methods in determining soil organic carbon sequestration rates. Soil Science Society of America Journal, 78, 348–360. Poeplau, C. Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33-41.
  • Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A., 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles, 22(1).
  • Ratnayake, R.R., Perera, B.M.A.C.A., Rajapaksha, R.P.S.K., Ekanayake, E.M.H.G.S., Kumara, R.K.G.K., Gunaratne, H.M.A.C., 2017. Soil carbon sequestration and nutrient status of tropical rice based cropping systems: Rice-Rice, Rice-Soya, Rice-Onion and Rice-Tobacco in Sri Lanka. Catena, 150, 17-23.
  • Reza, S. K., Nayak, D. C., Chattopadhyay, T., Mukhopadhyay, S., Singh, S. K., Srinivasan, R., 2016. Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach. Archives of agronomy and soil science, 62(7), 972-981.
  • Rhoades, J.D., Manteghi, N.A., Shouse, P.J., Alves, W.J., 1989. Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Sci. Soc. Am. J. 53, 433–439.
  • Rosemary, F., Indraratne, S.P., Weerasooriya, R., Mishra, U., 2017. Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena, 150, 53-61.
  • Tang, X.L., Xia, M.P., Pérez-Cruzado, C., Guan, F.Y., Fan, S.H., 2017. Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Scientific Reports, 7, 1–13.
  • Saxton, K.E., Rawls, W., Romberger, J.S., Papendick, R.I., 1986. Estimating generalized soil‐water characteristics from texture. Soil Sci. Soc. Ame. J., 50(4), 1031-1036.
  • Schloeder, C.A., Zimmerman, N.E., Jacobs, M.J., 2001. Comparison of methods for interpolating soil properties using limited data. Soil science society of America journal, 65(2), 470-479.
  • Sürücü, A., Ahmed, T.K., Gunal, E., Budak, M., 2019. Spatial Variability of Some Soil Properties in an Agricultural Field of Halabja City of Sulaimania Governorate, Iraq. Fresen. Environ. Bull. 29,193-206.
  • Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Ramamurthy, V., Lalitha, M., Kalaiselvi, B., 2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil & Tillage Research, 169, 25–34.
  • Yang, S.H., Liu, F., Song, X.D., Lu, Y.Y., Li, D.C., Zhao, Y.G. and Zhang, G.L., 2019. Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging: A case study in the Heihe River Basin, northwest China. Ecological Indicators, 102, 252-264.
  • Wang, Y., Zhang, X. Huang, C., 2009. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150(1-2), 141-149.
  • Weil, R.R., Brady, N.C., 2017. The nature and properties of soils. 15th Edition. Prentice Hall International. Pearson. Wilding, L.G., 1985. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. In: D.R. Nielsen and J. Bouma (Eds), Soil Spatial Variability, Pudoc, Wageningen, pp. 166- 193.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Elif Günal 0000-0003-0624-2919

Nurullah Acir 0000-0001-7591-0496

Hikmet Günal 0000-0002-4648-2645

Publication Date December 30, 2020
Submission Date November 9, 2020
Published in Issue Year 2020 Volume: 6 Issue: 2

Cite

APA Günal, E., Acir, N., & Günal, H. (2020). Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği. Anadolu Orman Araştırmaları Dergisi, 6(2), 68-81.
AMA Günal E, Acir N, Günal H. Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği. AJFR. December 2020;6(2):68-81.
Chicago Günal, Elif, Nurullah Acir, and Hikmet Günal. “Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli Ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği”. Anadolu Orman Araştırmaları Dergisi 6, no. 2 (December 2020): 68-81.
EndNote Günal E, Acir N, Günal H (December 1, 2020) Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği. Anadolu Orman Araştırmaları Dergisi 6 2 68–81.
IEEE E. Günal, N. Acir, and H. Günal, “Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği”, AJFR, vol. 6, no. 2, pp. 68–81, 2020.
ISNAD Günal, Elif et al. “Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli Ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği”. Anadolu Orman Araştırmaları Dergisi 6/2 (December 2020), 68-81.
JAMA Günal E, Acir N, Günal H. Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği. AJFR. 2020;6:68–81.
MLA Günal, Elif et al. “Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli Ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği”. Anadolu Orman Araştırmaları Dergisi, vol. 6, no. 2, 2020, pp. 68-81.
Vancouver Günal E, Acir N, Günal H. Orta Karadeniz Bölgesinde Tütün Ekim Alanlarının Karbon Depolama Potansiyeli ve Bitki Beslenme Durumlarının Mesafeye Bağlı Değişkenliği. AJFR. 2020;6(2):68-81.