Research Article
BibTex RIS Cite

Assessing climate change impacts on the spatial distribution of Castanea sativa Mill. using ecological niche modeling

Year 2023, Volume: 9 Issue: 2, 170 - 177, 01.01.2024
https://doi.org/10.53516/ajfr.1374398

Abstract

In recent decades, ecological niche modeling (ENM) has become integral for assessing climate change impacts on species distributions. In this study we conducted a comprehensive ENM using the Kuenm R package, employing MaxEnt as the modeling algorithm, to evaluate the impact of climate change on the habitat of Castanea sativa Mill., a non-wood forest species of high commercial interest in Turkiye, within the limits of the Trabzon Regional Directorate of Forestry (RDF). Predictors related to the species' ecology were carefully selected. The Future distributions of C. sativa for 2061–2080 under Shared Socio-economic Pathways (SSPs) 1-2.6, 2-4.5, and 5-8.5 were modeled using predictions from the Hadley Centre Global Earth Model HadGEM-GC31-LL. Extensive calibration modeling with Kuenm resulted in 434 models, and the most robust model, determined by statistical significance, predictive power, and complexity, revealed a drastic reduction in suitable areas for C. sativa (ranging from 86% to 99% across SSPs). The critical values of bio1 and bio5 were identified as primary factors. Predictions suggest potential migration of C. sativa to higher latitudes or elevations seeking more favorable climatic conditions. The substantial reduction in habitat suitability, even under SSP1-2.6, poses a significant threat, emphasizing the need for urgent measures to mitigate climate change impacts and ensure the species' survival and continuity.

Thanks

This manuscript was presented in 5th Non-Wood Forest Product Symposium and issued as only abstract in proceeding book. We deeply thank Trabzon Regional Directorate of Forestry for providing the data for the development of this study.

References

  • Atalay Dutucu, A., 2023. Modeling for present and future (2100) possible distribution of Anadolu Chestnut (Castanea sativa) in Anatolia. Journal of Human Sciences 20, 446–460.
  • Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P.W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
  • CFE, 2020. Non-wood Forest Products Assessment Report of Turkey 2020.
  • Ciordia, M., Feito, I., Pereira-Lorenzo, S., Fernández, A., Majada, J., 2012. Adaptive diversity in Castanea sativa Mill. half-sib progenies in response to drought stress. Environ Exp Bot 78, 56–63.
  • Cobos, M.E., Peterson, A.T., Barve, N., Osorio-Olvera, L., 2019. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281.
  • Conedera, M.; Tinner, W.; Krebs, P.; de Rigo, D.; Caudullo, G., 2016. Castanea sativa in Europe: distribution, habitat, usage and threats; European Atlas of Forest Tree Species. EU, Luxembourg. 78–79.
  • Conedera, M., Krebs, P., Gehring, E., Wunder, J., Hülsmann, L., Abegg, M., Maringer, J., 2021. How future-proof is Sweet chestnut (Castanea sativa) in a global change context? For Ecol Manage 494, 119320.
  • Duran, C., 2016. Distribution of chestnut (Castanea sativa Mill.) forests between Bartin and Sinop provinces (North of Turkey). International Geography Symposium.
  • Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species. Methods Ecol Evol 1, 330–342. Franklin, J., 2010. Mapping species distributions. Cambridge University Press, Cambridge.
  • Franklin, J., Serra-Diaz, J.M., Syphard, A.D., Regan, H.M., 2016. Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences 113, 3725–3734.
  • Freitas, T.R., Santos, J.A., Silva, A.P., Fraga, H., 2021. Influence of Climate Change on Chestnut Trees: A Review. Plants 10, 1463.
  • Freitas, T.R., Santos, J.A., Silva, A.P., Martins, J., Fraga, H., 2022. Climate Change Projections for Bioclimatic Distribution of Castanea sativa in Portugal. Agronomy 12, 1137.
  • Gomes-Laranjo, J., Peixoto, F., and Sang, H. W. W. F., 2006. Study of the temperature effect in three chestnut (Castanea sativa Mill.) cultivars’ behaviour, J. Plant Physiol., 163, 945–955.
  • Gomes-Laranjo, J., Almeida, P., Ferreira-Cardoso, J., Peixoto, F., 2009. Ecophysiological characterization of C. sativa trees growing under different altitudes. Acta Hortic 119–126.
  • Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol Modell 135, 147–186. Intergovernmental Panel on Climate Change (IPCC), 2023. Climate Change 2022 – Impacts, Adaptation and Vulnerability. Cambridge University Press.
  • Ketenoglu, O., Tug, G., Kurt, L., 2009. An ecological and syntaxonomical overview of Castanea sativa and a new association in Turkey. J Environ Biol 31, 81–86.
  • Menéndez-Miguélez, M., 2015. Modelización del Crecimiento y Producción de las Masas de Monte Bajo de Castanea sativa Mill. en el noroeste de España (Tesis de doctorado). Universidad de Oviedo, Oviedo. Menéndez-Miguélez, M., Álvarez-Álvarez, P., Majada, J., Canga, E., 2015. Effects of soil nutrients and environmental factors on site productivity in Castanea sativa Mill. coppice stands in NW Spain. New For (Dordr) 46, 217–233.
  • Metreveli, V., Kreft, H., Akobia, I., Janiashvili, Z., Nonashvili, Z., Dzadzamia, L., Javakhishvili, Z., and Gavashelishvili, A., 2023. Potential distribution and suitable habitat for Chestnut (Castanea sativa). Forests 14, 2076.
  • Morin, X., Lechowicz, M.J., 2008. Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biol Lett 4, 573–576.
  • OGM, 2023. Trabzon Regional Directorate of Forestry Castanea sativa (Kestane) Chestnut sample area information. Not open to the public. Access was provided in cooperation with Trabzon RDF.
  • Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361–371.
  • Pereira, M.G., Caramelo, L., Gouveia, C., Gomes-Laranjo, J., Magalhães, M., 2011. Assessment of weather-related risk on chestnut productivity. Natural Hazards and Earth System Sciences 11, 2729–2739.
  • Pérez-Girón, J.C., Álvarez-Álvarez, P., Díaz-Varela, E.R., Mendes Lopes, D.M., 2020. Influence of climate variations on primary production indicators and on the resilience of forest ecosystems in a future scenario of climate change: Application to sweet chestnut agroforestry systems in the Iberian Peninsula. Ecol Indic 113, 106199.
  • Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol Modell 190 231–259.
  • Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175.
  • Sarikaya, A., Orucu, O., 2019. Prediction of potential and future distribution areas of Anatolian Chestnut (Castanea sativa Mill.) by using maximum entropy (Maxent) modeling depending on climate change in Turkey. International Journal of Ecosystems and Ecology Science (IJEES), 9, 699–708.
  • Sivrikaya, F., and Özcan, G. E., 2023. Modeling spatial distribution of bark beetle susceptibility using the maximum entropy approach. Intercontinental Geoinformation Days, 6, 105-109.
  • Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., Prentice, I.C., 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 102, 8245–8250.
  • Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences 106, 19729–19736.
  • Williams, K.D., Copsey, D., Blockley, E.W., Bodas‐Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H.T., Hill, R., et al., 2018. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J Adv Model Earth Syst 10, 357–380.

İklim değişiminin Castanea sativa Mill.’in konumsal dağılımı üzerindeki etkilerinin ekolojik niş modelleme kullanılarak değerlendirilmesi

Year 2023, Volume: 9 Issue: 2, 170 - 177, 01.01.2024
https://doi.org/10.53516/ajfr.1374398

Abstract

Son yıllarda, ekolojik niş modelleme (ENM), iklim değişikliğinin tür dağılımları üzerindeki etkilerini değerlendirmenin ayrılmaz bir parçası haline gelmiştir. Bu çalışmada, Trabzon Orman Bölge Müdürlüğü (OBM) sınırları içerisinde, Türkiye'de ticari açıdan değerli bir odun dışı orman ürünü olan Castanea sativa Mill.'in iklim değişikliğinin habitatı üzerindeki etkisini değerlendirmek için Kuenm R paketini kullanarak ve modelleme algoritması olarak MaxEnt'i kullanan kapsamlı bir ENM gerçekleştirdik. Türün ekolojisine ilişkin tahmin ediciler dikkatle seçilmiştir. C. sativa'nın gelecekteki dağılımı (2061-2080), Hadley Centre Global Earth Model HadGEM-GC31-LL kullanılarak SSP 1-2.6, 2-4.5 ve 5-8.5 altında modellenmiştir. Kuenm ile yapılan kapsamlı kalibrasyon modellemesinde 434 model ortaya çıkmıştır. İstatistiksel anlamlılık, tahmin gücü ve karmaşıklığa göre belirlenen en uygun model, C. sativa için uygun alanlarda (SSP'ler arasında %86 ile %99 arasında değişen) ciddi bir azalma olduğunu ortaya çıkarmıştır. Bu azalma öncelikle bio1 ve bio5 değişkenlerinden kaynaklanmaktadır. Bu tahminler, C. sativa'nın daha uygun iklim koşullarını aramak için daha yüksek enlemlere veya yüksekliklere göç etme potansiyelini göstermektedir. SSP1-2.6 altında bile habitat uygunluğunun azalması, tür için ciddi bir tehdit oluşturmakta olup, iklim değişikliğinin etkilerini hafifletmek ve türün hayatta kalışını ve sürekliliğini sağlamak için acil önlemlerin alınmasını gerektirmektedir.

Thanks

This manuscript was presented in 5th Non-Wood Forest Product Symposium and issued as only abstract in proceeding book. We deeply thank Trabzon Regional Directorate of Forestry for providing the data for the development of this study.

References

  • Atalay Dutucu, A., 2023. Modeling for present and future (2100) possible distribution of Anadolu Chestnut (Castanea sativa) in Anatolia. Journal of Human Sciences 20, 446–460.
  • Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P.W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
  • CFE, 2020. Non-wood Forest Products Assessment Report of Turkey 2020.
  • Ciordia, M., Feito, I., Pereira-Lorenzo, S., Fernández, A., Majada, J., 2012. Adaptive diversity in Castanea sativa Mill. half-sib progenies in response to drought stress. Environ Exp Bot 78, 56–63.
  • Cobos, M.E., Peterson, A.T., Barve, N., Osorio-Olvera, L., 2019. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281.
  • Conedera, M.; Tinner, W.; Krebs, P.; de Rigo, D.; Caudullo, G., 2016. Castanea sativa in Europe: distribution, habitat, usage and threats; European Atlas of Forest Tree Species. EU, Luxembourg. 78–79.
  • Conedera, M., Krebs, P., Gehring, E., Wunder, J., Hülsmann, L., Abegg, M., Maringer, J., 2021. How future-proof is Sweet chestnut (Castanea sativa) in a global change context? For Ecol Manage 494, 119320.
  • Duran, C., 2016. Distribution of chestnut (Castanea sativa Mill.) forests between Bartin and Sinop provinces (North of Turkey). International Geography Symposium.
  • Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species. Methods Ecol Evol 1, 330–342. Franklin, J., 2010. Mapping species distributions. Cambridge University Press, Cambridge.
  • Franklin, J., Serra-Diaz, J.M., Syphard, A.D., Regan, H.M., 2016. Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences 113, 3725–3734.
  • Freitas, T.R., Santos, J.A., Silva, A.P., Fraga, H., 2021. Influence of Climate Change on Chestnut Trees: A Review. Plants 10, 1463.
  • Freitas, T.R., Santos, J.A., Silva, A.P., Martins, J., Fraga, H., 2022. Climate Change Projections for Bioclimatic Distribution of Castanea sativa in Portugal. Agronomy 12, 1137.
  • Gomes-Laranjo, J., Peixoto, F., and Sang, H. W. W. F., 2006. Study of the temperature effect in three chestnut (Castanea sativa Mill.) cultivars’ behaviour, J. Plant Physiol., 163, 945–955.
  • Gomes-Laranjo, J., Almeida, P., Ferreira-Cardoso, J., Peixoto, F., 2009. Ecophysiological characterization of C. sativa trees growing under different altitudes. Acta Hortic 119–126.
  • Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol Modell 135, 147–186. Intergovernmental Panel on Climate Change (IPCC), 2023. Climate Change 2022 – Impacts, Adaptation and Vulnerability. Cambridge University Press.
  • Ketenoglu, O., Tug, G., Kurt, L., 2009. An ecological and syntaxonomical overview of Castanea sativa and a new association in Turkey. J Environ Biol 31, 81–86.
  • Menéndez-Miguélez, M., 2015. Modelización del Crecimiento y Producción de las Masas de Monte Bajo de Castanea sativa Mill. en el noroeste de España (Tesis de doctorado). Universidad de Oviedo, Oviedo. Menéndez-Miguélez, M., Álvarez-Álvarez, P., Majada, J., Canga, E., 2015. Effects of soil nutrients and environmental factors on site productivity in Castanea sativa Mill. coppice stands in NW Spain. New For (Dordr) 46, 217–233.
  • Metreveli, V., Kreft, H., Akobia, I., Janiashvili, Z., Nonashvili, Z., Dzadzamia, L., Javakhishvili, Z., and Gavashelishvili, A., 2023. Potential distribution and suitable habitat for Chestnut (Castanea sativa). Forests 14, 2076.
  • Morin, X., Lechowicz, M.J., 2008. Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biol Lett 4, 573–576.
  • OGM, 2023. Trabzon Regional Directorate of Forestry Castanea sativa (Kestane) Chestnut sample area information. Not open to the public. Access was provided in cooperation with Trabzon RDF.
  • Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361–371.
  • Pereira, M.G., Caramelo, L., Gouveia, C., Gomes-Laranjo, J., Magalhães, M., 2011. Assessment of weather-related risk on chestnut productivity. Natural Hazards and Earth System Sciences 11, 2729–2739.
  • Pérez-Girón, J.C., Álvarez-Álvarez, P., Díaz-Varela, E.R., Mendes Lopes, D.M., 2020. Influence of climate variations on primary production indicators and on the resilience of forest ecosystems in a future scenario of climate change: Application to sweet chestnut agroforestry systems in the Iberian Peninsula. Ecol Indic 113, 106199.
  • Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol Modell 190 231–259.
  • Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175.
  • Sarikaya, A., Orucu, O., 2019. Prediction of potential and future distribution areas of Anatolian Chestnut (Castanea sativa Mill.) by using maximum entropy (Maxent) modeling depending on climate change in Turkey. International Journal of Ecosystems and Ecology Science (IJEES), 9, 699–708.
  • Sivrikaya, F., and Özcan, G. E., 2023. Modeling spatial distribution of bark beetle susceptibility using the maximum entropy approach. Intercontinental Geoinformation Days, 6, 105-109.
  • Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., Prentice, I.C., 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 102, 8245–8250.
  • Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences 106, 19729–19736.
  • Williams, K.D., Copsey, D., Blockley, E.W., Bodas‐Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H.T., Hill, R., et al., 2018. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J Adv Model Earth Syst 10, 357–380.
There are 30 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Articles
Authors

Daniela Cedano Gıraldo 0000-0001-7261-4210

Derya Mumcu Küçüker 0000-0002-7683-3565

Early Pub Date January 2, 2024
Publication Date January 1, 2024
Submission Date October 11, 2023
Acceptance Date December 8, 2023
Published in Issue Year 2023 Volume: 9 Issue: 2

Cite

APA Cedano Gıraldo, D., & Mumcu Küçüker, D. (2024). Assessing climate change impacts on the spatial distribution of Castanea sativa Mill. using ecological niche modeling. Anadolu Orman Araştırmaları Dergisi, 9(2), 170-177. https://doi.org/10.53516/ajfr.1374398
AMA Cedano Gıraldo D, Mumcu Küçüker D. Assessing climate change impacts on the spatial distribution of Castanea sativa Mill. using ecological niche modeling. AJFR. January 2024;9(2):170-177. doi:10.53516/ajfr.1374398
Chicago Cedano Gıraldo, Daniela, and Derya Mumcu Küçüker. “Assessing Climate Change Impacts on the Spatial Distribution of Castanea Sativa Mill. Using Ecological Niche Modeling”. Anadolu Orman Araştırmaları Dergisi 9, no. 2 (January 2024): 170-77. https://doi.org/10.53516/ajfr.1374398.
EndNote Cedano Gıraldo D, Mumcu Küçüker D (January 1, 2024) Assessing climate change impacts on the spatial distribution of Castanea sativa Mill. using ecological niche modeling. Anadolu Orman Araştırmaları Dergisi 9 2 170–177.
IEEE D. Cedano Gıraldo and D. Mumcu Küçüker, “Assessing climate change impacts on the spatial distribution of Castanea sativa Mill. using ecological niche modeling”, AJFR, vol. 9, no. 2, pp. 170–177, 2024, doi: 10.53516/ajfr.1374398.
ISNAD Cedano Gıraldo, Daniela - Mumcu Küçüker, Derya. “Assessing Climate Change Impacts on the Spatial Distribution of Castanea Sativa Mill. Using Ecological Niche Modeling”. Anadolu Orman Araştırmaları Dergisi 9/2 (January 2024), 170-177. https://doi.org/10.53516/ajfr.1374398.
JAMA Cedano Gıraldo D, Mumcu Küçüker D. Assessing climate change impacts on the spatial distribution of Castanea sativa Mill. using ecological niche modeling. AJFR. 2024;9:170–177.
MLA Cedano Gıraldo, Daniela and Derya Mumcu Küçüker. “Assessing Climate Change Impacts on the Spatial Distribution of Castanea Sativa Mill. Using Ecological Niche Modeling”. Anadolu Orman Araştırmaları Dergisi, vol. 9, no. 2, 2024, pp. 170-7, doi:10.53516/ajfr.1374398.
Vancouver Cedano Gıraldo D, Mumcu Küçüker D. Assessing climate change impacts on the spatial distribution of Castanea sativa Mill. using ecological niche modeling. AJFR. 2024;9(2):170-7.