Research Article
BibTex RIS Cite

Prediction of Bioactive Properties of Walnut Green Husks Using FT-IR Spectroscopy

Year 2018, Volume: 16 Issue: 1, 20 - 26, 23.04.2018
https://doi.org/10.24323/akademik-gida.415643

Abstract

Walnut is a widely consumed, nutritive and healthy
crop in the world. China, the US, and Iran are the leading countries of walnut production,
and Turkey is among the main producers ranking fourth with 180.000 tons of
production rate. Walnut green husk is a valuable agricultural by-product that
is commonly used in traditional medicine for alleviating pain and treating skin
diseases related to its antioxidant properties and health benefits. This study
aimed to find the effect of solvent type on extraction of bioactive compounds and
to predict the extraction effects in rapid and reliable method such as Fourier
transform infrared (FT-IR) spectroscopy. Solvent efficiency was evaluated using
different polarity solvents such as water, methanol, ethanol, acetone and
aqueous solutions of methanol, ethanol and acetone for the extraction of walnut
green husks. Analysis of variance results revealed that there was a significant
difference among the total phenolic contents and antioxidant activities of
different extracts. Antimicrobial activity analysis demonstrated that water
extracts showed higher activity against Staphylococcus
aureus
. According to the results of partial least squares (PLS) regression
analysis to predict the total phenol content and antioxidant capacity of
extracts, R2 values of calibration and cross validation models were
higher than 97% with root mean square error of calibration (RMSEC) and root
mean square error of cross validation (RMSECV) values ranging from 3.03 to
5.35. It can be concluded that PLS models had high predictive capability.

References

  • [1] Amini, M., Ghoranneviss, M., 2016. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT - Food Science and Technology 73: 178-184.
  • [2] Akça, Y., 2005. Ceviz Yetiştiriciliği. Tarım ve Köy işleri Bakanlığı Yayın Dairesi Başkanlığı Matbaası, Ankara.
  • [3] Stampar, F., Solar, A., Hudina, M., Veberic, R., Colaric, M., 2006. Traditional walnut liqueur – cocktail of phenolics. Food Chemistry 95: 627–631.
  • [4] Pereira, J.A., Oliveira, I., Sousa, A., Valentão P., Andrade, P.B., Ferreiraa, I.C.F.R., Ferreres, F., Bento, A., Seabra, R., Estevinhoa, L., 2007. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology 45(11): 2287–2295.
  • [5] Zhang, Z., Liao, L., Moore, J., Wua, J., Wang, Z., 2009. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry 113: 160–165.
  • [6] Kavak, D.D., Altiok, E., Bayraktar, O., Ülkü, S., 2010. Pistacia terebinthus extract: as a potential antioxidant, antimicrobial and possible glucuronidase inhibitor. Journal of Molecular Catalysis B: Enzymatic 64: 167–171.
  • [7] Zivković, J., Zeković, Z., Mujić, I., Vidović, S., Cvetković, D., Lepojević, Z., Nikolić, G., Trutić, N., 2010. Scavenging capacity of superoxide radical and screening of antimicrobial activity of Castanea sativa Mill. extracts. Czech Journal of Food Science 28(1): 61–68.
  • [8] Davis, R., Mauer, L.J., 2010. Fourier transform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria. Applied Microbiology 1: 1582-1594.
  • [9] Baran, Y., Ceylan, C., Camgoz, A., 2013. The roles of macromolecules in imatinib resistance of chronic myeloid leukemia cells by Fourier transform infrared spectroscopy. Biomedicine & Pharmacotherapy 67: 221-227.
  • [10] [1] Lahlali, R., Jiang, Y., Kumar, S., Karunakaran, C., Liu, X., Borondics, F., Hallin, E., Bueckert R., 2014. ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Frontiers in Plant Science 5: 747-757.
  • [11] Wenning, M., Breitenwieser, F., Konrad R., Huber, I., Busch U., Scherer S., 2014. Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. Journal of Microbiological Methods 103: 44-52.
  • [12] Vardin, H., Tay, A., Ozen, B., Mauer, L., 2008. Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics. Food Chemistry 108: 742–748.
  • [13] Jaiswal, P., Narayan Jha, S., Borah, A., Gautam, A., Grewal, M.K., Jindal, G., 2015. Detection and quantification of soymilk in cow–buffalo milk using attenuated total reflectance fourier transform infrared spectroscopy. Food Chemistry 168: 41–47.
  • [14] Bureau, S., Ruiz, D., Reich, M., Gouble, B., Bertrand, D., Audergon, J.M., Renard, C.M.G.C., 2009. Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chemistry 115: 1133–1140.
  • [15] Gürdeniz, G., Özen, B., 2009. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry 116: 519–525.
  • [16] Mata, P., Dominguez-Vidal, A., Bosque-Sendra, J.M., Ruiz-Medina, A., Cuadros-Rodríguez, L., Ayora-Cañada, M. J., 2012. Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Control 23: 449-455.
  • [17] Hirri, A., Bassbasi, M., Platikanov, S., Tauler, R., Oussama, A., 2016. FTIR Spectroscopy and PLS-DA classification and prediction of four commercial grade virgin olive oils from Morocco. Food Analytical Methods 9: 974–981.
  • [18] Park, Y.S., Cvikrová, M., Martincová, O., Ham, K.S., Kang, S.G., Park, Y.K., Namiesnik, J., Rombolà, A.D., Jastrzebskif, Z., Gorinstein, S., 2015. In vitro antioxidative and binding properties of phenolics in traditional, citrus and exotic fruits. Food Research International 74: 37–47.
  • [19] Li,, B., Wang, H., Zhao, Q., Ouyang J., Wu Y., 2015. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chemistry 181: 25–30.
  • [20] Fernández-Agulló, A., Pereira, E., Freirea, M.S., Valentão, P., Andrade, P.B., González-Álvareza, J., Pereira, J.A., 2013. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products 42: 126–132.
  • [21] Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144–158.
  • [22] Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T., 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and scavenging effects. Chemical and Pharmaceutical Bulletin 36: 2090–2097.
  • [23] Ozturk, I., Caliskan, O., Tornuk, F., Ozcan, N., Yalcin, H., 2015. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT - Food Science and Technology 63: 144–151.
  • [24] Ajaiyeoba, E.O., Fadare, D.A., 2006. Antimicrobial potential of extracts and fractions of the African walnut – Tetracarpidium conophorum. African Journal of Biotechnology 5(22): 2322-2325.
  • [25] Schulz, H., Baranska, M. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy 43(1): 13-25.
  • [26] Agarwal R., Tandon P., Gupta V.D., 2006. Phonon dispersion in poly (dimethylsilane). Journal of Organometallic Chemistry 691(13): 2902-2908.
  • [27] Lu, X., Wang J., Al-Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry 129(2): 637-644.
  • [28] Graham Solomon, T.W., Craig Fryhle, S.S., 2014. Families of Carbon Compounds. In Organic Chemistry (p. 86–98). John Wiley & Sons Singapore Pte. Ltd. ISBN 978- 975-8431-87-8.
  • [29] Adiani, V., Gupta, S., Ambolikara, R., Variyar, P.S., 2018. Development of rapid method to assess microbial quality of minimally processed pomegranate arils using FTIR. Sensors and Actuators B: Chemical 260: 800-807.

Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi

Year 2018, Volume: 16 Issue: 1, 20 - 26, 23.04.2018
https://doi.org/10.24323/akademik-gida.415643

Abstract

Ceviz (Juglans
regia
L.) sağlık ve beslenme açısından çok değerli yağlı tohumlardan
biridir. Dünya ceviz üretiminde ilk sıralarda yer alan ülkelerden Çin, İran ve
ABD’den sonra 180.000 tonluk üretimiyle Türkiye gelmektedir. Ceviz zengin
besleyici öğelere sahip olmakla birlikte sağlık üzerine faydalı özellikleri
bakımından da önemi artarak anlaşılan bir üründür. Cevizin iç kısmının önemi
bilinmekle birlikte ceviz kabuğu genellikle atılmaktadır. Bu çalışmanın amacı, farklı
çözgenler kullanılarak kurutulmuş yeşil ceviz kabuklarından ekstraktlar elde
edilmesi ve bu ekstraktların biyoaktif, antimikrobiyal özelliklerinin ve antioksidan
kapasitesinin belirlenerek Fourier dönüşümlü kızılötesi (FT-IR)
  spektroskopisi ile tahmin edilmesidir. Farklı
ekstraktların toplam fenolik madde ve antioksidan aktiviteleri arasında
istatistiksel açıdan önemli bir farklılık bulunmuştur (P<0.05). Antimikrobiyal
analiz sonuçlarına göre ceviz kabuklarının sulu ekstraktları
Staphylococcus aureus bakterisi üzerine
etkinliği daha fazla bulunmuştur. FT-IR spektral verinin kısmi en küçük kareler
(PLS) regresyon analizi sonucunda elde edilen tahmini ve ölçülen toplam fenolik
madde ve antioksidan aktivite değerlerinin açıklama (belirtme) katsayısı
>%97, kalibrasyon ve çapraz geçerlilik hatalarının ortalama karekökü
değerleri 3.03 ile 5.35 aralığında bulunmuştur. Elde edilen bulgular PLS
analizi ile oluşturulan modellerin iyi tahmin etme kapasitesine sahip olduğunu
göstermektedir.

References

  • [1] Amini, M., Ghoranneviss, M., 2016. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT - Food Science and Technology 73: 178-184.
  • [2] Akça, Y., 2005. Ceviz Yetiştiriciliği. Tarım ve Köy işleri Bakanlığı Yayın Dairesi Başkanlığı Matbaası, Ankara.
  • [3] Stampar, F., Solar, A., Hudina, M., Veberic, R., Colaric, M., 2006. Traditional walnut liqueur – cocktail of phenolics. Food Chemistry 95: 627–631.
  • [4] Pereira, J.A., Oliveira, I., Sousa, A., Valentão P., Andrade, P.B., Ferreiraa, I.C.F.R., Ferreres, F., Bento, A., Seabra, R., Estevinhoa, L., 2007. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology 45(11): 2287–2295.
  • [5] Zhang, Z., Liao, L., Moore, J., Wua, J., Wang, Z., 2009. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry 113: 160–165.
  • [6] Kavak, D.D., Altiok, E., Bayraktar, O., Ülkü, S., 2010. Pistacia terebinthus extract: as a potential antioxidant, antimicrobial and possible glucuronidase inhibitor. Journal of Molecular Catalysis B: Enzymatic 64: 167–171.
  • [7] Zivković, J., Zeković, Z., Mujić, I., Vidović, S., Cvetković, D., Lepojević, Z., Nikolić, G., Trutić, N., 2010. Scavenging capacity of superoxide radical and screening of antimicrobial activity of Castanea sativa Mill. extracts. Czech Journal of Food Science 28(1): 61–68.
  • [8] Davis, R., Mauer, L.J., 2010. Fourier transform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria. Applied Microbiology 1: 1582-1594.
  • [9] Baran, Y., Ceylan, C., Camgoz, A., 2013. The roles of macromolecules in imatinib resistance of chronic myeloid leukemia cells by Fourier transform infrared spectroscopy. Biomedicine & Pharmacotherapy 67: 221-227.
  • [10] [1] Lahlali, R., Jiang, Y., Kumar, S., Karunakaran, C., Liu, X., Borondics, F., Hallin, E., Bueckert R., 2014. ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Frontiers in Plant Science 5: 747-757.
  • [11] Wenning, M., Breitenwieser, F., Konrad R., Huber, I., Busch U., Scherer S., 2014. Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. Journal of Microbiological Methods 103: 44-52.
  • [12] Vardin, H., Tay, A., Ozen, B., Mauer, L., 2008. Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics. Food Chemistry 108: 742–748.
  • [13] Jaiswal, P., Narayan Jha, S., Borah, A., Gautam, A., Grewal, M.K., Jindal, G., 2015. Detection and quantification of soymilk in cow–buffalo milk using attenuated total reflectance fourier transform infrared spectroscopy. Food Chemistry 168: 41–47.
  • [14] Bureau, S., Ruiz, D., Reich, M., Gouble, B., Bertrand, D., Audergon, J.M., Renard, C.M.G.C., 2009. Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chemistry 115: 1133–1140.
  • [15] Gürdeniz, G., Özen, B., 2009. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry 116: 519–525.
  • [16] Mata, P., Dominguez-Vidal, A., Bosque-Sendra, J.M., Ruiz-Medina, A., Cuadros-Rodríguez, L., Ayora-Cañada, M. J., 2012. Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Control 23: 449-455.
  • [17] Hirri, A., Bassbasi, M., Platikanov, S., Tauler, R., Oussama, A., 2016. FTIR Spectroscopy and PLS-DA classification and prediction of four commercial grade virgin olive oils from Morocco. Food Analytical Methods 9: 974–981.
  • [18] Park, Y.S., Cvikrová, M., Martincová, O., Ham, K.S., Kang, S.G., Park, Y.K., Namiesnik, J., Rombolà, A.D., Jastrzebskif, Z., Gorinstein, S., 2015. In vitro antioxidative and binding properties of phenolics in traditional, citrus and exotic fruits. Food Research International 74: 37–47.
  • [19] Li,, B., Wang, H., Zhao, Q., Ouyang J., Wu Y., 2015. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chemistry 181: 25–30.
  • [20] Fernández-Agulló, A., Pereira, E., Freirea, M.S., Valentão, P., Andrade, P.B., González-Álvareza, J., Pereira, J.A., 2013. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products 42: 126–132.
  • [21] Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144–158.
  • [22] Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T., 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and scavenging effects. Chemical and Pharmaceutical Bulletin 36: 2090–2097.
  • [23] Ozturk, I., Caliskan, O., Tornuk, F., Ozcan, N., Yalcin, H., 2015. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT - Food Science and Technology 63: 144–151.
  • [24] Ajaiyeoba, E.O., Fadare, D.A., 2006. Antimicrobial potential of extracts and fractions of the African walnut – Tetracarpidium conophorum. African Journal of Biotechnology 5(22): 2322-2325.
  • [25] Schulz, H., Baranska, M. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy 43(1): 13-25.
  • [26] Agarwal R., Tandon P., Gupta V.D., 2006. Phonon dispersion in poly (dimethylsilane). Journal of Organometallic Chemistry 691(13): 2902-2908.
  • [27] Lu, X., Wang J., Al-Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry 129(2): 637-644.
  • [28] Graham Solomon, T.W., Craig Fryhle, S.S., 2014. Families of Carbon Compounds. In Organic Chemistry (p. 86–98). John Wiley & Sons Singapore Pte. Ltd. ISBN 978- 975-8431-87-8.
  • [29] Adiani, V., Gupta, S., Ambolikara, R., Variyar, P.S., 2018. Development of rapid method to assess microbial quality of minimally processed pomegranate arils using FTIR. Sensors and Actuators B: Chemical 260: 800-807.
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Research Papers
Authors

Pınar Kadiroğlu 0000-0002-9730-8655

Halil Ekici This is me 0000-0002-8750-5591

Publication Date April 23, 2018
Submission Date July 17, 2017
Published in Issue Year 2018 Volume: 16 Issue: 1

Cite

APA Kadiroğlu, P., & Ekici, H. (2018). Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi. Akademik Gıda, 16(1), 20-26. https://doi.org/10.24323/akademik-gida.415643
AMA Kadiroğlu P, Ekici H. Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi. Akademik Gıda. April 2018;16(1):20-26. doi:10.24323/akademik-gida.415643
Chicago Kadiroğlu, Pınar, and Halil Ekici. “Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi”. Akademik Gıda 16, no. 1 (April 2018): 20-26. https://doi.org/10.24323/akademik-gida.415643.
EndNote Kadiroğlu P, Ekici H (April 1, 2018) Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi. Akademik Gıda 16 1 20–26.
IEEE P. Kadiroğlu and H. Ekici, “Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi”, Akademik Gıda, vol. 16, no. 1, pp. 20–26, 2018, doi: 10.24323/akademik-gida.415643.
ISNAD Kadiroğlu, Pınar - Ekici, Halil. “Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi”. Akademik Gıda 16/1 (April 2018), 20-26. https://doi.org/10.24323/akademik-gida.415643.
JAMA Kadiroğlu P, Ekici H. Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi. Akademik Gıda. 2018;16:20–26.
MLA Kadiroğlu, Pınar and Halil Ekici. “Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi”. Akademik Gıda, vol. 16, no. 1, 2018, pp. 20-26, doi:10.24323/akademik-gida.415643.
Vancouver Kadiroğlu P, Ekici H. Yeşil Ceviz Kabuklarının Biyoaktif Özelliklerinin FT-IR Spektroskopi Yöntemiyle Tahmin Edilmesi. Akademik Gıda. 2018;16(1):20-6.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).