Review
BibTex RIS Cite

Baklagillerin Bileşimi

Year 2018, Volume: 16 Issue: 4, 483 - 496, 31.12.2018
https://doi.org/10.24323/akademik-gida.505547

Abstract

Baklagil bitkileri bir
taraftan havanın azotunu toprağa bağlama yeteneğindeki bakterileri köklerinde
bulundururken diğer taraftan pek çok kültür bitkisinin yetişemediği zor
koşullarda yetişerek insanların gıda gereksiniminin karşılanmasında önemli rol
oynamaktadır. İnsanlar tarafından binlerce yıldır tüketilmekte olan baklagiller
protein, diyet lif, mineraller (demir, çinko ve magnezyum) ve vitaminler (başta
folat) açısından önemli gıdalardır. Bunun yanı sıra yapısında bulunan pek çok
fitokimyasallar, saponinler ve tanenler nedeniyle kalp damar hastalıkları ve
kansere karşı koruyucu etkiye sahiptirler. Glisemik indeksleri de düşüktür.
Birleşmiş Milletler 2016 yılını “Baklagiller Yılı” olarak ilan etmiştir. Bu makalede
baklagillerin yapısında bulunan besin ögeleri detaylı olarak açıklanmıştır.

References

  • [1] Anonim (2016). 2016 BM Uluslararası Bakliyat Yılı. .https://www.tarim.gov.tr/ ABDGM/Belgeler/Uluslararas%C4%B1%20Kurulu% C5%9Flar/2016%20 BAKL% C4%B0YAT%20YILI %20en%20son.pdf.
  • [2] Salunke, D.K., Kadam, S.S. (1989). Handbook of World Food Legumes: nutritional chemistry, processing technology, and utilization. Vol. 1. CRC Pres, 310, Boca Raton, USA.
  • [3] FAO (2016). Let the countdown to the international year of pulses begin. www.fao.org/zhc/detail-events/en/c/358100/.
  • [4] McCrory, M.A., Hamaker, B.R., Lovejoy, J.C., Eichelsdoerfer, P.E. (2010). Pulse consumption, satiety, and weight management. Advances in Nutrition, 1, 17-30.
  • [5] Craig, W.J. (2009). Health effects of vegan diets. American Journal of Clinical Nutrition, 89 (5), 1627-1633.
  • [6] Craig, W.J., Mangels, A.R. (2009). Position of the American Dietetic Association: Vegetarian diets. Journal of the American Dietetic Association, 109 (7), 1266-1282.
  • [7] FAOSTAT (2016). Food and agriculture data. www.fao.org/faostat/en/#home.
  • [8] TÜİK (2016). Tarım İstatistikleri. https://biruni.tuik.gov.tr/medas/?kn= 132&locale =tr.
  • [9] Lopez-Amoro’s, M.L., Hernandez, T., Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. Journal of Food Composition and Analysis, 19, 277-283.
  • [10] Marinangeli, C.P., Jones, P.J. (2011). Whole and fractioned yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. British Journal of Nutrition, 105 (1), 110-117.
  • [11] TURKOMP (2014). Ulusal gıda kompozisyon veri tabanı. www.turkomp.gov.tr/foods.
  • [12] Kapoor, V.P., Banerji, R., Prakash, D. (1992). Leguminous seeds: potential industrial sources forgums, fat and protein. Journal of Scientific & Industrial Research, 51, 1-22.
  • [13] Roy, A.F., Boye, J.I., Simpson, B.K. (2010). A review bioactive proteins and peptides in pulse crops: Pea, chickpea, lentil. Food Research International, 43, 432-442.
  • [14] Şehirali, S. (1988). Yemeklik Dane Baklagiller. Ankara Üniversitesi Ziraat Fakültesi Yayınları Ders Kitabı, 314, Ankara.
  • [15] Williams, P., Nakkoul, H. (1983). Some new concepts of food legume quality evaluation at ICARDA. Proceedings of the International Workshop on Faba Beans, Kabuli Chickpeas and Lentils in the 1980s, 16-20 May, ICARDA, 395, Aleppo/Syria.
  • [16] Pysz, M., Polaszczyk, S., Leszczyńska, T., Piatkowska, E. (2012). Effect of microwave field on trypsin inhibitors activity and protein quality of broad bean seeds (Vicia faba var. major). Acta Scientiarum Polonorum Technologia Alimentaria, 11 (2), 193-199.
  • [17] Sharma, B. (1988). Lentils and chickpeas in human nutrition conditions: present state and prospects. Herkes İçin Mercimek Sempozyumu, 29-30 Eylül, Marmaris/Muğla, 157-171.
  • [18] Rehman, Z.U., Shah, W.H. (2005). Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry, 91, 327-331.
  • [19] Martin-Cabrejas, M.A., Cuadrado, C., Hernandez, T., Diaz, S., Esteban, R.M. (2009). The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry, 114,1063-1068.
  • [20] Youssef, M.M., Hamza, M.A., Abd El-Aal, M.H., Shekib, L.A., El Banna, A.A. (1986). Amino acid composition and in vitro digestibility of some Egyptian foods made from faba bean (Vicia faba L.). Food Chemistry, 22, 225-233.
  • [21] Candela, M., Astiasaran, I., Bello, J. (1997). Cooking and warm-holding: Effect on general composition and aminoacids of kidney beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and lentils (Lens culinaris). Journal of Agricultural and Food Chemistry, 45, 4763-4767.
  • [22] Ma, Y., Bliss, F.A. (1978). Seed proteins of common bean. Crop Science, 18, 431-437.
  • [23] Stanley, D.W., Aguilera, J.M. (1985). A review textural defects in cooked reconstituted legumes. The influence of structure and composition. Journal of Food Biochemistry, 9, 277-323
  • [24] Drewnowski, A. (2010). The nutrient rich foods index helps to identify healthy, affordable foods. American Journal of Clinical Nutrition, 91, 1095–1101.
  • [25] Hao, X., Jiangui, L., Qinghua, S., Jusang, Z., Xiaoling, H.E., Hao, M.A. (2009). Characterization of a novel legumin alpha-amylase inhibitor from chickpeas (Cicer arietinum L.) seeds Bioscience Biotechnology and Biochemistry, 73(5), 1200-1202.
  • [26] Udahogora M, (2012). Health benefits and bioactive compounds in field peas, faba beans, and chickpeas, In: Cereals and Pulses: Nutraceutical Properties and Health Benefits. Yu, L.L., Tsao, R., Shahidi, F. (eds), John Wiley and Sons, 209-212, Hoboken, USA.
  • [27] Ye, X.Y., Ng, T.B. (2002). Isolation of a new cyclophilin like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sciences, 70, 1129-1138.
  • [28] Zhang, Y., Lewis, K. (1997). Fabatins; new antimicrobial plant peptides. FEMS Microbiology Letters 149, 59-64.
  • [29] Carvalho, A.O., Gomes, V.M. (2009). Plant defensins. Prospects for the biological functions and biotechnological properties. Peptides, 30, 1007-1020.
  • [30] Wang, J.H., Zhang, X.Q., Wang, H.X., Ng, T.B. (2006). A mitogenic defensin from white cloud beans (Phaseolus vulgaris). Peptides, 27(9), 2075-2081.
  • [31] Rüdiger, H. (1998). Plant lectins-more than just tools for glycoscientists: occurrence, structure, and possible functions of plant lectins. Acta Analytica, 161,130-152.
  • [32] Peumans, W.J., Van Damme, E.J. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347-352.
  • [33] Campos-Vega, R., Reynoso-Camacho, R., Pedraza-Aboytes, G., Acosto-Gallegos, J.A., Guzman-Maldonado, S. H., Paredes-Lopez, O., Oomah, B. D., Loarca-Pina,G. (2009). Chemical composition and in-vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L.). Journal of Food Science, 74, 59-65.
  • [34] Pryme, I.F, Bardocz, S., Pusztai, A. Ewen, S.W (2006). Suppression of growth of tumor cell lines in-vitro and tumors in vivo by mistletoe lectins. Histology Histopathology, 21(3), 285-299.
  • [35] Hartmann, R., Meisel, H. (2007). Food-derived peptides with biological activity: From research to food applications. Current Opinion in Biotechnology, 18, 163-169.
  • [36] Sames, K., Shumacher, U., Halato, Z., Van Damme, E.S., Peumans, W.J., Asmus B. (2001). Lectins as bioactive plant proteins: A potential in cancer treatment. Critical Reviews in Food Science and Nutrition, 45, 425-445.
  • [37] Wang, H., Ng, T.B., Ooi, V.E., Liu, W.K. (2000). Effects of lectins with different carbonhydrate-binding specifities on hepatoma, chriocarcinoma, melanoma and osteosarcomacell lines. The International Journal of Biochemistry & Cell Biology, 32(3), 365-372.
  • [38] Jordinson, M., El-Hariry, I., Calnan, D., Calam, J., Pignatelli, M. (1999). Vicia fabaagglutinin, the lectin present in broad beans, stimulates differentiation of undifferentiated colon cancer cells. Gut, 44, 709–714.
  • [39] Pryme, I.F., Bardocz, S. (2001). Anti-cancer therapy: Diversion of polyamines in the gut. European Journal of Gastroenterology & Hepatology, 13, 1041-1046.
  • [40] Bardocz, S., Grant, G., Duguid, T.J., Brown, D. ., Pusztai, A., Pryme, I.F. (1997). Intracellular levels of polyamines in Krebs II lymphosarcoma cells in mice fed phytohaemagglutinin-containing diets are coupled with altered tumourgrowth. Cancer Letters, 121, 25–29.
  • [41] Pusztai, A., Grant, G., Buchan, W.C., Bardocz, S., De Carvalho, A.F., Ewen, S.W. (1998). Lipid accumulation in obese Zucker rats is reduced by inclusion of raw kidney bean (Phaseolus vulgaris) in the diet. British Journal of Nutrition, 79, 213–221.
  • [42] Hong, G.L., Ju-Zhen W., Guo-Wei L., Yang H.S. (2006). Novel angiotensin I-converting enzyme inhibitory peptides isolated from alcalase hydrolysate of mung bean protein. Journal of Peptide Science, 12, 509-514.
  • [43] Aluko, E.R. (2008). Determination of nutritional and bioactive properties of peptides in enzymatic peac Chickpea, and mung bean protein hydrolisates. Journal of AOAC International, 91(4), 947-956.
  • [44] Reddy, N.R., Pierson, M.D., Sathe, S.K., Salukhe, D.K. (1984). Chemical nutritional and physicological aspects of dry bean charbohydrates: A review. Food Chemistry, 13, 25-68.
  • [45] Devos, P. (1988). Nutritional value of lentils and chickpeas and changes during processing, Herkes İçin Mercimek Sempozyumu, 29-30 Eylül, Marmaris/Muğla, 174-196.
  • [46] Hoover, R., Hughes, T., Chung, H.J., Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food Research International, 43, 399-413.
  • [47] Liu, Q., Donner, E., Yin, Y., Huang, R.L., Fan, M.Z. (2006). The physicochemical properties and in vitro digestibility of selected cereals, tubers, and legumes grown in China. Food Chemistry, 99, 470-477.
  • [48] Englyst, H.N., Cummings, J.H. (1987). Digestion of polysaccharides of potato in the small intesitine of man. American Journal of Clinical Nutrition, 45, 423-428.
  • [49] Lehmann, U., Robin, F. (2007). Slowly digestible starch-It's structure and health implications: A review. Trends in Food Science and Technology, 18, 346-355.
  • [50] Hoover, R., Zhou, Y. (2003). In-vitro and in-vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes-A review. Carbohydrate Polymers, 54, 401-417.
  • [51] Sajilata, M.G.,Singhal, R.S., Kulkarni, P.R. (2006). Resistant starch- A review. Comprehensive Reviews in Food Science and Food Safety, 5, 1-17.
  • [52] Englyst, H.N., Kingman, S.M., Cummings, J.H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, 33-39.
  • [53] Sekirov, I., Russell, S.L., Antunes, C.M., Finlay, B.B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90, 859-904.
  • [54] Gonzalez, A., Stombaugh, J., Lozupone, C., Turnbaugh, P.J., Gordon, J.I.,Knight, R. (2011). The mind-body-microbial continuum. Dialogues in Clinical Neuroscience, 13, 55-62.
  • [55] Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., Brouns, F., Bornet, F.R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. American Journal of Clinical Nutrition, 80, 1658–1664.
  • [56] Louis, P., Scott, K.P., Duncan, S.H., Flint, H.J. (2007). Understanding the effects ofdiet on bacterial metabolism in the large intestine. Journal of Applied Microbiology, 102, 1197- 1208.
  • [57] Higgins, J.A. (2013). Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Current Opinion in Gastroenterology, 29, 190–194.
  • [58] Ley, R.E., Turnbaugh, P.J., Klein, S., Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.
  • [59] Phillips, J., Muir, J.G., Birkett, A., Lu, Z.X., Jones, G.P., O’Dea, K., Young, G.P. (1995). Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. American Journal of Clinical Nutrition, 62, 121–130.
  • [60] Tomlin, J., Read, N.W. (1990). The effect of resistant starch on colon function inhumans. British Journal of Nutrition, 64, 589-595.
  • [61] Le Leu, R., Conlon, M., Winter, J., Humphreys, K., Michael, M., Hu, Y., Bird, A., Topping, D., Young, G. (2012). Effect of high red meat intake and resistant starch in humans on risk factors for colorectal cancer. Journal of Gastroenterology and Hepatology, 27, 24-25.
  • [62] Burn, J., Bishop, D.T., Mecklin, J., Macrae, F., Moeslein, G., Olschwang, S., Bisgaard, M., Ramesar, R., Elliott, F., Mathers, J. (2008). Results of the CAPP-2-trial (aspirin and resistant starch) in HNPCC gene carriers. European Journal of Cancer, Suppl, 6, 25.
  • [63] Tovar, J., Melito, C. (1996). Steam-cooking and dry heating produce resistant starch in legumes. Journal of Agricultural and Food Chemistry, 44, 2642-2645.
  • [64] Noah, L., Guillan, F., Bouchet, B., Buleon, A., Molis, C., Gratas, M., Champ, M. (1998). Digestion of carbonhydrate from white beans (Phaseolus vulgaris L.) in healthy humans. Journal of Nutrition, 128, 977-985.
  • [65] Snow, P., O’Dea, K. (1981). Factors effecting the rate of hydrolysis. Nutrition, 34, 2721.
  • [66] Jenkins, D.J., Thorne, M.J., Camelon, K., Jenkins, A., Rao, A.V., Taylor, R.H., Thompson, L.U., Kalmusky, J., Reichert, R., Francis, T. (1982). Effect of processing on digestibility and the blood glucose response: A study of lentils. American Journal of Clinical Nutrition, 36, 1093-1101.
  • [67] Tovar, J., Bjorck, I.M., Asp, N.G. (1992). Incomplete digestion of legume starches in rats: A study of precooked flours containing retrograded and physically inaccessible starch fractions. Journal of Nutrition, 122, 1500-1507.
  • [68] Benmoussa, M., Moldenhauer, K.A.K., Hamaker, B.R. (2007). Rice amilopectin fine structure variability affects starch digestion properties. Journal of Agricultural and Food Chemistry, 55, 1475-1479.
  • [69] Chung, H.J., Liu, Q., Peter, P.K., Fan, M.Z., Yada, R. (2008). In-vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from coomon bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Research International, 41, 869-875.
  • [70] Chung, H.J., Liu, Q., Hoover, R. (2009). Impact of annealing and treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75, 436-447.
  • [71] Azarpazhooh, E., Boye, J.I. (2013). Composition of Processed Dry Beans and Pulses In: Dry Beans and Pulses Production, Processing and Nutrition. Siddiq and Uebersax M. A. (eds) John Wiley and Sons, 103-112, Hoboken.
  • [72] Chung, H.J., Liu, Q., Hoover, R. (2010). Efect of single and dual hydrothermal treatments on the crystalline structure, thermal properties and nutritional fractions of pea, lentil, and navy bean starches. Food Research International, 43, 501-508.
  • [73] Chung, H., Liu, Q., Donner, E., Hoover, R., Warkentin, T. D., Vanderberg, B. (2008). Composition, molecular structure, properties, and in vitro digestibility of starches from newly released Canadian pulse cultivars. Cereal Chemistry, 85, 471-479.
  • [74] Rehman, Z.U., Salariya, A.M. (2005). The effects of hydrothermal processing on antinutrients, protein and starch digestibility of food legumes. International Journal of Food Science and Technology, 40, 695-700.
  • [75] De Almeida Costa, G.E., Da Silva Queiroz-Monici, K., Pissini Machado Reis, S.M., De Oliveira, A.C. (2006). Chemical composition, dietary fiber and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94, 327-330.
  • [76] Aguilera, Y., Martin-Cabrejas, M.A., Benitez, V., Molla, E., Lopez-Andreu, F.J., Esteban, R.M. (2009). Changes in carbohydrate fraction during dehydration process of common legumes. Journal of Food Composition and Analysis, 22, 678-683.
  • [77] Kuto, T., Golob, T., Ka, M., Plestenjak, A. (2003). Dietary fiber content of dry and processed beans. Food Chemistry, 80, 231-235.
  • [78] Pujola, M., Farreras, A., Casanas, F. (2007). Protein and starch content of raw, soaked and cooked beans (Phaseolus vulgaris L.). Food Chemistry, 102, 1034-1041.
  • [79] Wang, N., Hatcher, D.W., Tyler, R.T., Toews, R., Gawalko, E.J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43, 589-594.
  • [80] Yadav, B.S., Sharma, A., Yadav, R.B. (2010). Effect of storage on resistant starch content and in-vitro starch digestibility of some pressure-cooked cereals and legumes commonly used in India. International Journal of Food Science and Technology, 45, 2449-2455.
  • [81] Shiga, T.M., Cordenunsi, B.R., Lajolo, F.M. (2009). Effect of cooking on non-starchpolysaccharides of hard-to cook beans. Carbohydrate Polymers, 76, 100-109.
  • [82] Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 33, 103-148.
  • [83] Oakenfull, D. (2001). Physicochemical properties of dietary fiber: Overview, In: Handbook of Dietary Fibre. Sungsoo Cho, S., Dreher, M. L. (eds), Marcel Dekker Inc., 195-206. New York, USA.
  • [84] Edwards, C.A. (1995). The physiological effects of dietary fibre, In: Dietary Fibre in Health and Disease. Kristchevsky, D., Bonfield, C. (eds), Eagan Press., 58-71, St. Paul, MN, USA.
  • [85] Taranathan, R. N., Mahadevamma, S. (2003). Grain legumes-A boon to human nutrition. Trends in Food Science and Technology, 14, 507-518.
  • [86] Olson, A., Gray, G., Chiu, M. (1987). Chemistry and analysis of soluble dietary fiber. Food Technology, 41, 71-80.
  • [87] Vidal-Valverde, C., Frias, J., Valverde, S. (1992). Effects of processing on the soluble carbohydrate content of lentils. Journal of Food Protection, 55, 301-306.
  • [88] Kadouh, H., Zhou, K. (2012). Nutraceutical Properties and Health Benefits, In: Cereals and Pulses. Yu, L., Shahidi, F.,Tsao, R., (eds), John Wiley and Sons, 188-189, Hoboken, NJ, USA.
  • [89] Campos-Vega, R., Loarca-Pina, G., Oomah, B.D. (2009). Minor components of pulses and their potential impact on human health. Food Research International, 43, 461- 482.
  • [90] Panlasigui, L.N., Panlilio, L.M., Madrid, J.C. (1995). Glycemic response in normal subjects to five different legumes commonly used in the Philippines. International Journal of Food Science and Nutrition, 46, 155-160.
  • [91] Kanaya, K., Tada, S., Mori, B., Takahashi, R., Ikegami, S., Kurasawa, S., Okuzaki, M., Mori, Y., Innami, S. (2007). A simplified modification of the AOAC official method for determination of total dietary fiber using newly developed enzymes: preliminary interlaboratory study. Journal AOAC International, 90, 225-237.
  • [92] Khatoon, N., Prakash J. (2004). Nutritional quality of microwave-cooked and pressure-cooked legumes. International Journal of Food Science and Nutrition, 55, 441-448.
  • [93] Martin-Cabrejas, M.A., Sanfiz, B., Vidal, A., Molla, E., Esteban, R., Lopez-Andreu, F.J. (2004). Effect of fermentation and autoclaving on dietary fiber fractions and anti nutritional factors of beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52, 261-266.
  • [94] Bazzano, L.A., He, J., Ogden, L.G., Loria, C.M., Whelton, P.K. (2003). Dietary fiber intake and reduced risk of coronary heart disease in US men and women- The National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Archives of Internal Medicine, 163, 1897-1904.
  • [95] Brown, L., Rosner, B., Willett, W.W., Sacks, F.M. (1999). Cholesterol-lowering effects of dietary: a meta analysis. American Journal of Clinical Nutrition, 69(1), 30-42.
  • [96] Streppel, M.T., Arends, L.R., van’t Veer, P., Grobbee, D.E., Geleijnse, J.M. (2005). Dietary fiber and blood pressure-A meta-analysis of randomized placebo-controlled trials. Archives of Internal Medicine, 165, 150-156.
  • [97] Whelton, S.P., Hyre, A.D., Pedersen, B., Yi, Y., Whelton, P.K., He, J. (2005). Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical tirals. Journal of Hypertension, 23, 475-481.
  • [98] Howarth, N.C., Saltzman, E., Roberts, S.B. (2001). Dietary fiber and weight regulation. Nutrition Reviews, 59, 129-139.
  • [99] Burton-Freeman, B. (2000). Dietary fiber and energy regulation. Journal of Nutrition, 13, 272-275.
  • [100] Kim, J.S., Souza, R.J., Choo, V.L., Ha, V., Cozma, A.I., Chiavaroli, L., Mirrahimi, A., Mejia, S.B., Buono, M.D., Bernstein, A.M., Leiter, L.A., Kris-Etherton, P.M., Vuksan, V., Beyene, J., Kendall, C.W.C., Jenkins, D.J.A., Sievenpiper, J.L. (2016). Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 103, 1213–1223.
  • [101] Daniel, C.R., Park, Y., Chow, W., Grdubard, B.I., Hollenheck, A.R., Sinha R. (2013). Intake of fiber and fiber-rich plant foods is associated with a lower risk of renal cell carcinoma in a large US cohort. American Journal of Clinical Nutrition, 97, 1036-43.
  • [102] King, A., Young, G. (1999). Characteristics and occurrence of phenolic phytochemicals. Journal of the American Dietetic Association, 99(2), 213-218.
  • [103] D’Archivo, M., Carmela, F., Di Benedetto, R., Raffaella, G., Claudio, G., Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Annali dell'Istituto Superiore di Sanità, 43(4), 348-361.
  • [104] Yadahally, N., Sreerama, V., Sashikala, B., Pratape, V.M. (2010). Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: evaluation of their antioxidant properties. Journal of Agricultural and Food Chemistry, 58, 8322-8330.
  • [105] Klepacka, J., Gujska, E., Michalak, J. (2011). Phenolic compounds as cultivar and variety distinguishing factors in some plant products. Plant Foods for Human Nutrition 66, 64-69.
  • [106] Xu, B.J., Chang, S.K.C. (2008). Effects of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chemistry, 110, 1-13.
  • [107] Cardador-Martinez, A., Loarca-Pina, G., Oomah, B.D. (2002). Antioxidant activity in common bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 50, 6975-6980.
  • [108] Oomah, B.D., Corbe, A., Balasubramanian, P. (2010). Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 58, 8225-8230.
  • [109] Beninger, C.W., Hosfield, G.L. (2003). Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. Journal of Agricultural and Food Chemistry, 51, 7879-83.
  • [110] Aparicio-Fernandez, X., Manzo-Bonilla, L., Loarca-Pina, G.F. (2005). Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans Phaseolus vulgaris against aflatoxin B1. Journal of Food Science, 70, 73-78.
  • [111] Akond, G.M., Khandaker, L., Berthold, J., Gates, L., Peters, K., Delong, H., Hossain, K. (2011). Anthocyanin, total polyphenols and antioxidant activity of common bean. American Journal of Food Technology, 6, 385-394.
  • [112] Diaz, A. M., Caldas, G.V., Blair, M.W. (2010). Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Research International, 43, 595-601.
  • [113] Diaz-Batalla, L., Widholm, J.M., Fahey, G.C., Castano-Tostado, E., Peredes-Lopez, O. (2006). Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 54, 2045-2052.
  • [114] Jeng, T.L., Shih, Y.J., Lai, C.C., Wu, M.T., Sung, J.M. (2010). Anti-oxidative characterisation of NaN3-induced common bean mutants. Food Chemistry, 119, 1006-1011.
  • [115] Fernandez-Panchon, M.S., Villano, D., Troncoso, A.M., Garcia-Parrilla, M.C. (2008). Antioxidant activity of phenolic compounds: from in-vitro results to in-vivo evidence. Critical Reviews in Food Science and Nutrition, 48, 649-671.
  • [116] Rice-Evans, C., Miller, N. (1997). Measurement of the antioxidant status of dietaryconstituents, low density lipoproteins and plasma. Prostaglandins, Leukotrienes & Essential Fatty Acids, 57(4-5), 499-505.
  • [117] Telles, A.C., Kupski L., Furlong, E.B. (2017). Phenolic compound in beans as protection against mycotoxins. Food Chemistry, 214, 293-299.
  • [118] Cabrera, C., Lloris, F., Gimenez, R., Olalla, M., Lopez, M.C. (2003). Mineral contenting legumes and nuts: Contribution to the Spanish dietary intake. Science of the Total Envinment, 308, 1–14.
  • [119] Oomah, B.D., Blanchard, C., Balasubramanian, P. (2008). Phytic acid, phytase, minerals, and antioxidant activity in Canadian dry bean (Phaseolus vulgaris L.) cultivars. Journal of Agricultural and Food Chemistry, 56, 11312-11319.
  • [120] Schwarz, K., Foltz, C.M. (1957). Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society, 79, 3292–3293.
  • [121] Spallholz, J.E., Mallory Boylan, L., Rhaman, M. (2004). Environmental hypothesis: Is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India? Science of Total Environment, 323, 21-32.
  • [122] Thavarajah, D., Ruszkowski, J., Vandenberg, A. (2008). High potential for selenium biofortification of lentils (Lens culinaris L.). Journal of Agricultural and Food Chemistry, 56, 10747-10753.
  • [123] Hurrell, R.F., Reddy, M., Cook, J.D. (1999). Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. British Journal of Nutrition, 81, 289–295.
  • [124] Sandberg, A.S. (2002). Bioavailability of minerals in legumes. British Journal of Nutrition, 88, 281-285.
  • [125] Augustin, J., Beck, C.B., Kalbfleish, G., Kagel, L.C., Matthews, R.H. (1981). Variation in the vitamin and mineral content of raw and cooked commercial Phaseolus vulgaris classes. Journal of Food Science, 46, 1701–1706.
  • [126] Kadam, S.S., Salunkhe, D.K. 1989. Minerals and vitamins, In: Handbook of world food legumes. Salunkhe, D.K. (ed.), CRC Press, 117-121, Boca Raton, USA.
  • [127] Giovannucci, E., Stampfer, M.J., Colditz, G.A., Hunter, D.J., Fuchs, C., Rosner, B.A. (1998). Multivitamin use, folate, and colon cancer in women in the Nurses’ Health Study. Annals of Internal Medicine, 129, 517–524.
  • [128] Giovannucci, E., Willett, W.C. (1994). Dietary factors and risk of colon cancer. Annals of Internal Medicine, 26, 443–452.
  • [129] Dang, J., Arcot, J., Shrestha, A. (2000). Folate retention in selected processed legumes. Food Chemistry, 68, 295–298.
  • [130] Eitenmiller, R.R., Lee, J. (2004). Vitamin E: Food chemistry, composition and analysis. Marcel Decker, 540, New York, USA.
  • [131] Ryan, E., Galvin, K., O’Connor, T.P., Maguire, A.R., O’Brien, N.M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62, 85-91.
  • [132] Shahidi, F., Chava, U.D., Naczk, M., Amarowicz, R. (2001). Nutrient distribution and phenolic antioxidants in air-classified fractions of beach pea (Lathyrus maritimus L.) Journal of Agricultural and Food Chemistry, 49, 926-933.
  • [133] Bau, H. M., Villanme, C., Nicolas, J.P., Mejean, L. (1997). Effect of germination on chemical composition, biochemical constitutes and antinutritional factors of soy bean (Glycine max) seeds. Journal of the Science of Food and Agriculture, 73, 1- 9.
  • [134] Vidal-Valverde, C., Frias, J., Hernandez, A., Martin-Alvarez, P., Sierra, I., Rodriguez, C., Blazquez, I., Vicente, G. (2003). Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum) seeds. Journal of the Science of Food and Agriculture, 83, 298-306.
  • [135] Graf, E., Eaton, J.W. (1990). Antioxidant functions of phytic asid. Free Radical Biology & Medicine, 8, 61-69.
  • [136] Thompson, L.U., Button, C.L., Jenkins, D.J. (1987). Phytic acid and calcium affect the in vitro rate of navy bean starch digestion and blood glucose response in humans. American Journal of Clinical Nutrition, 46, 467-473.
  • [137] Shamsuddin, A.M. (2002). Anti-cancer function of phytic acid. International Journal of Food Science and Technology, 37(7), 769-782.

Composition of Pulses

Year 2018, Volume: 16 Issue: 4, 483 - 496, 31.12.2018
https://doi.org/10.24323/akademik-gida.505547

Abstract

Pulses
play a significant role in meeting the nutritional requirements of humans while
hosting the nitrogen fixating bacteria in their roots. They can also grow in
harsh conditions in which most of cultivated plants can not. Therefore they
have a significant role on food security. Pulses that have been consumed by
humans for thousands of years are an important source of protein, dietary
fiber, minerals (iron, zinc and magnesium) and vitamins (mainly folate). In
addition, phytochemicals, saponins and tannins that are found in its
composition have protective effect against cardiovascular diseases and cancer.
They also have low gylcemic indices. The United Nations has declared 2016 as the
International Year of Pulses. In this paper, nutritional properties of pulses
are explained in detail. 

References

  • [1] Anonim (2016). 2016 BM Uluslararası Bakliyat Yılı. .https://www.tarim.gov.tr/ ABDGM/Belgeler/Uluslararas%C4%B1%20Kurulu% C5%9Flar/2016%20 BAKL% C4%B0YAT%20YILI %20en%20son.pdf.
  • [2] Salunke, D.K., Kadam, S.S. (1989). Handbook of World Food Legumes: nutritional chemistry, processing technology, and utilization. Vol. 1. CRC Pres, 310, Boca Raton, USA.
  • [3] FAO (2016). Let the countdown to the international year of pulses begin. www.fao.org/zhc/detail-events/en/c/358100/.
  • [4] McCrory, M.A., Hamaker, B.R., Lovejoy, J.C., Eichelsdoerfer, P.E. (2010). Pulse consumption, satiety, and weight management. Advances in Nutrition, 1, 17-30.
  • [5] Craig, W.J. (2009). Health effects of vegan diets. American Journal of Clinical Nutrition, 89 (5), 1627-1633.
  • [6] Craig, W.J., Mangels, A.R. (2009). Position of the American Dietetic Association: Vegetarian diets. Journal of the American Dietetic Association, 109 (7), 1266-1282.
  • [7] FAOSTAT (2016). Food and agriculture data. www.fao.org/faostat/en/#home.
  • [8] TÜİK (2016). Tarım İstatistikleri. https://biruni.tuik.gov.tr/medas/?kn= 132&locale =tr.
  • [9] Lopez-Amoro’s, M.L., Hernandez, T., Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. Journal of Food Composition and Analysis, 19, 277-283.
  • [10] Marinangeli, C.P., Jones, P.J. (2011). Whole and fractioned yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. British Journal of Nutrition, 105 (1), 110-117.
  • [11] TURKOMP (2014). Ulusal gıda kompozisyon veri tabanı. www.turkomp.gov.tr/foods.
  • [12] Kapoor, V.P., Banerji, R., Prakash, D. (1992). Leguminous seeds: potential industrial sources forgums, fat and protein. Journal of Scientific & Industrial Research, 51, 1-22.
  • [13] Roy, A.F., Boye, J.I., Simpson, B.K. (2010). A review bioactive proteins and peptides in pulse crops: Pea, chickpea, lentil. Food Research International, 43, 432-442.
  • [14] Şehirali, S. (1988). Yemeklik Dane Baklagiller. Ankara Üniversitesi Ziraat Fakültesi Yayınları Ders Kitabı, 314, Ankara.
  • [15] Williams, P., Nakkoul, H. (1983). Some new concepts of food legume quality evaluation at ICARDA. Proceedings of the International Workshop on Faba Beans, Kabuli Chickpeas and Lentils in the 1980s, 16-20 May, ICARDA, 395, Aleppo/Syria.
  • [16] Pysz, M., Polaszczyk, S., Leszczyńska, T., Piatkowska, E. (2012). Effect of microwave field on trypsin inhibitors activity and protein quality of broad bean seeds (Vicia faba var. major). Acta Scientiarum Polonorum Technologia Alimentaria, 11 (2), 193-199.
  • [17] Sharma, B. (1988). Lentils and chickpeas in human nutrition conditions: present state and prospects. Herkes İçin Mercimek Sempozyumu, 29-30 Eylül, Marmaris/Muğla, 157-171.
  • [18] Rehman, Z.U., Shah, W.H. (2005). Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry, 91, 327-331.
  • [19] Martin-Cabrejas, M.A., Cuadrado, C., Hernandez, T., Diaz, S., Esteban, R.M. (2009). The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry, 114,1063-1068.
  • [20] Youssef, M.M., Hamza, M.A., Abd El-Aal, M.H., Shekib, L.A., El Banna, A.A. (1986). Amino acid composition and in vitro digestibility of some Egyptian foods made from faba bean (Vicia faba L.). Food Chemistry, 22, 225-233.
  • [21] Candela, M., Astiasaran, I., Bello, J. (1997). Cooking and warm-holding: Effect on general composition and aminoacids of kidney beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and lentils (Lens culinaris). Journal of Agricultural and Food Chemistry, 45, 4763-4767.
  • [22] Ma, Y., Bliss, F.A. (1978). Seed proteins of common bean. Crop Science, 18, 431-437.
  • [23] Stanley, D.W., Aguilera, J.M. (1985). A review textural defects in cooked reconstituted legumes. The influence of structure and composition. Journal of Food Biochemistry, 9, 277-323
  • [24] Drewnowski, A. (2010). The nutrient rich foods index helps to identify healthy, affordable foods. American Journal of Clinical Nutrition, 91, 1095–1101.
  • [25] Hao, X., Jiangui, L., Qinghua, S., Jusang, Z., Xiaoling, H.E., Hao, M.A. (2009). Characterization of a novel legumin alpha-amylase inhibitor from chickpeas (Cicer arietinum L.) seeds Bioscience Biotechnology and Biochemistry, 73(5), 1200-1202.
  • [26] Udahogora M, (2012). Health benefits and bioactive compounds in field peas, faba beans, and chickpeas, In: Cereals and Pulses: Nutraceutical Properties and Health Benefits. Yu, L.L., Tsao, R., Shahidi, F. (eds), John Wiley and Sons, 209-212, Hoboken, USA.
  • [27] Ye, X.Y., Ng, T.B. (2002). Isolation of a new cyclophilin like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sciences, 70, 1129-1138.
  • [28] Zhang, Y., Lewis, K. (1997). Fabatins; new antimicrobial plant peptides. FEMS Microbiology Letters 149, 59-64.
  • [29] Carvalho, A.O., Gomes, V.M. (2009). Plant defensins. Prospects for the biological functions and biotechnological properties. Peptides, 30, 1007-1020.
  • [30] Wang, J.H., Zhang, X.Q., Wang, H.X., Ng, T.B. (2006). A mitogenic defensin from white cloud beans (Phaseolus vulgaris). Peptides, 27(9), 2075-2081.
  • [31] Rüdiger, H. (1998). Plant lectins-more than just tools for glycoscientists: occurrence, structure, and possible functions of plant lectins. Acta Analytica, 161,130-152.
  • [32] Peumans, W.J., Van Damme, E.J. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347-352.
  • [33] Campos-Vega, R., Reynoso-Camacho, R., Pedraza-Aboytes, G., Acosto-Gallegos, J.A., Guzman-Maldonado, S. H., Paredes-Lopez, O., Oomah, B. D., Loarca-Pina,G. (2009). Chemical composition and in-vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L.). Journal of Food Science, 74, 59-65.
  • [34] Pryme, I.F, Bardocz, S., Pusztai, A. Ewen, S.W (2006). Suppression of growth of tumor cell lines in-vitro and tumors in vivo by mistletoe lectins. Histology Histopathology, 21(3), 285-299.
  • [35] Hartmann, R., Meisel, H. (2007). Food-derived peptides with biological activity: From research to food applications. Current Opinion in Biotechnology, 18, 163-169.
  • [36] Sames, K., Shumacher, U., Halato, Z., Van Damme, E.S., Peumans, W.J., Asmus B. (2001). Lectins as bioactive plant proteins: A potential in cancer treatment. Critical Reviews in Food Science and Nutrition, 45, 425-445.
  • [37] Wang, H., Ng, T.B., Ooi, V.E., Liu, W.K. (2000). Effects of lectins with different carbonhydrate-binding specifities on hepatoma, chriocarcinoma, melanoma and osteosarcomacell lines. The International Journal of Biochemistry & Cell Biology, 32(3), 365-372.
  • [38] Jordinson, M., El-Hariry, I., Calnan, D., Calam, J., Pignatelli, M. (1999). Vicia fabaagglutinin, the lectin present in broad beans, stimulates differentiation of undifferentiated colon cancer cells. Gut, 44, 709–714.
  • [39] Pryme, I.F., Bardocz, S. (2001). Anti-cancer therapy: Diversion of polyamines in the gut. European Journal of Gastroenterology & Hepatology, 13, 1041-1046.
  • [40] Bardocz, S., Grant, G., Duguid, T.J., Brown, D. ., Pusztai, A., Pryme, I.F. (1997). Intracellular levels of polyamines in Krebs II lymphosarcoma cells in mice fed phytohaemagglutinin-containing diets are coupled with altered tumourgrowth. Cancer Letters, 121, 25–29.
  • [41] Pusztai, A., Grant, G., Buchan, W.C., Bardocz, S., De Carvalho, A.F., Ewen, S.W. (1998). Lipid accumulation in obese Zucker rats is reduced by inclusion of raw kidney bean (Phaseolus vulgaris) in the diet. British Journal of Nutrition, 79, 213–221.
  • [42] Hong, G.L., Ju-Zhen W., Guo-Wei L., Yang H.S. (2006). Novel angiotensin I-converting enzyme inhibitory peptides isolated from alcalase hydrolysate of mung bean protein. Journal of Peptide Science, 12, 509-514.
  • [43] Aluko, E.R. (2008). Determination of nutritional and bioactive properties of peptides in enzymatic peac Chickpea, and mung bean protein hydrolisates. Journal of AOAC International, 91(4), 947-956.
  • [44] Reddy, N.R., Pierson, M.D., Sathe, S.K., Salukhe, D.K. (1984). Chemical nutritional and physicological aspects of dry bean charbohydrates: A review. Food Chemistry, 13, 25-68.
  • [45] Devos, P. (1988). Nutritional value of lentils and chickpeas and changes during processing, Herkes İçin Mercimek Sempozyumu, 29-30 Eylül, Marmaris/Muğla, 174-196.
  • [46] Hoover, R., Hughes, T., Chung, H.J., Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food Research International, 43, 399-413.
  • [47] Liu, Q., Donner, E., Yin, Y., Huang, R.L., Fan, M.Z. (2006). The physicochemical properties and in vitro digestibility of selected cereals, tubers, and legumes grown in China. Food Chemistry, 99, 470-477.
  • [48] Englyst, H.N., Cummings, J.H. (1987). Digestion of polysaccharides of potato in the small intesitine of man. American Journal of Clinical Nutrition, 45, 423-428.
  • [49] Lehmann, U., Robin, F. (2007). Slowly digestible starch-It's structure and health implications: A review. Trends in Food Science and Technology, 18, 346-355.
  • [50] Hoover, R., Zhou, Y. (2003). In-vitro and in-vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes-A review. Carbohydrate Polymers, 54, 401-417.
  • [51] Sajilata, M.G.,Singhal, R.S., Kulkarni, P.R. (2006). Resistant starch- A review. Comprehensive Reviews in Food Science and Food Safety, 5, 1-17.
  • [52] Englyst, H.N., Kingman, S.M., Cummings, J.H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, 33-39.
  • [53] Sekirov, I., Russell, S.L., Antunes, C.M., Finlay, B.B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90, 859-904.
  • [54] Gonzalez, A., Stombaugh, J., Lozupone, C., Turnbaugh, P.J., Gordon, J.I.,Knight, R. (2011). The mind-body-microbial continuum. Dialogues in Clinical Neuroscience, 13, 55-62.
  • [55] Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., Brouns, F., Bornet, F.R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. American Journal of Clinical Nutrition, 80, 1658–1664.
  • [56] Louis, P., Scott, K.P., Duncan, S.H., Flint, H.J. (2007). Understanding the effects ofdiet on bacterial metabolism in the large intestine. Journal of Applied Microbiology, 102, 1197- 1208.
  • [57] Higgins, J.A. (2013). Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Current Opinion in Gastroenterology, 29, 190–194.
  • [58] Ley, R.E., Turnbaugh, P.J., Klein, S., Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.
  • [59] Phillips, J., Muir, J.G., Birkett, A., Lu, Z.X., Jones, G.P., O’Dea, K., Young, G.P. (1995). Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. American Journal of Clinical Nutrition, 62, 121–130.
  • [60] Tomlin, J., Read, N.W. (1990). The effect of resistant starch on colon function inhumans. British Journal of Nutrition, 64, 589-595.
  • [61] Le Leu, R., Conlon, M., Winter, J., Humphreys, K., Michael, M., Hu, Y., Bird, A., Topping, D., Young, G. (2012). Effect of high red meat intake and resistant starch in humans on risk factors for colorectal cancer. Journal of Gastroenterology and Hepatology, 27, 24-25.
  • [62] Burn, J., Bishop, D.T., Mecklin, J., Macrae, F., Moeslein, G., Olschwang, S., Bisgaard, M., Ramesar, R., Elliott, F., Mathers, J. (2008). Results of the CAPP-2-trial (aspirin and resistant starch) in HNPCC gene carriers. European Journal of Cancer, Suppl, 6, 25.
  • [63] Tovar, J., Melito, C. (1996). Steam-cooking and dry heating produce resistant starch in legumes. Journal of Agricultural and Food Chemistry, 44, 2642-2645.
  • [64] Noah, L., Guillan, F., Bouchet, B., Buleon, A., Molis, C., Gratas, M., Champ, M. (1998). Digestion of carbonhydrate from white beans (Phaseolus vulgaris L.) in healthy humans. Journal of Nutrition, 128, 977-985.
  • [65] Snow, P., O’Dea, K. (1981). Factors effecting the rate of hydrolysis. Nutrition, 34, 2721.
  • [66] Jenkins, D.J., Thorne, M.J., Camelon, K., Jenkins, A., Rao, A.V., Taylor, R.H., Thompson, L.U., Kalmusky, J., Reichert, R., Francis, T. (1982). Effect of processing on digestibility and the blood glucose response: A study of lentils. American Journal of Clinical Nutrition, 36, 1093-1101.
  • [67] Tovar, J., Bjorck, I.M., Asp, N.G. (1992). Incomplete digestion of legume starches in rats: A study of precooked flours containing retrograded and physically inaccessible starch fractions. Journal of Nutrition, 122, 1500-1507.
  • [68] Benmoussa, M., Moldenhauer, K.A.K., Hamaker, B.R. (2007). Rice amilopectin fine structure variability affects starch digestion properties. Journal of Agricultural and Food Chemistry, 55, 1475-1479.
  • [69] Chung, H.J., Liu, Q., Peter, P.K., Fan, M.Z., Yada, R. (2008). In-vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from coomon bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Research International, 41, 869-875.
  • [70] Chung, H.J., Liu, Q., Hoover, R. (2009). Impact of annealing and treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75, 436-447.
  • [71] Azarpazhooh, E., Boye, J.I. (2013). Composition of Processed Dry Beans and Pulses In: Dry Beans and Pulses Production, Processing and Nutrition. Siddiq and Uebersax M. A. (eds) John Wiley and Sons, 103-112, Hoboken.
  • [72] Chung, H.J., Liu, Q., Hoover, R. (2010). Efect of single and dual hydrothermal treatments on the crystalline structure, thermal properties and nutritional fractions of pea, lentil, and navy bean starches. Food Research International, 43, 501-508.
  • [73] Chung, H., Liu, Q., Donner, E., Hoover, R., Warkentin, T. D., Vanderberg, B. (2008). Composition, molecular structure, properties, and in vitro digestibility of starches from newly released Canadian pulse cultivars. Cereal Chemistry, 85, 471-479.
  • [74] Rehman, Z.U., Salariya, A.M. (2005). The effects of hydrothermal processing on antinutrients, protein and starch digestibility of food legumes. International Journal of Food Science and Technology, 40, 695-700.
  • [75] De Almeida Costa, G.E., Da Silva Queiroz-Monici, K., Pissini Machado Reis, S.M., De Oliveira, A.C. (2006). Chemical composition, dietary fiber and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94, 327-330.
  • [76] Aguilera, Y., Martin-Cabrejas, M.A., Benitez, V., Molla, E., Lopez-Andreu, F.J., Esteban, R.M. (2009). Changes in carbohydrate fraction during dehydration process of common legumes. Journal of Food Composition and Analysis, 22, 678-683.
  • [77] Kuto, T., Golob, T., Ka, M., Plestenjak, A. (2003). Dietary fiber content of dry and processed beans. Food Chemistry, 80, 231-235.
  • [78] Pujola, M., Farreras, A., Casanas, F. (2007). Protein and starch content of raw, soaked and cooked beans (Phaseolus vulgaris L.). Food Chemistry, 102, 1034-1041.
  • [79] Wang, N., Hatcher, D.W., Tyler, R.T., Toews, R., Gawalko, E.J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43, 589-594.
  • [80] Yadav, B.S., Sharma, A., Yadav, R.B. (2010). Effect of storage on resistant starch content and in-vitro starch digestibility of some pressure-cooked cereals and legumes commonly used in India. International Journal of Food Science and Technology, 45, 2449-2455.
  • [81] Shiga, T.M., Cordenunsi, B.R., Lajolo, F.M. (2009). Effect of cooking on non-starchpolysaccharides of hard-to cook beans. Carbohydrate Polymers, 76, 100-109.
  • [82] Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 33, 103-148.
  • [83] Oakenfull, D. (2001). Physicochemical properties of dietary fiber: Overview, In: Handbook of Dietary Fibre. Sungsoo Cho, S., Dreher, M. L. (eds), Marcel Dekker Inc., 195-206. New York, USA.
  • [84] Edwards, C.A. (1995). The physiological effects of dietary fibre, In: Dietary Fibre in Health and Disease. Kristchevsky, D., Bonfield, C. (eds), Eagan Press., 58-71, St. Paul, MN, USA.
  • [85] Taranathan, R. N., Mahadevamma, S. (2003). Grain legumes-A boon to human nutrition. Trends in Food Science and Technology, 14, 507-518.
  • [86] Olson, A., Gray, G., Chiu, M. (1987). Chemistry and analysis of soluble dietary fiber. Food Technology, 41, 71-80.
  • [87] Vidal-Valverde, C., Frias, J., Valverde, S. (1992). Effects of processing on the soluble carbohydrate content of lentils. Journal of Food Protection, 55, 301-306.
  • [88] Kadouh, H., Zhou, K. (2012). Nutraceutical Properties and Health Benefits, In: Cereals and Pulses. Yu, L., Shahidi, F.,Tsao, R., (eds), John Wiley and Sons, 188-189, Hoboken, NJ, USA.
  • [89] Campos-Vega, R., Loarca-Pina, G., Oomah, B.D. (2009). Minor components of pulses and their potential impact on human health. Food Research International, 43, 461- 482.
  • [90] Panlasigui, L.N., Panlilio, L.M., Madrid, J.C. (1995). Glycemic response in normal subjects to five different legumes commonly used in the Philippines. International Journal of Food Science and Nutrition, 46, 155-160.
  • [91] Kanaya, K., Tada, S., Mori, B., Takahashi, R., Ikegami, S., Kurasawa, S., Okuzaki, M., Mori, Y., Innami, S. (2007). A simplified modification of the AOAC official method for determination of total dietary fiber using newly developed enzymes: preliminary interlaboratory study. Journal AOAC International, 90, 225-237.
  • [92] Khatoon, N., Prakash J. (2004). Nutritional quality of microwave-cooked and pressure-cooked legumes. International Journal of Food Science and Nutrition, 55, 441-448.
  • [93] Martin-Cabrejas, M.A., Sanfiz, B., Vidal, A., Molla, E., Esteban, R., Lopez-Andreu, F.J. (2004). Effect of fermentation and autoclaving on dietary fiber fractions and anti nutritional factors of beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52, 261-266.
  • [94] Bazzano, L.A., He, J., Ogden, L.G., Loria, C.M., Whelton, P.K. (2003). Dietary fiber intake and reduced risk of coronary heart disease in US men and women- The National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Archives of Internal Medicine, 163, 1897-1904.
  • [95] Brown, L., Rosner, B., Willett, W.W., Sacks, F.M. (1999). Cholesterol-lowering effects of dietary: a meta analysis. American Journal of Clinical Nutrition, 69(1), 30-42.
  • [96] Streppel, M.T., Arends, L.R., van’t Veer, P., Grobbee, D.E., Geleijnse, J.M. (2005). Dietary fiber and blood pressure-A meta-analysis of randomized placebo-controlled trials. Archives of Internal Medicine, 165, 150-156.
  • [97] Whelton, S.P., Hyre, A.D., Pedersen, B., Yi, Y., Whelton, P.K., He, J. (2005). Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical tirals. Journal of Hypertension, 23, 475-481.
  • [98] Howarth, N.C., Saltzman, E., Roberts, S.B. (2001). Dietary fiber and weight regulation. Nutrition Reviews, 59, 129-139.
  • [99] Burton-Freeman, B. (2000). Dietary fiber and energy regulation. Journal of Nutrition, 13, 272-275.
  • [100] Kim, J.S., Souza, R.J., Choo, V.L., Ha, V., Cozma, A.I., Chiavaroli, L., Mirrahimi, A., Mejia, S.B., Buono, M.D., Bernstein, A.M., Leiter, L.A., Kris-Etherton, P.M., Vuksan, V., Beyene, J., Kendall, C.W.C., Jenkins, D.J.A., Sievenpiper, J.L. (2016). Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 103, 1213–1223.
  • [101] Daniel, C.R., Park, Y., Chow, W., Grdubard, B.I., Hollenheck, A.R., Sinha R. (2013). Intake of fiber and fiber-rich plant foods is associated with a lower risk of renal cell carcinoma in a large US cohort. American Journal of Clinical Nutrition, 97, 1036-43.
  • [102] King, A., Young, G. (1999). Characteristics and occurrence of phenolic phytochemicals. Journal of the American Dietetic Association, 99(2), 213-218.
  • [103] D’Archivo, M., Carmela, F., Di Benedetto, R., Raffaella, G., Claudio, G., Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Annali dell'Istituto Superiore di Sanità, 43(4), 348-361.
  • [104] Yadahally, N., Sreerama, V., Sashikala, B., Pratape, V.M. (2010). Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: evaluation of their antioxidant properties. Journal of Agricultural and Food Chemistry, 58, 8322-8330.
  • [105] Klepacka, J., Gujska, E., Michalak, J. (2011). Phenolic compounds as cultivar and variety distinguishing factors in some plant products. Plant Foods for Human Nutrition 66, 64-69.
  • [106] Xu, B.J., Chang, S.K.C. (2008). Effects of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chemistry, 110, 1-13.
  • [107] Cardador-Martinez, A., Loarca-Pina, G., Oomah, B.D. (2002). Antioxidant activity in common bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 50, 6975-6980.
  • [108] Oomah, B.D., Corbe, A., Balasubramanian, P. (2010). Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 58, 8225-8230.
  • [109] Beninger, C.W., Hosfield, G.L. (2003). Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. Journal of Agricultural and Food Chemistry, 51, 7879-83.
  • [110] Aparicio-Fernandez, X., Manzo-Bonilla, L., Loarca-Pina, G.F. (2005). Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans Phaseolus vulgaris against aflatoxin B1. Journal of Food Science, 70, 73-78.
  • [111] Akond, G.M., Khandaker, L., Berthold, J., Gates, L., Peters, K., Delong, H., Hossain, K. (2011). Anthocyanin, total polyphenols and antioxidant activity of common bean. American Journal of Food Technology, 6, 385-394.
  • [112] Diaz, A. M., Caldas, G.V., Blair, M.W. (2010). Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Research International, 43, 595-601.
  • [113] Diaz-Batalla, L., Widholm, J.M., Fahey, G.C., Castano-Tostado, E., Peredes-Lopez, O. (2006). Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 54, 2045-2052.
  • [114] Jeng, T.L., Shih, Y.J., Lai, C.C., Wu, M.T., Sung, J.M. (2010). Anti-oxidative characterisation of NaN3-induced common bean mutants. Food Chemistry, 119, 1006-1011.
  • [115] Fernandez-Panchon, M.S., Villano, D., Troncoso, A.M., Garcia-Parrilla, M.C. (2008). Antioxidant activity of phenolic compounds: from in-vitro results to in-vivo evidence. Critical Reviews in Food Science and Nutrition, 48, 649-671.
  • [116] Rice-Evans, C., Miller, N. (1997). Measurement of the antioxidant status of dietaryconstituents, low density lipoproteins and plasma. Prostaglandins, Leukotrienes & Essential Fatty Acids, 57(4-5), 499-505.
  • [117] Telles, A.C., Kupski L., Furlong, E.B. (2017). Phenolic compound in beans as protection against mycotoxins. Food Chemistry, 214, 293-299.
  • [118] Cabrera, C., Lloris, F., Gimenez, R., Olalla, M., Lopez, M.C. (2003). Mineral contenting legumes and nuts: Contribution to the Spanish dietary intake. Science of the Total Envinment, 308, 1–14.
  • [119] Oomah, B.D., Blanchard, C., Balasubramanian, P. (2008). Phytic acid, phytase, minerals, and antioxidant activity in Canadian dry bean (Phaseolus vulgaris L.) cultivars. Journal of Agricultural and Food Chemistry, 56, 11312-11319.
  • [120] Schwarz, K., Foltz, C.M. (1957). Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society, 79, 3292–3293.
  • [121] Spallholz, J.E., Mallory Boylan, L., Rhaman, M. (2004). Environmental hypothesis: Is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India? Science of Total Environment, 323, 21-32.
  • [122] Thavarajah, D., Ruszkowski, J., Vandenberg, A. (2008). High potential for selenium biofortification of lentils (Lens culinaris L.). Journal of Agricultural and Food Chemistry, 56, 10747-10753.
  • [123] Hurrell, R.F., Reddy, M., Cook, J.D. (1999). Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. British Journal of Nutrition, 81, 289–295.
  • [124] Sandberg, A.S. (2002). Bioavailability of minerals in legumes. British Journal of Nutrition, 88, 281-285.
  • [125] Augustin, J., Beck, C.B., Kalbfleish, G., Kagel, L.C., Matthews, R.H. (1981). Variation in the vitamin and mineral content of raw and cooked commercial Phaseolus vulgaris classes. Journal of Food Science, 46, 1701–1706.
  • [126] Kadam, S.S., Salunkhe, D.K. 1989. Minerals and vitamins, In: Handbook of world food legumes. Salunkhe, D.K. (ed.), CRC Press, 117-121, Boca Raton, USA.
  • [127] Giovannucci, E., Stampfer, M.J., Colditz, G.A., Hunter, D.J., Fuchs, C., Rosner, B.A. (1998). Multivitamin use, folate, and colon cancer in women in the Nurses’ Health Study. Annals of Internal Medicine, 129, 517–524.
  • [128] Giovannucci, E., Willett, W.C. (1994). Dietary factors and risk of colon cancer. Annals of Internal Medicine, 26, 443–452.
  • [129] Dang, J., Arcot, J., Shrestha, A. (2000). Folate retention in selected processed legumes. Food Chemistry, 68, 295–298.
  • [130] Eitenmiller, R.R., Lee, J. (2004). Vitamin E: Food chemistry, composition and analysis. Marcel Decker, 540, New York, USA.
  • [131] Ryan, E., Galvin, K., O’Connor, T.P., Maguire, A.R., O’Brien, N.M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62, 85-91.
  • [132] Shahidi, F., Chava, U.D., Naczk, M., Amarowicz, R. (2001). Nutrient distribution and phenolic antioxidants in air-classified fractions of beach pea (Lathyrus maritimus L.) Journal of Agricultural and Food Chemistry, 49, 926-933.
  • [133] Bau, H. M., Villanme, C., Nicolas, J.P., Mejean, L. (1997). Effect of germination on chemical composition, biochemical constitutes and antinutritional factors of soy bean (Glycine max) seeds. Journal of the Science of Food and Agriculture, 73, 1- 9.
  • [134] Vidal-Valverde, C., Frias, J., Hernandez, A., Martin-Alvarez, P., Sierra, I., Rodriguez, C., Blazquez, I., Vicente, G. (2003). Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum) seeds. Journal of the Science of Food and Agriculture, 83, 298-306.
  • [135] Graf, E., Eaton, J.W. (1990). Antioxidant functions of phytic asid. Free Radical Biology & Medicine, 8, 61-69.
  • [136] Thompson, L.U., Button, C.L., Jenkins, D.J. (1987). Phytic acid and calcium affect the in vitro rate of navy bean starch digestion and blood glucose response in humans. American Journal of Clinical Nutrition, 46, 467-473.
  • [137] Shamsuddin, A.M. (2002). Anti-cancer function of phytic acid. International Journal of Food Science and Technology, 37(7), 769-782.
There are 137 citations in total.

Details

Primary Language Turkish
Journal Section Review Papers
Authors

Gül Sarıoğlu This is me 0000-0003-1771-423X

Y. Sedat Velioğlu 0000-0002-3281-6229

Publication Date December 31, 2018
Submission Date November 13, 2017
Published in Issue Year 2018 Volume: 16 Issue: 4

Cite

APA Sarıoğlu, G., & Velioğlu, Y. S. (2018). Baklagillerin Bileşimi. Akademik Gıda, 16(4), 483-496. https://doi.org/10.24323/akademik-gida.505547
AMA Sarıoğlu G, Velioğlu YS. Baklagillerin Bileşimi. Akademik Gıda. December 2018;16(4):483-496. doi:10.24323/akademik-gida.505547
Chicago Sarıoğlu, Gül, and Y. Sedat Velioğlu. “Baklagillerin Bileşimi”. Akademik Gıda 16, no. 4 (December 2018): 483-96. https://doi.org/10.24323/akademik-gida.505547.
EndNote Sarıoğlu G, Velioğlu YS (December 1, 2018) Baklagillerin Bileşimi. Akademik Gıda 16 4 483–496.
IEEE G. Sarıoğlu and Y. S. Velioğlu, “Baklagillerin Bileşimi”, Akademik Gıda, vol. 16, no. 4, pp. 483–496, 2018, doi: 10.24323/akademik-gida.505547.
ISNAD Sarıoğlu, Gül - Velioğlu, Y. Sedat. “Baklagillerin Bileşimi”. Akademik Gıda 16/4 (December 2018), 483-496. https://doi.org/10.24323/akademik-gida.505547.
JAMA Sarıoğlu G, Velioğlu YS. Baklagillerin Bileşimi. Akademik Gıda. 2018;16:483–496.
MLA Sarıoğlu, Gül and Y. Sedat Velioğlu. “Baklagillerin Bileşimi”. Akademik Gıda, vol. 16, no. 4, 2018, pp. 483-96, doi:10.24323/akademik-gida.505547.
Vancouver Sarıoğlu G, Velioğlu YS. Baklagillerin Bileşimi. Akademik Gıda. 2018;16(4):483-96.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).