Research Article
BibTex RIS Cite

Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli

Year 2020, Volume: 18 Issue: 1, 64 - 72, 30.04.2020
https://doi.org/10.24323/akademik-gida.730168

Abstract

Bu çalışmada, daha önceki bir çalışmamızda sünme (rope) hastalığı oluşmuş ekmek içlerinden izole edilen Bacillus türleri, hemolitik (Hbl) ve hemolitik olmayan (Nhe) enterotoksin üretimleri açısından incelenmiştir. İncelenen toplam 39 izolattan sadece birinin hem Hbl hem de Nhe enterotoksinlerini, 22 izolatın sadece Hbl, 2 izolatın ise sadece Nhe enterotoksinini üretme kapasitesinin olduğu, kalan 14 izolatın ise her iki enterotoksini de üretmedikleri tespit edilmiştir. Enterotoksin analizleri için pozitif kontrol suşu olarak, her iki enterotoksini de ürettiği bilinen Bacillus cereus 2248 kullanılmıştır. Toksin analizleri, standart suşlar olan Bacillus subtilis PY22, B. subtilis RSK 244 ve B. subtilis RSK 246 için de yapılmış, aralarından sadece B. subtilis RSK 246’nın Nhe enterotoksinini üretme potansiyelinin olduğu belirlenmiştir. Ayrıca emetik toksin ürettiği bilinen Bacillus cereus 2455/2 suşu da Nhe enterotoksini açısından pozitif sonuç vermiştir. Sonuçlar, ekmeklerde sünme (rope) hastalığından sorumlu olan Bacillus türlerinin enterotoksin üretebileceğini gösterir niteliktedir.

Supporting Institution

Akdeniz Üniversitesi Bilimsel Araştırmalar ve Koordinasyon Birimi

Project Number

2010.03.0121.020

Thanks

Bu çalışma, Akdeniz Üniversitesi Bilimsel Araştırmalar ve Koordinasyon Birimi tarafından 2010.03.0121.020 proje numarasıyla desteklenmiştir.

References

  • [1] Schoeni, J.L., Wong, A.C.L. (2005). Bacillus cereus food poisoning and its toxins. Journal of Food Protection, 68(3), 636-648.
  • [2] Salkinoja-Salonen, M.S., Vuorio, R., Andersson, M.A., Kämpfer, P., Andersson, M.C., Honkanen-Buzalski, T., Scoging, A.C. (1999). Toxigenic strains of Bacillus licheniformis related to food poisoning. Applied and Environmental Microbiology, 65(10), 4637-4645.
  • [3] Suominen, I., Andersson, M.A., Andersson, M.C., Hallaksela, A., Kämpfer, P., Rainey, F.A., Salkinoja-Salonen, M. (2001). Toxic Bacillus pumilus from indoor air, recycled paper pulp, Norway spruce, food poisoning outbreaks and clinical samples. Systematic and Applied Microbiology, 24, 267-276.
  • [4] From, C., Pukall, R., Schumann, P., Hormazábal, V., Granum, P.E. (2005). Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Applied and Environmental Microbiology, 71(3), 1178-1183.
  • [5] Lindbäck, T., Granum, P.E. (2006). Detection and purification of Bacillus cereus enterotoxins. In Food Borne Pathogens: Methods and Protocols Edited by C.C. Adley, Humana Press, Totowa, 15-26p.
  • [6] Granum, P.E., Brynestad, S., O’sullivan, K., Nissen, H. (1993). Enterotoxin from Bacillus cereus: production and biochemical characterization. Netherlands Milk and Dairy Journal, 47, 63-70.
  • [7] Senesi, S., Ghelardi, E. (2010). Production, secretion and biological activity of Bacillus cereus enterotoxins. Toxins, 2, 1690-1703.
  • [8] Mckillip, J.L. (2000). Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Antonie von Leeuwenhoek, 77, 393-399.
  • [9] Cai, Y., Huang, T., Xu, Y., Zhou, G., Zou, P., Zeng, G., Liu, X. (2017). Genetic and genomic diversity of NheABC locus from Bacillus strains. Archieves of Microbiology, 199, 775-785.
  • [10] Agata, N., Ohta, M., Arakawa, Y., Mori, M. (1995). The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology, 141, 938-988.
  • [11] Choma, C., Granum, P.E. (2002). The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. FEMS Microbiology Letters, 217(1), 115-119.
  • [12] Hansen, B.M., Høiby, P.E., Jensen, G.B., Hendriksen, N.B. (2003). The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiology Letters, 223, 21-24.
  • [13] Asano, S.I., Nukumizu, Y., Bando, H., Iizuka, T., Yamamoto, T. (1997). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology, 63(3), 1054-1057.
  • [14] Ehling-Schulz, M., Fricker, M., Scherer, S. (2004). Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiology Letters, 232, 189-195.
  • [15] Kim, J.B., Kim, J.M., Kim, S.Y., Kim, J.H., Park, Y.B., Choi, N.J., Oh, D.H. (2010). Comparison of enterotoxin production and phenotypic characteristics between emetic and enterotoxic Bacillus cereus. Journal of Food Protection, 73(7), 1219-1224.
  • [16] Granum, P.E., Lund, T. (1997). Bacillus cereus and its food poisoning toxins. FEMS Microbiology Letters, 157, 223-228.
  • [17] Mikkola, R., Saris, N.E.L., Grigoriev, P.A., Andersson, M.A., Salkinoja-Salonen, M.S. (1999). Ionophoretic properties and mitochondrial effects of cereulide. European Journal of Biochemistry, 263, 112-117.
  • [18] Collins, N.E., Kirschner, L.A.M., von Holy, A. (1991). Characterization of Bacillus isolates from ropey bread, bakery equipment and raw materials. South African Journal of Science, 87, 62-66.
  • [19] Kirschner, L.A.M., von Holy, A. (1989). Rope spoilage of bread. South African Journal of Science, 85, 425-427.
  • [20] Thompson, J.M., Dodd, C.E.R., Waites, W.M. (1993). Spoilage of bread by Bacillus. International Biodeterioration and Biodegradation, 32(1-3), 55-66.
  • [21] Thompson, J.M., Waites, W.M., Dodd, C.E.R. (1998). Detection of rope spoilage in bread caused by Bacillus species. Journal of Applied Microbiology, 85, 481-486.
  • [22] Volavsek, P.J.A., Kirschner, L.A.M., von Holy, A. (1992). Accelerated methods to predict the rope-inducing potential of bread raw materials. South African Journal of Science, 88, 99-102.
  • [23] Erem, F., Certel, M., Karakaş, B. (2009). Identification of Bacillus species isolated from ropey breads both with classical methods and API identification kits. Journal of The Faculty of Agriculture Akdeniz University, 22(2), 201-210.
  • [24] Smith, J.P., Dafias, D.P., El-Khoury, W., Koukoutsis, J., El-Khoury, A. (2004). Shelf life and safety concerns of bakery products – a review. Critical Reviews in Food Science and Nutrition, 44, 19-55.
  • [25] Karakaş, B. (2009). Bacillus subtilis’den α-amilaz geninin klonlanması ve Pichia pastoris mayasında ekspresyonu. Doktora Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, 140 ss.
  • [26] Anonymous. (2011). BCET-RPLA Enterotoxin Kit Manufacturer’s Instruction.
  • [27] Anonymous. (2011). BDEVIA Enterotoxin Kit Manufacturer’s Instruction.
  • [28] Ehling-Schulz, M. (2005). Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology, 151, 183-197.
  • [29] Ehling-Schulz, M., Guinebretiere, M.H., Monthán, A., Berge, O., Fricker, M., Svensson, B. (2006). Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiology Letters, 260, 232-240.
  • [30] Beattie, S.H., Williams, A.G. (1999). Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Letters in Applied Microbiology, 28, 221-225.
  • [31] Phelps, R.J., Mckillip, J.L. (2002). Enterotoxin production in natural isolates of Bacillaceae outside the Bacillus cereus group. Applied and Environmental Microbiology, 68(6), 3147-3151.
  • [32] Rowan, N.J., Deans, K., Anderson, J.G., Gemmell, C.G., Hunter, I.S., Chaithong, T. (2001). Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Applied and Environmental Microbiology, 67(9), 3873-3881.
  • [33] Kim, J.B., Choi, O.K., Kwon, S.M., Cho, S.H., Park, B.J., Jin, N.Y., Yu, Y.M., Oh, D.H. (2017). Prevalence and toxin characteristics of Bacillus thuringiensis isolated from organic vegetables. Journal of Microbiology and Biotechnology, 27(8), 1449-1456.
  • [34] Johler, S., Kalbhenn, E.M., Heini, N., Brodmann, P., Gautsch, S., Bağcioğlu, M., Contzen, M., Stephan, R., Ehling-Schulz, M. (2018). Enterotoxin production of Bacillus thuringiensis isolates from biopesticides, foods, and outbreaks. Frontiers in Microbiology, 9, 1-11.
  • [35] Choi, H.J., Kang, S.J., Hong, K.W. (2017). Comparison of NheA toxin production and doubling time between Bacillus cereus and Bacillus thuringiensis. Applied Biological Chemistry, 60(5), 545-551.
  • [36] Mbozo, A.B.V., Kobawila, S.C., Anyogu, A., Awamaria, B., Louembe, D., Sutherlenad, J.P., Ouoba, L.I.I. (2017). Investigation of the diversity and safety of the predominant Bacillus pumilus sensu lato and other Bacillus species involved in the alkaline fermentation of cassava leaves for the production of Ntoba Mbodi. Food Control, 82, 154-162.
  • [37] Lee, A., Cheng, K.C., Liu, J.R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. Plos One, 12(8), e182220.
  • [38] Jeon, H.L., Lee, N.K., Yang, S.J., Kim, W.S., Paik, H.D. (2017). Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Science and Biotechnology, 26(6), 1641-1648.
  • [39] Jeon, H.L., Yang, S.J., Son, S.H., Kim, W.S., Lee, N.K., Paik, H.D. (2018). Evaluation of probiotic Bacillus subtilis P229 isolated from cheonggukjang and its application in soybean fermentation. LWT-Food Science and Technology, 97, 94-99.
  • [40] Abdulmawjood, A., Herrmann, J., Riede, S., Jimenez, G., Becker, A., Breves, G. (2019). Evaluation of enterotoxin gene expression and enterotoxin production capacity of the probiotic strain Bacillus toyonensis BCT-7112. Plos One, 14(4), e0214536.

Enterotoxin Production Potential of Bacillus Species Isolated from Ropy Bread

Year 2020, Volume: 18 Issue: 1, 64 - 72, 30.04.2020
https://doi.org/10.24323/akademik-gida.730168

Abstract

In this study, Bacillus species isolated from ropy bread crumb in our previous study were investigated for the production of hemolytic (Hbl) and non-hemolytic (Nhe) enterotoxins. Of the 39 isolates, only one produced both Hbl and Nhe enterotoxins, 22 produced only Hbl, 2 produced only Nhe and the remaining 14 isolates were found to produce none of the two enterotoxins. Bacillus cereus 2248, which is known to produce both Hbl and Nhe, was used as the positive control strain for the enterotoxin assays. Toxin assays were also performed for the standard strains Bacillus subtilis PY22, B. subtilis RSK 244 and B. subtilis RSK 246. It was determined that amongst these strains only B. subtilis RSK 246 has the potential of producing the Nhe enterotoxin. Furthermore, the test results of Bacillus cereus 2455/2, which is known as an emetic strain, have shown that the strain was potentially positive in terms of Nhe enterotoxin. The results showed that Bacillus strains that are responsible for rope disease in bread could produce enterotoxins.

Project Number

2010.03.0121.020

References

  • [1] Schoeni, J.L., Wong, A.C.L. (2005). Bacillus cereus food poisoning and its toxins. Journal of Food Protection, 68(3), 636-648.
  • [2] Salkinoja-Salonen, M.S., Vuorio, R., Andersson, M.A., Kämpfer, P., Andersson, M.C., Honkanen-Buzalski, T., Scoging, A.C. (1999). Toxigenic strains of Bacillus licheniformis related to food poisoning. Applied and Environmental Microbiology, 65(10), 4637-4645.
  • [3] Suominen, I., Andersson, M.A., Andersson, M.C., Hallaksela, A., Kämpfer, P., Rainey, F.A., Salkinoja-Salonen, M. (2001). Toxic Bacillus pumilus from indoor air, recycled paper pulp, Norway spruce, food poisoning outbreaks and clinical samples. Systematic and Applied Microbiology, 24, 267-276.
  • [4] From, C., Pukall, R., Schumann, P., Hormazábal, V., Granum, P.E. (2005). Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Applied and Environmental Microbiology, 71(3), 1178-1183.
  • [5] Lindbäck, T., Granum, P.E. (2006). Detection and purification of Bacillus cereus enterotoxins. In Food Borne Pathogens: Methods and Protocols Edited by C.C. Adley, Humana Press, Totowa, 15-26p.
  • [6] Granum, P.E., Brynestad, S., O’sullivan, K., Nissen, H. (1993). Enterotoxin from Bacillus cereus: production and biochemical characterization. Netherlands Milk and Dairy Journal, 47, 63-70.
  • [7] Senesi, S., Ghelardi, E. (2010). Production, secretion and biological activity of Bacillus cereus enterotoxins. Toxins, 2, 1690-1703.
  • [8] Mckillip, J.L. (2000). Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Antonie von Leeuwenhoek, 77, 393-399.
  • [9] Cai, Y., Huang, T., Xu, Y., Zhou, G., Zou, P., Zeng, G., Liu, X. (2017). Genetic and genomic diversity of NheABC locus from Bacillus strains. Archieves of Microbiology, 199, 775-785.
  • [10] Agata, N., Ohta, M., Arakawa, Y., Mori, M. (1995). The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology, 141, 938-988.
  • [11] Choma, C., Granum, P.E. (2002). The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. FEMS Microbiology Letters, 217(1), 115-119.
  • [12] Hansen, B.M., Høiby, P.E., Jensen, G.B., Hendriksen, N.B. (2003). The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiology Letters, 223, 21-24.
  • [13] Asano, S.I., Nukumizu, Y., Bando, H., Iizuka, T., Yamamoto, T. (1997). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology, 63(3), 1054-1057.
  • [14] Ehling-Schulz, M., Fricker, M., Scherer, S. (2004). Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiology Letters, 232, 189-195.
  • [15] Kim, J.B., Kim, J.M., Kim, S.Y., Kim, J.H., Park, Y.B., Choi, N.J., Oh, D.H. (2010). Comparison of enterotoxin production and phenotypic characteristics between emetic and enterotoxic Bacillus cereus. Journal of Food Protection, 73(7), 1219-1224.
  • [16] Granum, P.E., Lund, T. (1997). Bacillus cereus and its food poisoning toxins. FEMS Microbiology Letters, 157, 223-228.
  • [17] Mikkola, R., Saris, N.E.L., Grigoriev, P.A., Andersson, M.A., Salkinoja-Salonen, M.S. (1999). Ionophoretic properties and mitochondrial effects of cereulide. European Journal of Biochemistry, 263, 112-117.
  • [18] Collins, N.E., Kirschner, L.A.M., von Holy, A. (1991). Characterization of Bacillus isolates from ropey bread, bakery equipment and raw materials. South African Journal of Science, 87, 62-66.
  • [19] Kirschner, L.A.M., von Holy, A. (1989). Rope spoilage of bread. South African Journal of Science, 85, 425-427.
  • [20] Thompson, J.M., Dodd, C.E.R., Waites, W.M. (1993). Spoilage of bread by Bacillus. International Biodeterioration and Biodegradation, 32(1-3), 55-66.
  • [21] Thompson, J.M., Waites, W.M., Dodd, C.E.R. (1998). Detection of rope spoilage in bread caused by Bacillus species. Journal of Applied Microbiology, 85, 481-486.
  • [22] Volavsek, P.J.A., Kirschner, L.A.M., von Holy, A. (1992). Accelerated methods to predict the rope-inducing potential of bread raw materials. South African Journal of Science, 88, 99-102.
  • [23] Erem, F., Certel, M., Karakaş, B. (2009). Identification of Bacillus species isolated from ropey breads both with classical methods and API identification kits. Journal of The Faculty of Agriculture Akdeniz University, 22(2), 201-210.
  • [24] Smith, J.P., Dafias, D.P., El-Khoury, W., Koukoutsis, J., El-Khoury, A. (2004). Shelf life and safety concerns of bakery products – a review. Critical Reviews in Food Science and Nutrition, 44, 19-55.
  • [25] Karakaş, B. (2009). Bacillus subtilis’den α-amilaz geninin klonlanması ve Pichia pastoris mayasında ekspresyonu. Doktora Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, 140 ss.
  • [26] Anonymous. (2011). BCET-RPLA Enterotoxin Kit Manufacturer’s Instruction.
  • [27] Anonymous. (2011). BDEVIA Enterotoxin Kit Manufacturer’s Instruction.
  • [28] Ehling-Schulz, M. (2005). Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology, 151, 183-197.
  • [29] Ehling-Schulz, M., Guinebretiere, M.H., Monthán, A., Berge, O., Fricker, M., Svensson, B. (2006). Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiology Letters, 260, 232-240.
  • [30] Beattie, S.H., Williams, A.G. (1999). Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Letters in Applied Microbiology, 28, 221-225.
  • [31] Phelps, R.J., Mckillip, J.L. (2002). Enterotoxin production in natural isolates of Bacillaceae outside the Bacillus cereus group. Applied and Environmental Microbiology, 68(6), 3147-3151.
  • [32] Rowan, N.J., Deans, K., Anderson, J.G., Gemmell, C.G., Hunter, I.S., Chaithong, T. (2001). Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Applied and Environmental Microbiology, 67(9), 3873-3881.
  • [33] Kim, J.B., Choi, O.K., Kwon, S.M., Cho, S.H., Park, B.J., Jin, N.Y., Yu, Y.M., Oh, D.H. (2017). Prevalence and toxin characteristics of Bacillus thuringiensis isolated from organic vegetables. Journal of Microbiology and Biotechnology, 27(8), 1449-1456.
  • [34] Johler, S., Kalbhenn, E.M., Heini, N., Brodmann, P., Gautsch, S., Bağcioğlu, M., Contzen, M., Stephan, R., Ehling-Schulz, M. (2018). Enterotoxin production of Bacillus thuringiensis isolates from biopesticides, foods, and outbreaks. Frontiers in Microbiology, 9, 1-11.
  • [35] Choi, H.J., Kang, S.J., Hong, K.W. (2017). Comparison of NheA toxin production and doubling time between Bacillus cereus and Bacillus thuringiensis. Applied Biological Chemistry, 60(5), 545-551.
  • [36] Mbozo, A.B.V., Kobawila, S.C., Anyogu, A., Awamaria, B., Louembe, D., Sutherlenad, J.P., Ouoba, L.I.I. (2017). Investigation of the diversity and safety of the predominant Bacillus pumilus sensu lato and other Bacillus species involved in the alkaline fermentation of cassava leaves for the production of Ntoba Mbodi. Food Control, 82, 154-162.
  • [37] Lee, A., Cheng, K.C., Liu, J.R. (2017). Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. Plos One, 12(8), e182220.
  • [38] Jeon, H.L., Lee, N.K., Yang, S.J., Kim, W.S., Paik, H.D. (2017). Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Science and Biotechnology, 26(6), 1641-1648.
  • [39] Jeon, H.L., Yang, S.J., Son, S.H., Kim, W.S., Lee, N.K., Paik, H.D. (2018). Evaluation of probiotic Bacillus subtilis P229 isolated from cheonggukjang and its application in soybean fermentation. LWT-Food Science and Technology, 97, 94-99.
  • [40] Abdulmawjood, A., Herrmann, J., Riede, S., Jimenez, G., Becker, A., Breves, G. (2019). Evaluation of enterotoxin gene expression and enterotoxin production capacity of the probiotic strain Bacillus toyonensis BCT-7112. Plos One, 14(4), e0214536.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Fundagül Erem 0000-0003-1562-0686

Muharrem Certel This is me 0000-0002-1901-5590

Barçın Karakaş Budak This is me 0000-0002-1426-3667

Project Number 2010.03.0121.020
Publication Date April 30, 2020
Submission Date August 2, 2019
Published in Issue Year 2020 Volume: 18 Issue: 1

Cite

APA Erem, F., Certel, M., & Karakaş Budak, B. (2020). Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli. Akademik Gıda, 18(1), 64-72. https://doi.org/10.24323/akademik-gida.730168
AMA Erem F, Certel M, Karakaş Budak B. Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli. Akademik Gıda. April 2020;18(1):64-72. doi:10.24323/akademik-gida.730168
Chicago Erem, Fundagül, Muharrem Certel, and Barçın Karakaş Budak. “Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli”. Akademik Gıda 18, no. 1 (April 2020): 64-72. https://doi.org/10.24323/akademik-gida.730168.
EndNote Erem F, Certel M, Karakaş Budak B (April 1, 2020) Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli. Akademik Gıda 18 1 64–72.
IEEE F. Erem, M. Certel, and B. Karakaş Budak, “Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli”, Akademik Gıda, vol. 18, no. 1, pp. 64–72, 2020, doi: 10.24323/akademik-gida.730168.
ISNAD Erem, Fundagül et al. “Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli”. Akademik Gıda 18/1 (April 2020), 64-72. https://doi.org/10.24323/akademik-gida.730168.
JAMA Erem F, Certel M, Karakaş Budak B. Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli. Akademik Gıda. 2020;18:64–72.
MLA Erem, Fundagül et al. “Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli”. Akademik Gıda, vol. 18, no. 1, 2020, pp. 64-72, doi:10.24323/akademik-gida.730168.
Vancouver Erem F, Certel M, Karakaş Budak B. Sünme (Rope) Problemi Olan Ekmeklerden İzole Edilen Bacillus Türlerinin Enterotoksin Üretme Potansiyeli. Akademik Gıda. 2020;18(1):64-72.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).