Research Article
BibTex RIS Cite

Chlorella vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi

Year 2023, Volume: 21 Issue: 2, 167 - 173, 29.08.2023
https://doi.org/10.24323/akademik-gida.1351008

Abstract

Bu çalışmada besleyici öğeler açısından zengin, farklı fonksiyonel gıdalarda kullanımı giderek yaygınlaşan Chlorella vulgaris türü mikroalglerde bulunan B vitamini içeriklerinin 125°C sıcaklıkta ve 35 dakikalık pişirme koşulları altında değişimi incelenmiştir. Ultra yüksek performanslı sıvı kromatografisi-yüksek çözünürlüklü kütle spektrometresi (UHPLC-HR/MS) kullanılarak gerçekleştirilen ölçümlerde 35 dakikalık pişirme süresi sonrası B1 (tiamin), B2 (riboflavin), B3 (niasin), ve B6 (piridoksin) vitaminlerinin pişirme işlemine maruz bırakılmayan kontrol grubuna kıyasla istatistiki olarak anlamlı şekilde (p<0.05) arttığı belirlenmiştir. B7 (biyotin) ve B12 (metilkobalamin) miktarların ise 35 dakikalık pişirme işlemi sonrası kontrol grubuna göre bir miktar arttığı, ancak aradaki farkın istatistiki olarak anlamlı olmadığı (p>0.05) gözlenmiştir. Otuz beş dakikalık uzun ısıl işlemlerinin, kalın bir hücre çeperine sahip Chlorella vulgaris mikroalg türünde daha fazla B vitamini açığa çıkmasına yardımcı olabileceği; böylelikle ısıl işlemlere karşı hassas olan ve pişirme sonrası bozunduğu bilinen B vitaminlerinin, Chlorella vulgaris türü mikroalglerde pişirme sırasında korunarak fonksiyonel gıda ürünlerinde kullanılabileceği değerlendirilmiştir.

Supporting Institution

Avrupa Birliği ve Türkiye Cumhuriyeti Sanayi ve Teknoloji Bakanlığı, AB ve Dış İlişkiler Genel Müdürlüğü, AB Mali Programları Daire Başkanlığı

Project Number

EuropeAid/140111/ IH/SUP/TR

Thanks

Bu çalışma Avrupa Birliği ve Türkiye Cumhuriyeti tarafından ortak finanse edilen, Sanayi ve Teknoloji Bakanlığı, AB ve Dış İlişkiler Genel Müdürlüğü, AB Mali Programları Daire Başkanlığı tarafından yürütülen Rekabetçi Sektörler Programı EuropeAid/140111/ IH/SUP/TR numaralı “Biyoekonomi Odaklı Kalkınma için Entegre Biyorafineri Konsepti” Proje kapsamında gerçekleştirilmiştir. Analitik ölçümlere katkıda bulunan Boğaziçi Üniversitesi İstanbul Mikroyosun Biyoteknolojileri Ar-Ge Birimi ekibinden Dr. Engin Bayram’a ve Duygu Özçelik’e; fotobiyoreaktör çizimi için Derya Gelgör’e teşekkür ederiz.

References

  • [1] Aaronson, S. (1986). A role for algae as human food in antiquity. Food and Foodways, 1(3), 311-315.
  • [2] Adjali, A., Clarot, I., Chen, Z., Marchioni, E., Boudier, A. (2021). Physicochemical degradation of phycocyanin and means to improve its stability: A short review. Journal of Pharmaceutical Analysis, 12(3), 406-414.
  • [3] Akyıl, S., İlter, I., Mehmet, K., Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4), 418-423.
  • [4] Alçay, A.Ü., Sağlam, A., Yalçın, S., Bostan, K. (2018). Possible protein sources for the future. Akademik Gıda, 16(2), 197-204.
  • [5] Ambati, R.R., Gogisetty, D., Aswathanarayana, R.G., Ravi, S., Bikkina, P.N., Bo, L., Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12), 1880-1902.
  • [6] Berry Ottaway, P. (2010). Stability of vitamins during food processing and storage. In Chemical Deterioration and Physical Instability of Food and Beverages, Edited by L.H. Skibsted, J. Risbo, M.L. Andersen, Woodhead Publishing, 80 High Street, Cambridge, CB22 3HJ United Kingdom. 539p.
  • [7] De Ruiter, G.A., Rudolph, B. (1997). Carrageenan biotechnology. Trends in Food Science & Technology, 8(12), 389-395.
  • [8] Dias, M.G., Sanchez, M., Bartolo, H., Oliveira, L. (2003). Vitamin content of fish and fish products consumed in Portugal. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2(4), 510-515.
  • [9] Ersoy, B., Özeren, A. (2009). The effect of cooking methods on mineral and vitamin contents of African catfish. Food chemistry, 115(2), 419-422.
  • [10] Ferreira, A.S., Ferreira, S.S., Correia, A., Vilanova, M., Silva, T.H., Coimbra, M.A., Nunes, C. (2020). Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach. Algal Research, 45, 101757.
  • [11] Fradique, M., Batista, A.P., Nunes, M.C., Gouveia, L., Bandarra, N.M., Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), 1656-1664.
  • [12] Fuliaş, A., Vlase, G., Vlase, T., Oneţiu, D., Doca, N., Ledeţi, I. (2014). Thermal degradation of B-group vitamins: B1, B2 and B6. Journal of Thermal Analysis and Calorimetry, 118(2), 1033-1038.
  • [13] Ghafari, M., Rashidi, B., Haznedaroglu, B.Z. (2018). Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae. Biofuels, 9(2), 147-156.
  • [14] Godde, C., Mason-D’Croz, D., Mayberry, D., Thornton, P.K., Herrero, M. (2021). Impacts of climate change on the livestock food supply chain; A review of the evidence. Global Food Security, 28, 100488.
  • [15] Gouveia, L., Batista, A.P., Miranda, A., Empis, J., Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433-436.
  • [16] Graça, C., Fradinho, P., Sousa, I., Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT, 89, 466-474.
  • [17] Helliwell, K.E., Lawrence, A.D., Holzer, A., Kudahl, U.J., Sasso, S., Kräutler, B., Smith, A.G. (2016). Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Current Biology, 26(8), 999-1008.
  • [18] Hildebrand, G., Poojary, M.M., O’Donnell, C., Lund, M.N., Garcia-Vaquero, M., Tiwari, B.K. (2020). Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. Journal of Applied Phycology, 32(3), 1709-1718.
  • [19] İlter, I., Akyıl, S., Mehmet, K., Kaymak-Ertekin, F. (2016). Alglerden elde edilen stabilize edici maddeler. Akademik Gıda, 14(3), 315-321.
  • [20] Jayappriyan, K., Baskar, B., Vijayakumar, M., Brabakaran, A., Rajkumar, R., Elumalai, S. (2021). Food and nutraceutical applications of algae. In Algae for Food, Edited by K.R. Jayappriyan, B. Baskar, M. Vijayakumar, A. Brabakaran, R. Rajkumar, S. Elumalai, CRC Press, 5 Howick Place, London SW1P 1WG, England, 83p.
  • [21] Ji, X.J., Ren, L.J., Huang, H. (2015). Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production. Frontiers in Bioengineering and Biotechnology, 3, 158.
  • [22] Koyande, A.K., Chew, K.W., Manickam, S., Chang, J.S., Show, P.L. (2021). Emerging algal nanotechnology for high-value compounds: a direction to future food production. Trends in Food Science & Technology, 116, 290-302.
  • [23] Kulkarni, S., Nikolov, Z. (2018). Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Research, 35, 185-193.
  • [24] Lee, S., Choi, Y., Jeong, H.S., Lee, J., Sung, J. (2018). Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Science and Biotechnology, 27(2), 333-342.
  • [25] Liu, S., Gifuni, I., Mear, H., Frappart, M., Couallier, E. (2021). Recovery of soluble proteins from Chlorella vulgaris by bead-milling and microfiltration: Impact of the concentration and the physicochemical conditions during the cell disruption on the whole process. Process Biochemistry, 108, 34-47.
  • [26] Misiou, O., Koutsoumanis, K. (2021). Climate change and its implications for food safety and spoilage. Trends in Food Science & Technology, 126, 142-152.
  • [27] Munawaroh, H., Darojatun, K., Gumilar, G., Aisyah, S., Wulandari, A. (2018). Characterization of phycocyanin from Spirulina fusiformis and its thermal stability. 4th International Seminar of Mathematics, Science and Computer Science Education, October 14, 2017, Bandung, Indonesia, Book of Proceedings, 012205p.
  • [28] Onwezen, M.C., Bouwman, E.P., Reinders, M.J., Dagevos, H. (2021). A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite, 159, 105058.
  • [29] Palabıyık, İ. (2017). Liyofilize bazı mikroalg türlerinin sakız bileşiminde doğal renklendirici olarak kullanımı. Gıda, 42(6), 676-681.
  • [30] Panahi, Y., Darvishi, B., Jowzi, N., Beiraghdar, F., Sahebkar, A. (2016). Chlorella vulgaris: a multifunctional dietary supplement with diverse medicinal properties. Current Pharmaceutical Design, 22(2), 164-173.
  • [31] Pires, J.C. (2017). COP21: the algae opportunity? Renewable and Sustainable Energy Reviews, 79, 867-877.
  • [32] Qazi, W.M., Ballance, S., Kousoulaki, K., Uhlen, A.K., Kleinegris, D.M., Skjånes, K., Rieder, A. (2021). Protein enrichment of wheat bread with microalgae: Microchloropsis gaditana, Tetraselmis chui and Chlorella vulgaris. Foods, 10(12), 3078.
  • [33] Rani, K., Sandal, N., Sahoo, P. (2018). A comprehensive review on chlorella-its composition, health benefits, market and regulatory scenario. The Pharma Innovation Journal, 7(7), 584-589.
  • [34] Rickman, J.C., Barrett, D.M., Bruhn, C.M. (2007). Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. Journal of the Science of Food and Agriculture, 87(6), 930-944.
  • [35] Rojas, A.M., Gerschenson, L.N. (2001). Ascorbic acid destruction in aqueous model systems: An additional discussion. Journal of the Science of Food and Agriculture, 81(15), 1433-1439.
  • [36] Ryley, J., Kajda, P. (1994). Vitamins in thermal processing. Food chemistry, 49(2), 119-129.
  • [37] Safi, C., Zebib, B., Merah, O., Pontalier, P.Y., Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278.
  • [38] Sayeda, M., Ali, G.H., El-Baz, F.K. (2015). Potential production of omega fatty acids from microalgae. International Journal of Pharmaceutical Sciences Review and Research, 34(2), 210-215.
  • [39] Seyfabadi, J., Ramezanpour, Z., Amini Khoeyi, Z. (2011). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23(4), 721-726.
  • [40] Stuetz, W., Schlörmann, W., Glei, M. (2017). B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chemistry, 221, 222-227.
  • [41] Syed, S., Arasu, A., Ponnuswamy, I. (2015). The uses of Chlorella vulgaris as antimicrobial agent and as a diet: The presence of bio-active compounds which caters the vitamins, minerals in general. International Journal of Bio-Science and Bio-Technology, 7(1), 185-190.
  • [42] Tuğçe, Ö., Bayram, B. Spirulina mikroalginin besinsel özellikleri ve sağlık üzerine potansiyel etkileri. Akademik Gıda, 20(3), 296-304.
  • [43] Usov, A.I. (1999). Alginic acids and alginates: Analytical methods used for their estimation and characterisation of composition and primary structure. Russian Chemical Reviews, 68(11), 957-966.
  • [44] Ho, K., Redan, B.W. (2022). Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae, Critical Reviews in Food Science and Nutrition, 62(2), 508-526.
  • [45] Watanabe, F. (2007). Vitamin B12 sources and bioavailability. Experimental Biology and Medicine, 232(10), 1266-1274.
  • [46] Watanabe, F., Yabuta, Y., Bito, T., Teng, F. (2014). Vitamin B12-containing plant food sources for vegetarians. Nutrients, 6(5), 1861-1873.
  • [47] Weber, S., Grande, P.M., Blank, L.M., Klose, H. (2022). Insights into cell wall disintegration of Chlorella vulgaris. Plos One, 17(1), e0262500.
  • [48] West, V.A. (2015). Stability of selected B vitamins in thermally-treated pinto beans, Department of Nutrition, Dietetics and Food Science, Brigham Young University Yüksek Lisans Tezi, Provo, Utah, Amerika Birleşik Devletleri, 105 s.

Changes in Vitamin B Complex of Chlorella vulgaris during Long Term Baking Conditions

Year 2023, Volume: 21 Issue: 2, 167 - 173, 29.08.2023
https://doi.org/10.24323/akademik-gida.1351008

Abstract

In this study, Chlorella vulgaris microalgae, commonly used in functional foods due to its rich nutritious compounds, have been subjected to 35-min cooking durations at 125°C to determine changes in its vitamin B content. Using Ultra-Performance Liquid Chromatography–High-Resolution Mass Spectrometry (UHPLC-HR/MS), long-term 35-min cooking caused significant increases (p<0.05) in vitamins B1 (thiamine), B2 (riboflavin), B3 (niacin) and B6 (pyridoxine) compared to raw (non-baked) samples. Vitamins B7 (biotin) and B12 (methylcobalamin) were both higher in 35-min-baked samples although these changes were statistically insignificant (p>0.05). These observations were attributed to the fact that long-term heat treatment during cooking might help breakage of thicker cell walls present in Chlorella vulgaris leading to higher vitamin B concentrations compared to raw samples. As such, it was concluded that cooking processes might help preserve vitamin B-rich content of Chlorella vulgaris and contribute to their use in functional food products.

Project Number

EuropeAid/140111/ IH/SUP/TR

References

  • [1] Aaronson, S. (1986). A role for algae as human food in antiquity. Food and Foodways, 1(3), 311-315.
  • [2] Adjali, A., Clarot, I., Chen, Z., Marchioni, E., Boudier, A. (2021). Physicochemical degradation of phycocyanin and means to improve its stability: A short review. Journal of Pharmaceutical Analysis, 12(3), 406-414.
  • [3] Akyıl, S., İlter, I., Mehmet, K., Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4), 418-423.
  • [4] Alçay, A.Ü., Sağlam, A., Yalçın, S., Bostan, K. (2018). Possible protein sources for the future. Akademik Gıda, 16(2), 197-204.
  • [5] Ambati, R.R., Gogisetty, D., Aswathanarayana, R.G., Ravi, S., Bikkina, P.N., Bo, L., Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12), 1880-1902.
  • [6] Berry Ottaway, P. (2010). Stability of vitamins during food processing and storage. In Chemical Deterioration and Physical Instability of Food and Beverages, Edited by L.H. Skibsted, J. Risbo, M.L. Andersen, Woodhead Publishing, 80 High Street, Cambridge, CB22 3HJ United Kingdom. 539p.
  • [7] De Ruiter, G.A., Rudolph, B. (1997). Carrageenan biotechnology. Trends in Food Science & Technology, 8(12), 389-395.
  • [8] Dias, M.G., Sanchez, M., Bartolo, H., Oliveira, L. (2003). Vitamin content of fish and fish products consumed in Portugal. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2(4), 510-515.
  • [9] Ersoy, B., Özeren, A. (2009). The effect of cooking methods on mineral and vitamin contents of African catfish. Food chemistry, 115(2), 419-422.
  • [10] Ferreira, A.S., Ferreira, S.S., Correia, A., Vilanova, M., Silva, T.H., Coimbra, M.A., Nunes, C. (2020). Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach. Algal Research, 45, 101757.
  • [11] Fradique, M., Batista, A.P., Nunes, M.C., Gouveia, L., Bandarra, N.M., Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 90(10), 1656-1664.
  • [12] Fuliaş, A., Vlase, G., Vlase, T., Oneţiu, D., Doca, N., Ledeţi, I. (2014). Thermal degradation of B-group vitamins: B1, B2 and B6. Journal of Thermal Analysis and Calorimetry, 118(2), 1033-1038.
  • [13] Ghafari, M., Rashidi, B., Haznedaroglu, B.Z. (2018). Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae. Biofuels, 9(2), 147-156.
  • [14] Godde, C., Mason-D’Croz, D., Mayberry, D., Thornton, P.K., Herrero, M. (2021). Impacts of climate change on the livestock food supply chain; A review of the evidence. Global Food Security, 28, 100488.
  • [15] Gouveia, L., Batista, A.P., Miranda, A., Empis, J., Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science & Emerging Technologies, 8(3), 433-436.
  • [16] Graça, C., Fradinho, P., Sousa, I., Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT, 89, 466-474.
  • [17] Helliwell, K.E., Lawrence, A.D., Holzer, A., Kudahl, U.J., Sasso, S., Kräutler, B., Smith, A.G. (2016). Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Current Biology, 26(8), 999-1008.
  • [18] Hildebrand, G., Poojary, M.M., O’Donnell, C., Lund, M.N., Garcia-Vaquero, M., Tiwari, B.K. (2020). Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. Journal of Applied Phycology, 32(3), 1709-1718.
  • [19] İlter, I., Akyıl, S., Mehmet, K., Kaymak-Ertekin, F. (2016). Alglerden elde edilen stabilize edici maddeler. Akademik Gıda, 14(3), 315-321.
  • [20] Jayappriyan, K., Baskar, B., Vijayakumar, M., Brabakaran, A., Rajkumar, R., Elumalai, S. (2021). Food and nutraceutical applications of algae. In Algae for Food, Edited by K.R. Jayappriyan, B. Baskar, M. Vijayakumar, A. Brabakaran, R. Rajkumar, S. Elumalai, CRC Press, 5 Howick Place, London SW1P 1WG, England, 83p.
  • [21] Ji, X.J., Ren, L.J., Huang, H. (2015). Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production. Frontiers in Bioengineering and Biotechnology, 3, 158.
  • [22] Koyande, A.K., Chew, K.W., Manickam, S., Chang, J.S., Show, P.L. (2021). Emerging algal nanotechnology for high-value compounds: a direction to future food production. Trends in Food Science & Technology, 116, 290-302.
  • [23] Kulkarni, S., Nikolov, Z. (2018). Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Research, 35, 185-193.
  • [24] Lee, S., Choi, Y., Jeong, H.S., Lee, J., Sung, J. (2018). Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Science and Biotechnology, 27(2), 333-342.
  • [25] Liu, S., Gifuni, I., Mear, H., Frappart, M., Couallier, E. (2021). Recovery of soluble proteins from Chlorella vulgaris by bead-milling and microfiltration: Impact of the concentration and the physicochemical conditions during the cell disruption on the whole process. Process Biochemistry, 108, 34-47.
  • [26] Misiou, O., Koutsoumanis, K. (2021). Climate change and its implications for food safety and spoilage. Trends in Food Science & Technology, 126, 142-152.
  • [27] Munawaroh, H., Darojatun, K., Gumilar, G., Aisyah, S., Wulandari, A. (2018). Characterization of phycocyanin from Spirulina fusiformis and its thermal stability. 4th International Seminar of Mathematics, Science and Computer Science Education, October 14, 2017, Bandung, Indonesia, Book of Proceedings, 012205p.
  • [28] Onwezen, M.C., Bouwman, E.P., Reinders, M.J., Dagevos, H. (2021). A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite, 159, 105058.
  • [29] Palabıyık, İ. (2017). Liyofilize bazı mikroalg türlerinin sakız bileşiminde doğal renklendirici olarak kullanımı. Gıda, 42(6), 676-681.
  • [30] Panahi, Y., Darvishi, B., Jowzi, N., Beiraghdar, F., Sahebkar, A. (2016). Chlorella vulgaris: a multifunctional dietary supplement with diverse medicinal properties. Current Pharmaceutical Design, 22(2), 164-173.
  • [31] Pires, J.C. (2017). COP21: the algae opportunity? Renewable and Sustainable Energy Reviews, 79, 867-877.
  • [32] Qazi, W.M., Ballance, S., Kousoulaki, K., Uhlen, A.K., Kleinegris, D.M., Skjånes, K., Rieder, A. (2021). Protein enrichment of wheat bread with microalgae: Microchloropsis gaditana, Tetraselmis chui and Chlorella vulgaris. Foods, 10(12), 3078.
  • [33] Rani, K., Sandal, N., Sahoo, P. (2018). A comprehensive review on chlorella-its composition, health benefits, market and regulatory scenario. The Pharma Innovation Journal, 7(7), 584-589.
  • [34] Rickman, J.C., Barrett, D.M., Bruhn, C.M. (2007). Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. Journal of the Science of Food and Agriculture, 87(6), 930-944.
  • [35] Rojas, A.M., Gerschenson, L.N. (2001). Ascorbic acid destruction in aqueous model systems: An additional discussion. Journal of the Science of Food and Agriculture, 81(15), 1433-1439.
  • [36] Ryley, J., Kajda, P. (1994). Vitamins in thermal processing. Food chemistry, 49(2), 119-129.
  • [37] Safi, C., Zebib, B., Merah, O., Pontalier, P.Y., Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278.
  • [38] Sayeda, M., Ali, G.H., El-Baz, F.K. (2015). Potential production of omega fatty acids from microalgae. International Journal of Pharmaceutical Sciences Review and Research, 34(2), 210-215.
  • [39] Seyfabadi, J., Ramezanpour, Z., Amini Khoeyi, Z. (2011). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23(4), 721-726.
  • [40] Stuetz, W., Schlörmann, W., Glei, M. (2017). B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chemistry, 221, 222-227.
  • [41] Syed, S., Arasu, A., Ponnuswamy, I. (2015). The uses of Chlorella vulgaris as antimicrobial agent and as a diet: The presence of bio-active compounds which caters the vitamins, minerals in general. International Journal of Bio-Science and Bio-Technology, 7(1), 185-190.
  • [42] Tuğçe, Ö., Bayram, B. Spirulina mikroalginin besinsel özellikleri ve sağlık üzerine potansiyel etkileri. Akademik Gıda, 20(3), 296-304.
  • [43] Usov, A.I. (1999). Alginic acids and alginates: Analytical methods used for their estimation and characterisation of composition and primary structure. Russian Chemical Reviews, 68(11), 957-966.
  • [44] Ho, K., Redan, B.W. (2022). Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae, Critical Reviews in Food Science and Nutrition, 62(2), 508-526.
  • [45] Watanabe, F. (2007). Vitamin B12 sources and bioavailability. Experimental Biology and Medicine, 232(10), 1266-1274.
  • [46] Watanabe, F., Yabuta, Y., Bito, T., Teng, F. (2014). Vitamin B12-containing plant food sources for vegetarians. Nutrients, 6(5), 1861-1873.
  • [47] Weber, S., Grande, P.M., Blank, L.M., Klose, H. (2022). Insights into cell wall disintegration of Chlorella vulgaris. Plos One, 17(1), e0262500.
  • [48] West, V.A. (2015). Stability of selected B vitamins in thermally-treated pinto beans, Department of Nutrition, Dietetics and Food Science, Brigham Young University Yüksek Lisans Tezi, Provo, Utah, Amerika Birleşik Devletleri, 105 s.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Berat Zeki Haznedaroğlu 0000-0002-0081-8801

Project Number EuropeAid/140111/ IH/SUP/TR
Publication Date August 29, 2023
Submission Date January 9, 2023
Published in Issue Year 2023 Volume: 21 Issue: 2

Cite

APA Haznedaroğlu, B. Z. (2023). Chlorella vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi. Akademik Gıda, 21(2), 167-173. https://doi.org/10.24323/akademik-gida.1351008
AMA Haznedaroğlu BZ. Chlorella vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi. Akademik Gıda. August 2023;21(2):167-173. doi:10.24323/akademik-gida.1351008
Chicago Haznedaroğlu, Berat Zeki. “Chlorella Vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi”. Akademik Gıda 21, no. 2 (August 2023): 167-73. https://doi.org/10.24323/akademik-gida.1351008.
EndNote Haznedaroğlu BZ (August 1, 2023) Chlorella vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi. Akademik Gıda 21 2 167–173.
IEEE B. Z. Haznedaroğlu, “Chlorella vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi”, Akademik Gıda, vol. 21, no. 2, pp. 167–173, 2023, doi: 10.24323/akademik-gida.1351008.
ISNAD Haznedaroğlu, Berat Zeki. “Chlorella Vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi”. Akademik Gıda 21/2 (August 2023), 167-173. https://doi.org/10.24323/akademik-gida.1351008.
JAMA Haznedaroğlu BZ. Chlorella vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi. Akademik Gıda. 2023;21:167–173.
MLA Haznedaroğlu, Berat Zeki. “Chlorella Vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi”. Akademik Gıda, vol. 21, no. 2, 2023, pp. 167-73, doi:10.24323/akademik-gida.1351008.
Vancouver Haznedaroğlu BZ. Chlorella vulgaris Türü Mikroalglerde B Vitamini İçeriklerinin Uzun Süreli Pişirme Koşulunda Değişimi. Akademik Gıda. 2023;21(2):167-73.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).