Review
BibTex RIS Cite

Metisiline Dirençli Staphylococcus aureus Tedavisinde Kullanılan Antibiyotiklerin Genotipik Direnç Mekanizmaları

Year 2021, Volume: 30 Issue: 3, 177 - 184, 30.09.2021

Abstract

Antibiyotikler basit bir enfeksiyondan tutun da hayatı tehdit eden ciddi bir enfeksiyona varıncaya dek sayısız hastalığın tedavisinde kullanılarak tedavilerde büyük başarılar sağlamıştır. Ancak, antibiyotiklerin uygunsuz ve gereksiz kullanılması, bugün antibiyotiğe dirençli türlerin hızla ortaya çıkmasına neden olmuştur. Metisiline dirençli Staphylococcus aureus suşları, en inatçı antibiyotiğe dirençli patojenlerden biridir ve yüksek bir oranda hastane kaynaklı enfeksiyonlara neden olmaktadır. Antimikrobiyal direncin genetiği ve biyokimyası, direnç belirleyicilerin kökenleri ve bakteriler arasında direnç belirleyicilerin bulaşma yollarının anlaşılmasında büyük ilerleme kaydedilmiştir. Bu derlemede metisiline dirençli Staphylococcus aureus tedavisinde kullanılan antibiyotiklerin genotipik direnç mekanizmaları irdelenmiştir.

Supporting Institution

bulunmamaktadır

References

  • Referans1 Banin E, Hughes D, Kuipers OP. Bacterial pathogens, antibiotics and antibiotic resistance. FEMS microbiology reviews 2017;41:450-452.
  • Referans2 Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant‐associated orthopedic infections. Journal of Orthopaedic Research® 2018;36:22-32.
  • Referans3 O’neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist 2014;20:1-16.
  • Referans4 Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New microbes and new infections 2015;6:22-29.
  • Referans5 Yu H, Wang Y, Wang X, Guo J, Wang H, Zhang H, et al. Jatrorrhizine suppresses the antimicrobial resistance of methicillin‑resistant Staphylococcus aureus. Experimental and Therapeutic Medicine 2019;18:3715-3722.
  • Referans6 Sundsfjord A, Simonsen GS, Haldorsen BC, Haaheim H, hjelmevoll SO, Littauer P, et al. Genetic methods for detection of antimicrobial resistance. Apmis 2004;112:815-837.
  • Referans7 Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS microbiology reviews 2017;41:430-449.
  • Referans8 El Feghaly RE, Stamm JE, Fritz SA, Burnham CAD. Presence of the blaZ beta-lactamase gene in isolates of Staphylococcus aureus that appear penicillin susceptible by conventional phenotypic methods. Diagnostic microbiology and infectious disease 2012;74:388-393.
  • Referans9 Takayama Y, Tanaka T, Oikawa K, Fukano N, Goto M, Takahashi T. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus isolates from Japan. Annals of laboratory medicine 2018;38:155-159.
  • Referans10 Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of clinical investigation 2003;111:1265-1273.
  • Referans11 Oliveira DC, De Lencastre H. Methicillin-resistance in Staphylococcus aureus is not affected by the overexpression in trans of the mecA gene repressor: a surprising observation. Plos One 2011;6.
  • Referans12 Wielders C, Fluit A, Brisse S, Verhoef J, Schmitz FJ. mecA gene is widely disseminated in Staphylococcus aureus population. Journal of clinical microbiology 2002;40:3970-3975.
  • Referans13 Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science progress 2002;85:57-72.
  • Referans14 Carretto E, Visiello R, Nardini P. Methicillin Resistance in Staphylococcus aureus. In: Pet-To-Man Travelling StaphylococciElsevier; 2018:225-235.
  • Referans15 Gherardi G, De Florio L, Lorino G, Fico L, Dicuonzo G. Macrolide resistance genotypes and phenotypes among erythromycin-resistant clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci, Italy. FEMS Immunology & Medical Microbiology 2009;55:62-67.
  • Referans16 Ghanbari F, Ghajavand H, Havaei R, Jami MS, Khademi F, Heydari L, et al. Distribution of erm genes among Staphylococcus aureus isolates with inducible resistance to clindamycin in Isfahan, Iran. Advanced biomedical research 2016;5.
  • Referans17 Khodabandeh M, Mohammadi M, Abdolsalehi MR, Alvandimanesh A, Gholami M, Bibalan MH, et al. Analysis of Resistance to Macrolide–Lincosamide–Streptogramin B among mecA-positive Staphylococcus aureus Isolates. Osong public health and research perspectives 2019;10:25.
  • Referans18 Trzcinski K, Cooper BS, Hryniewicz W, & Dowson CG. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 2000;45:763-770.
  • Referans19 Schmitz FJ, Krey A, Sadurski R, Verhoef J, Milatovic D, Fluit AC. Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. Journal of antimicrobial chemotherapy 2001;47:239-240.
  • Referans20 Bismuth R, Zilhao R, Sakamoto H, Guesdon JL. Courvalin P. Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrob Agents Ch 1990;34:1611-1614.
  • Referans21 Yao JD, Moellering RC. Antibacterial agents. In: Manual of Clinical Microbiology, 10th EditionAmerican Society of Microbiology; 2011:1043-1081.
  • Referans22 Wichelhaus TA, Schäfer V, Brade V, Böddinghaus B. molecular characterization of rpoB mutations conferring cross-resistance to rifamycins on methicillin-resistant Staphylococcus aureus. Antimicrob Agents Ch 1999;43:2813-2816.
  • Referans23 van Rensburg MJJ, Whitelaw AC, Elisha BG. Genetic basis of rifampicin resistance in methicillin-resistant Staphylococcus aureus suggests clonal expansion in hospitals in Cape Town, South Africa. BMC microbiology 2012;12:46.
  • Referans24 You I, Kariyama R, Zervos MJ, Kumon H, Chow JW. In-vitro activity of arbekacin alone and in combination with vancomycin against gentamicin-and methicillin-resistant Staphylococcus aureus. Diagnostic microbiology and infectious disease 2000;36:37-41.
  • Referans25 Alli OAT, Ogbolu DO, Bamigboye KP, Animasaun AA., Oluremi A. Distribution of genes encoding aminoglycoside modifying enzymes amongst methicillin resistant and methicillin sensitive Staphylococcus aureus isolates from Nigerian hospitals. Afr J Microbiol Res 2015;9:318-325.
  • Referans26 Schmitz FJ, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E, Verhoef J, et al. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. Journal of antimicrobial chemotherapy 1999;43:253-259.
  • Referans27 Tanaka M, Wang T, Onodera Y, Uchida Y, Sato K. Mechanism of quinolone resistance in Staphylococcus aureus. Journal of Infection and Chemotherapy 2000;6:131-139.
  • Referans28 Kim ES, Hooper DC. Clinical importance and epidemiology of quinolone resistance. Infection & chemotherapy 2014;46:226-238.
  • Referans29 Schmitz FJ, Jones ME, Hofmann B, Hansen B, Scheuring S, Lückefahr M, et al. Characterization of grlA, grlB, gyrA, and gyrB mutations in 116 unrelated isolates of Staphylococcus aureus and effects of mutations on ciprofloxacin MIC. Antimicrob Agents Ch 1998;42:1249-1252.
  • Referans30 Guirao GY, Martínez Toldos MC, Peris BM, Alonso Manzanares MA., Gutiérrez Zufiaurre MN, Martínez Andrés JA, et al. Molecular diversity of quinolone resistance in genetically related clinical isolates of Staphylococcus aureus and susceptibility to newer quinolones. Journal of Antimicrobial Chemotherapy 2001;47:157-161.
  • Referans31 Yu JL, Grinius L, Hooper DC. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. Journal of bacteriology 2002;184:1370-1377.
  • Referans32 Costa SS, Viveiros M, Rosato AE, Melo-Cristino J, Couto I. Impact of efflux in the development of multidrug resistance phenotypes in Staphylococcus aureus. BMC microbiology 2015;15:232.
  • Referans33 Wood JB, Smith DB, Baker EH, Brecher SM, Gupta K. Has the emergence of community-associated methicillin-resistant Staphylococcus aureus increased trimethoprim-sulfamethoxazole use and resistance?: a 10-year time series analysis. Antimicrob Agents Ch 2012;56:5655-5660.
  • Referans34 Nurjadi D, Olalekan AO, Layer F, Shittu AO, Alabi A, Ghebremedhin B. Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. Journal of Antimicrobial Chemotherapy 2014;69:2361-2368.
  • Referans35 Haroche J, Morvan A, Davi M, Allignet J, Bimet F, El Solh N. Clonal diversity among streptogramin A-resistant Staphylococcus aureus isolates collected in French hospitals. Journal of clinical microbiology 2003;41:586-591.
  • Referans36 Werner G, Cuny C, Schmitz FJ, Witte W. Methicillin-resistant, quinupristin-dalfopristin-resistant Staphylococcus aureus with reduced sensitivity to glycopeptides. Journal of clinical microbiology 2001;39:3586-3590.
  • Referans37 Hershberger E, Donabedian S, Konstantinou K, Zervos MJ, Eliopoulos GM. Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin Infect Dis 2004;38:92-98.
  • Referans38 Malbruny B, Canu A, Bozdogan B, Fantin B, Zarrouk V, Dutka-Malen S, et al. Resistance to quinupristin-dalfopristin due to mutation of L22 ribosomal protein in Staphylococcus aureus. Antimicrob Agents Ch 2002;46:2200-2207.
  • Referans39 Szczuka E, Kaznowski A, Bosacka K, Strzemieczna E. Antimicrobial resistance and presence of ileS-2 gene encoding mupirocin resistance in clinical isolates of methicillin-resistant Staphylococcus sp. Folia microbiologica 2009;54:153-156.
  • Referans40 Perez-Roth E, Claverie-Martın F, Villar J, Mendez-Alvarez S. Multiplex PCR for simultaneous identification ofstaphylococcus aureus and detection of methicillin and mupirocin resistance. Journal of clinical microbiology 2001;39:4037-4041.
  • Referans41 Yu F, Liu Y, Lu C, Jinnan LV, Qi X, Ding Y, et al. Dissemination of fusidic acid resistance among Staphylococcus aureus clinical isolates. BMC microbiology 2015;15:210.
  • Referans42 Castanheira M, Watters AA, Mendes RE, Farrell DJ, Jones RN. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). Journal of antimicrobial chemotherapy 2010;65:1353-1358.
  • Referans43 Chen C-M, Huang M, Chen H-F, et al. Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC microbiology 2011;11:98.
  • Referans44 Kang KM, Mishra NN, Park KT, Lee GY, Park YH, Bayer AS, et al. Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates. Journal of Microbiology 2017;55:153-159.
  • Referans45 Hobbs JK, Miller K, O’neill AJ, Chopra I. Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 2008;62:1003-1008.
  • Referans46 Patel S, Saw S. Daptomycin. In: StatPearls [Internet]StatPearls Publishing; 2019.
  • Referans47 Roch M, Gagetti P, Davis J, Ceriana P, Errecalde L, Corso A, et al. Daptomycin resistance in clinical MRSA strains is associated with a high biological fitness cost. Frontiers in microbiology 2017;8:2303.
  • Referans48 Quiles-Melero I, Gómez-Gil R, Romero-Gómez MP, Sánchez-Díaz AM, de Pablos M, García-Rodriguez J, et al. Mechanisms of linezolid resistance among staphylococci in a tertiary hospital. Journal of Clinical microbiology 2013;51:998-1001.
  • Referans49 Jian J, Chen L, Xie Z, Zhang M. Dissemination of cfr-mediated linezolid resistance among Staphylococcus species isolated from a teaching hospital in Beijing, China. Journal of International Medical Research 2018;46:3884-3889.
  • Referans50 Yoo IY, Kang OK, Shim HJ, Huh HJ, Lee NY. Linezolid resistance in methicillin-resistant Staphylococcus aureus in Korea: High Rate of False Resistance to Linezolid by the VITEK 2 System. Annals of laboratory medicine 2020;40:57-62.
  • Referans51 Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Ch 2012;56:603-612.
  • Referans52 Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clinical microbiology reviews 2010;23:99-139.
  • Referans53 Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 2006;42:S25-S34.
  • Referans54 Périchon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Ch 2009;53:4580-4587.
  • Referans55 Mirza HC. Glycopeptide Resistance in S. aureus. The rise of virulence and antibiotic resistance in Staphylococcus aureus Croatia: InTech 2017:43-59.

Genotypic Resistance Mechanisms of Antibiotics Used in the Treatment of Methicillin Resistant Staphylococcus aureus

Year 2021, Volume: 30 Issue: 3, 177 - 184, 30.09.2021

Abstract

Antibiotics have been successful in treating numerous diseases, from a simple infection to a serious life-threatening infection. However, inappropriate and unnecessary use of antibiotics has led to the rapid emergence of antibiotic-resistant species today. Methicillin-resistant Staphylococcus aureus strains are one of the most persistent antibiotic-resistant pathogens and cause a high proportion of nosocomial infections. Great progress has been made in understanding the genetics and biochemistry of antimicrobial resistance, the origins of resistance markers, and the transmission pathway of resistance markers among bacteria. In this review, genotypic resistance mechanisms of antibiotics used in the treatment of methicillin-resistant Staphylococcus aureus are examined.

References

  • Referans1 Banin E, Hughes D, Kuipers OP. Bacterial pathogens, antibiotics and antibiotic resistance. FEMS microbiology reviews 2017;41:450-452.
  • Referans2 Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant‐associated orthopedic infections. Journal of Orthopaedic Research® 2018;36:22-32.
  • Referans3 O’neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist 2014;20:1-16.
  • Referans4 Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New microbes and new infections 2015;6:22-29.
  • Referans5 Yu H, Wang Y, Wang X, Guo J, Wang H, Zhang H, et al. Jatrorrhizine suppresses the antimicrobial resistance of methicillin‑resistant Staphylococcus aureus. Experimental and Therapeutic Medicine 2019;18:3715-3722.
  • Referans6 Sundsfjord A, Simonsen GS, Haldorsen BC, Haaheim H, hjelmevoll SO, Littauer P, et al. Genetic methods for detection of antimicrobial resistance. Apmis 2004;112:815-837.
  • Referans7 Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS microbiology reviews 2017;41:430-449.
  • Referans8 El Feghaly RE, Stamm JE, Fritz SA, Burnham CAD. Presence of the blaZ beta-lactamase gene in isolates of Staphylococcus aureus that appear penicillin susceptible by conventional phenotypic methods. Diagnostic microbiology and infectious disease 2012;74:388-393.
  • Referans9 Takayama Y, Tanaka T, Oikawa K, Fukano N, Goto M, Takahashi T. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus isolates from Japan. Annals of laboratory medicine 2018;38:155-159.
  • Referans10 Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of clinical investigation 2003;111:1265-1273.
  • Referans11 Oliveira DC, De Lencastre H. Methicillin-resistance in Staphylococcus aureus is not affected by the overexpression in trans of the mecA gene repressor: a surprising observation. Plos One 2011;6.
  • Referans12 Wielders C, Fluit A, Brisse S, Verhoef J, Schmitz FJ. mecA gene is widely disseminated in Staphylococcus aureus population. Journal of clinical microbiology 2002;40:3970-3975.
  • Referans13 Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science progress 2002;85:57-72.
  • Referans14 Carretto E, Visiello R, Nardini P. Methicillin Resistance in Staphylococcus aureus. In: Pet-To-Man Travelling StaphylococciElsevier; 2018:225-235.
  • Referans15 Gherardi G, De Florio L, Lorino G, Fico L, Dicuonzo G. Macrolide resistance genotypes and phenotypes among erythromycin-resistant clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci, Italy. FEMS Immunology & Medical Microbiology 2009;55:62-67.
  • Referans16 Ghanbari F, Ghajavand H, Havaei R, Jami MS, Khademi F, Heydari L, et al. Distribution of erm genes among Staphylococcus aureus isolates with inducible resistance to clindamycin in Isfahan, Iran. Advanced biomedical research 2016;5.
  • Referans17 Khodabandeh M, Mohammadi M, Abdolsalehi MR, Alvandimanesh A, Gholami M, Bibalan MH, et al. Analysis of Resistance to Macrolide–Lincosamide–Streptogramin B among mecA-positive Staphylococcus aureus Isolates. Osong public health and research perspectives 2019;10:25.
  • Referans18 Trzcinski K, Cooper BS, Hryniewicz W, & Dowson CG. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 2000;45:763-770.
  • Referans19 Schmitz FJ, Krey A, Sadurski R, Verhoef J, Milatovic D, Fluit AC. Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. Journal of antimicrobial chemotherapy 2001;47:239-240.
  • Referans20 Bismuth R, Zilhao R, Sakamoto H, Guesdon JL. Courvalin P. Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrob Agents Ch 1990;34:1611-1614.
  • Referans21 Yao JD, Moellering RC. Antibacterial agents. In: Manual of Clinical Microbiology, 10th EditionAmerican Society of Microbiology; 2011:1043-1081.
  • Referans22 Wichelhaus TA, Schäfer V, Brade V, Böddinghaus B. molecular characterization of rpoB mutations conferring cross-resistance to rifamycins on methicillin-resistant Staphylococcus aureus. Antimicrob Agents Ch 1999;43:2813-2816.
  • Referans23 van Rensburg MJJ, Whitelaw AC, Elisha BG. Genetic basis of rifampicin resistance in methicillin-resistant Staphylococcus aureus suggests clonal expansion in hospitals in Cape Town, South Africa. BMC microbiology 2012;12:46.
  • Referans24 You I, Kariyama R, Zervos MJ, Kumon H, Chow JW. In-vitro activity of arbekacin alone and in combination with vancomycin against gentamicin-and methicillin-resistant Staphylococcus aureus. Diagnostic microbiology and infectious disease 2000;36:37-41.
  • Referans25 Alli OAT, Ogbolu DO, Bamigboye KP, Animasaun AA., Oluremi A. Distribution of genes encoding aminoglycoside modifying enzymes amongst methicillin resistant and methicillin sensitive Staphylococcus aureus isolates from Nigerian hospitals. Afr J Microbiol Res 2015;9:318-325.
  • Referans26 Schmitz FJ, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E, Verhoef J, et al. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. Journal of antimicrobial chemotherapy 1999;43:253-259.
  • Referans27 Tanaka M, Wang T, Onodera Y, Uchida Y, Sato K. Mechanism of quinolone resistance in Staphylococcus aureus. Journal of Infection and Chemotherapy 2000;6:131-139.
  • Referans28 Kim ES, Hooper DC. Clinical importance and epidemiology of quinolone resistance. Infection & chemotherapy 2014;46:226-238.
  • Referans29 Schmitz FJ, Jones ME, Hofmann B, Hansen B, Scheuring S, Lückefahr M, et al. Characterization of grlA, grlB, gyrA, and gyrB mutations in 116 unrelated isolates of Staphylococcus aureus and effects of mutations on ciprofloxacin MIC. Antimicrob Agents Ch 1998;42:1249-1252.
  • Referans30 Guirao GY, Martínez Toldos MC, Peris BM, Alonso Manzanares MA., Gutiérrez Zufiaurre MN, Martínez Andrés JA, et al. Molecular diversity of quinolone resistance in genetically related clinical isolates of Staphylococcus aureus and susceptibility to newer quinolones. Journal of Antimicrobial Chemotherapy 2001;47:157-161.
  • Referans31 Yu JL, Grinius L, Hooper DC. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. Journal of bacteriology 2002;184:1370-1377.
  • Referans32 Costa SS, Viveiros M, Rosato AE, Melo-Cristino J, Couto I. Impact of efflux in the development of multidrug resistance phenotypes in Staphylococcus aureus. BMC microbiology 2015;15:232.
  • Referans33 Wood JB, Smith DB, Baker EH, Brecher SM, Gupta K. Has the emergence of community-associated methicillin-resistant Staphylococcus aureus increased trimethoprim-sulfamethoxazole use and resistance?: a 10-year time series analysis. Antimicrob Agents Ch 2012;56:5655-5660.
  • Referans34 Nurjadi D, Olalekan AO, Layer F, Shittu AO, Alabi A, Ghebremedhin B. Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. Journal of Antimicrobial Chemotherapy 2014;69:2361-2368.
  • Referans35 Haroche J, Morvan A, Davi M, Allignet J, Bimet F, El Solh N. Clonal diversity among streptogramin A-resistant Staphylococcus aureus isolates collected in French hospitals. Journal of clinical microbiology 2003;41:586-591.
  • Referans36 Werner G, Cuny C, Schmitz FJ, Witte W. Methicillin-resistant, quinupristin-dalfopristin-resistant Staphylococcus aureus with reduced sensitivity to glycopeptides. Journal of clinical microbiology 2001;39:3586-3590.
  • Referans37 Hershberger E, Donabedian S, Konstantinou K, Zervos MJ, Eliopoulos GM. Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin Infect Dis 2004;38:92-98.
  • Referans38 Malbruny B, Canu A, Bozdogan B, Fantin B, Zarrouk V, Dutka-Malen S, et al. Resistance to quinupristin-dalfopristin due to mutation of L22 ribosomal protein in Staphylococcus aureus. Antimicrob Agents Ch 2002;46:2200-2207.
  • Referans39 Szczuka E, Kaznowski A, Bosacka K, Strzemieczna E. Antimicrobial resistance and presence of ileS-2 gene encoding mupirocin resistance in clinical isolates of methicillin-resistant Staphylococcus sp. Folia microbiologica 2009;54:153-156.
  • Referans40 Perez-Roth E, Claverie-Martın F, Villar J, Mendez-Alvarez S. Multiplex PCR for simultaneous identification ofstaphylococcus aureus and detection of methicillin and mupirocin resistance. Journal of clinical microbiology 2001;39:4037-4041.
  • Referans41 Yu F, Liu Y, Lu C, Jinnan LV, Qi X, Ding Y, et al. Dissemination of fusidic acid resistance among Staphylococcus aureus clinical isolates. BMC microbiology 2015;15:210.
  • Referans42 Castanheira M, Watters AA, Mendes RE, Farrell DJ, Jones RN. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). Journal of antimicrobial chemotherapy 2010;65:1353-1358.
  • Referans43 Chen C-M, Huang M, Chen H-F, et al. Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC microbiology 2011;11:98.
  • Referans44 Kang KM, Mishra NN, Park KT, Lee GY, Park YH, Bayer AS, et al. Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates. Journal of Microbiology 2017;55:153-159.
  • Referans45 Hobbs JK, Miller K, O’neill AJ, Chopra I. Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 2008;62:1003-1008.
  • Referans46 Patel S, Saw S. Daptomycin. In: StatPearls [Internet]StatPearls Publishing; 2019.
  • Referans47 Roch M, Gagetti P, Davis J, Ceriana P, Errecalde L, Corso A, et al. Daptomycin resistance in clinical MRSA strains is associated with a high biological fitness cost. Frontiers in microbiology 2017;8:2303.
  • Referans48 Quiles-Melero I, Gómez-Gil R, Romero-Gómez MP, Sánchez-Díaz AM, de Pablos M, García-Rodriguez J, et al. Mechanisms of linezolid resistance among staphylococci in a tertiary hospital. Journal of Clinical microbiology 2013;51:998-1001.
  • Referans49 Jian J, Chen L, Xie Z, Zhang M. Dissemination of cfr-mediated linezolid resistance among Staphylococcus species isolated from a teaching hospital in Beijing, China. Journal of International Medical Research 2018;46:3884-3889.
  • Referans50 Yoo IY, Kang OK, Shim HJ, Huh HJ, Lee NY. Linezolid resistance in methicillin-resistant Staphylococcus aureus in Korea: High Rate of False Resistance to Linezolid by the VITEK 2 System. Annals of laboratory medicine 2020;40:57-62.
  • Referans51 Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Ch 2012;56:603-612.
  • Referans52 Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clinical microbiology reviews 2010;23:99-139.
  • Referans53 Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 2006;42:S25-S34.
  • Referans54 Périchon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Ch 2009;53:4580-4587.
  • Referans55 Mirza HC. Glycopeptide Resistance in S. aureus. The rise of virulence and antibiotic resistance in Staphylococcus aureus Croatia: InTech 2017:43-59.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review
Authors

Zerife Orhan 0000-0003-2154-3074

Publication Date September 30, 2021
Acceptance Date July 9, 2021
Published in Issue Year 2021 Volume: 30 Issue: 3

Cite

AMA Orhan Z. Metisiline Dirençli Staphylococcus aureus Tedavisinde Kullanılan Antibiyotiklerin Genotipik Direnç Mekanizmaları. aktd. September 2021;30(3):177-184.