Review
BibTex RIS Cite

Dorsal Nöral Tüpte Nöronal Çeşitliliğin Transkripsiyonel Kontrolü

Year 2023, Volume: 32 Issue: 3, 169 - 173, 30.09.2023
https://doi.org/10.17827/aktd.1324499

Abstract

Sinir sistemindeki nöronal ağlar, canlılar için hayati önem taşıyan; hareket, nefes alma, duruş ve denge gibi çeşitli davranışların yönetiminde merkezi rol oynar. Gelişim sırasında farklı nöron tipleri arasındaki sinaptik bağlantılar, bu hayati işlevleri kolaylaştıran sinir ağlarının temel mimarisini oluşturur. Spinal kord, bu nöronal ağları oluşturmak üzere birbirine bağlanan dengeli sayıda eksitator (Glutamaterjik) ve inhibitör (GABAerjik) nöronları içerir. Bugüne kadar yapılan çalışmalarda, spinal korddaki çeşitli nöron popülasyonlarının gelişimini tanımlamak ve yönlendirmek için merkezi sinir sistemi (MSS) gelişimi boyunca eksprese olan ve fonksiyon gören transkripsiyon faktör (TF) ağları araştırılmıştır. Dorsal spinal kordda eksitatör ve inhibitör nöronlar arasındaki dengenin, erken gelişim aşamasında temel sarmal-döngü-sarmal (bHLH) transkripsiyon aktivatörleri ve PRDM13 repressörü arasındaki etkileşim süreciyle belirlenir. bHLH TF'leri olan ASCL1 ve PTF1A, sırasıyla eksitatör ve inhibitör nöron gen ekspresyon programlarını başlatırken, PRDM13, alternatif hücre kaderlerini susturmak için gereklidir. Burada kilit nokta, bHLH ve PRDM faktörlerinin, embriyogenez boyunca progenitör hücrelerde (öncü hücre) nöron çeşitliliğini oluşturmak üzere kritik kader seçim noktalarında eksprese olmasıdır. Nöron alt tiplerinin belirlenmesinde bu faktörlerin işlevleri konusunda önemli ilerlemeler kaydedilmiş olmasına rağmen, belirli gen programlarını nasıl düzenlediği ile ilgili mekanizmalar henüz açık değildir. Bu mekanizmaların ortaya çıkarılması, gelecekte sinir sistemi gelişimindeki bozuklukların çözümüne ve gelişim anomalileri sonucu oluşan klinik problemlerin tedavisine yönelik araştırmalara ışık tutacaktır.

References

  • 1. Moore KL, Persaud TVN, Torchia MG. Klinik Yönleriyle İnsan Embriyolojisi, 8. Baskı (Ed H Dalçık): 382-6. İstanbul: Nobel Tıp Kitabevi, 2016.
  • 2. Sadler TW. Medikal Embriyoloji, 13. Baskı (Ed AC Başaklar): 306-42. Ankara: Palme Yayıncılık, 2017.
  • 3. Carslon BM. İnsan Embriyolojisi ve Gelişim Biyolojisi, 6. Baskı (Eds FF Kaymaz, P Atilla, EB Zırh): 205-40 İstanbul: Güneş Tıp Kitapevleri, 2022
  • 4. Lai HC and Johnson JE. Neurogenesis or Neuronal Specification: Phosphorylation Strikes Again! Neuron. 2008;58(1), 26-33.
  • 5. Lai HC, Seal RP, Johnson JE. Making sense out of spinal cord somatosensory development. Development. 2016;143(19), 3434-8.
  • 6. Deneris ES and Hobert O. Maintenance of postmitotic neuronal cell identity. Nature Neuroscience. 2014; 17(7), 899–907.
  • 7. Matise MP. Molecular genetic control of cell patterning and fate determination in the developing ventral spinal cord. Wiley Interdisciplinary Reviews: Developmental Biology. 2013;2, 419–25.
  • 8. Liu Y and Ma Q. Generation of somatic sensory neuron diversity and implications on sensory coding. Curr. Opin. Neurobiol. 2011;21, 52-60.
  • 9. Ross SE. Pain and itch: insights into the neural circuits of aversive somatosensation in health and disease. Curr. Opin. Neurobiol. 2011;21, 880-7.
  • 10. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010;11(12), 823-36.
  • 11. Borromeo MD, Meredith DM, Castro DS, Chang JC, Tung KC, Guillemot F, et al. Correction: A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development. 2017;144(13), 2539.
  • 12. Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, et al. Lbx1 and Tlx3 are opposing switches in determiningGABAergic versus glutamatergic transmitter phenotypes, Nat. Neurosci. 2005;8(11), 1510-5.
  • 13. Glasgow SM, Henke RM, Macdonald RJ, Wright CVE., Johnson JE. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development. 2005;132, 5461-9.
  • 14. Helms AW, Battiste J, Henke RM, Nakada Y, Simplicio N, Guillemot F. Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development. 2005;132, 2709-19.
  • 15. Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat. Neurosci. 2006;9, 770-8.
  • 16. Wildner H, Müller T, Cho SH, Bröhl D, Cepko CL, Guillemot F, et al. dILA neurons in the dorsal spinal cord are the product of terminal and non-terminal asymmetric progenitor cell divisions, and require Mash1 for their development. Development. 2006;133(11), 2105-13.
  • 17. Chang JC, Meredith DM, Mayer PR, Borromeo MD, Lai HC, Ou Y, et al. Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Dev Cell. 2013;25(2), 182–95.
  • 18. Helms AW and Johnson JE. Specification of dorsal spinal cord interneurons’’, Current Opinion in Neurobiology. 2003 ;13, 42–9.
  • 19. Zhuang B and Sockanathan S. Dorsal-ventral patterning: a view from the top. Current Opinion in Neurobiology. 2006;16(1), 20–4.
  • 20. Nakada Y, Hunsaker TL, Henke RM, Johnson JE. Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification. Development.2004;131, 1319-30.
  • 21. Fog CK, Galli GG, Lund AH. PRDM proteins: Important players in differentiation and disease. Bioessays. 2012;34(1), 50–60.
  • 22. Hohenauer T and Moore AW. The Prdm family: expanding roles in stem cells and development. Development. 2012; 139, 2267–82.
  • 23. Ross SE, McCord AE, Jung C, Atan D, Mok SI, Hemberg M, et al. Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron. 2012;73, 292–303.
  • 24. Liu C, Ma W, Su W, Zhang J. Prdm14 acts upstream of islet2 transcription to regulate axon growth of primary motoneurons in zebrafish. Development. 2012; 139(24), 4591-600.
  • 25. Watanabe S, Sanuki R, Sugita Y, Imai W, Yamazaki R, Kozuka T, et al. Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. Journal of Neuroscience. 2015;35(20), 8004–20.
  • 26. Eram MS, Bustos SP, Lima-Fernandes E, Siarheyeva A, Senisterra G, Hajian T, et al. Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein. Journal of Biological Chemistry. 2014;289, 12177–88.
  • 27. Pinheiro I, Margueron R, Shukeir N, Eisold M. Fritzsch C, Richter FM, et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell. 2012;150,948–60.
  • 28. Wu H, Mathioudakis N, Diagouraga B, Dong A, Dombrovski L, Baudat F, et al. Molecular basis for the regulation of the H3K4 methyltransferase activity of PRDM9. Cell Reports. 2013; 5(1), 13–20.
  • 29. Hanotel J, Bessodes N, Thelie A, Hedderich M, Parain K, Driessche BV, et al. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Developmental Biology. 2014;386, 340–57.
  • 30. Mona B, Uruena A, Kollipara RK, Ma Z, Borromeo MD, Chang JC, et al. Repression by PRDM13 is critical for generating precision in neuronal identity. eLife. 2017;6, e25787.
  • 31. Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, et al. ASCL1 represses a SOX9+ neural crest stem-like state in small cell lung cancer. Genes Dev. 2021;35(11-12), 847-69.
  • 32. Vue TY, Kollipara RK, Borromeo MD, Smith T, Mashimo T, Burns DK, et al. ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia. 2020;68(12), 2613-30.
Year 2023, Volume: 32 Issue: 3, 169 - 173, 30.09.2023
https://doi.org/10.17827/aktd.1324499

Abstract

References

  • 1. Moore KL, Persaud TVN, Torchia MG. Klinik Yönleriyle İnsan Embriyolojisi, 8. Baskı (Ed H Dalçık): 382-6. İstanbul: Nobel Tıp Kitabevi, 2016.
  • 2. Sadler TW. Medikal Embriyoloji, 13. Baskı (Ed AC Başaklar): 306-42. Ankara: Palme Yayıncılık, 2017.
  • 3. Carslon BM. İnsan Embriyolojisi ve Gelişim Biyolojisi, 6. Baskı (Eds FF Kaymaz, P Atilla, EB Zırh): 205-40 İstanbul: Güneş Tıp Kitapevleri, 2022
  • 4. Lai HC and Johnson JE. Neurogenesis or Neuronal Specification: Phosphorylation Strikes Again! Neuron. 2008;58(1), 26-33.
  • 5. Lai HC, Seal RP, Johnson JE. Making sense out of spinal cord somatosensory development. Development. 2016;143(19), 3434-8.
  • 6. Deneris ES and Hobert O. Maintenance of postmitotic neuronal cell identity. Nature Neuroscience. 2014; 17(7), 899–907.
  • 7. Matise MP. Molecular genetic control of cell patterning and fate determination in the developing ventral spinal cord. Wiley Interdisciplinary Reviews: Developmental Biology. 2013;2, 419–25.
  • 8. Liu Y and Ma Q. Generation of somatic sensory neuron diversity and implications on sensory coding. Curr. Opin. Neurobiol. 2011;21, 52-60.
  • 9. Ross SE. Pain and itch: insights into the neural circuits of aversive somatosensation in health and disease. Curr. Opin. Neurobiol. 2011;21, 880-7.
  • 10. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010;11(12), 823-36.
  • 11. Borromeo MD, Meredith DM, Castro DS, Chang JC, Tung KC, Guillemot F, et al. Correction: A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development. 2017;144(13), 2539.
  • 12. Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, et al. Lbx1 and Tlx3 are opposing switches in determiningGABAergic versus glutamatergic transmitter phenotypes, Nat. Neurosci. 2005;8(11), 1510-5.
  • 13. Glasgow SM, Henke RM, Macdonald RJ, Wright CVE., Johnson JE. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development. 2005;132, 5461-9.
  • 14. Helms AW, Battiste J, Henke RM, Nakada Y, Simplicio N, Guillemot F. Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development. 2005;132, 2709-19.
  • 15. Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat. Neurosci. 2006;9, 770-8.
  • 16. Wildner H, Müller T, Cho SH, Bröhl D, Cepko CL, Guillemot F, et al. dILA neurons in the dorsal spinal cord are the product of terminal and non-terminal asymmetric progenitor cell divisions, and require Mash1 for their development. Development. 2006;133(11), 2105-13.
  • 17. Chang JC, Meredith DM, Mayer PR, Borromeo MD, Lai HC, Ou Y, et al. Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Dev Cell. 2013;25(2), 182–95.
  • 18. Helms AW and Johnson JE. Specification of dorsal spinal cord interneurons’’, Current Opinion in Neurobiology. 2003 ;13, 42–9.
  • 19. Zhuang B and Sockanathan S. Dorsal-ventral patterning: a view from the top. Current Opinion in Neurobiology. 2006;16(1), 20–4.
  • 20. Nakada Y, Hunsaker TL, Henke RM, Johnson JE. Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification. Development.2004;131, 1319-30.
  • 21. Fog CK, Galli GG, Lund AH. PRDM proteins: Important players in differentiation and disease. Bioessays. 2012;34(1), 50–60.
  • 22. Hohenauer T and Moore AW. The Prdm family: expanding roles in stem cells and development. Development. 2012; 139, 2267–82.
  • 23. Ross SE, McCord AE, Jung C, Atan D, Mok SI, Hemberg M, et al. Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron. 2012;73, 292–303.
  • 24. Liu C, Ma W, Su W, Zhang J. Prdm14 acts upstream of islet2 transcription to regulate axon growth of primary motoneurons in zebrafish. Development. 2012; 139(24), 4591-600.
  • 25. Watanabe S, Sanuki R, Sugita Y, Imai W, Yamazaki R, Kozuka T, et al. Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. Journal of Neuroscience. 2015;35(20), 8004–20.
  • 26. Eram MS, Bustos SP, Lima-Fernandes E, Siarheyeva A, Senisterra G, Hajian T, et al. Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein. Journal of Biological Chemistry. 2014;289, 12177–88.
  • 27. Pinheiro I, Margueron R, Shukeir N, Eisold M. Fritzsch C, Richter FM, et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell. 2012;150,948–60.
  • 28. Wu H, Mathioudakis N, Diagouraga B, Dong A, Dombrovski L, Baudat F, et al. Molecular basis for the regulation of the H3K4 methyltransferase activity of PRDM9. Cell Reports. 2013; 5(1), 13–20.
  • 29. Hanotel J, Bessodes N, Thelie A, Hedderich M, Parain K, Driessche BV, et al. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Developmental Biology. 2014;386, 340–57.
  • 30. Mona B, Uruena A, Kollipara RK, Ma Z, Borromeo MD, Chang JC, et al. Repression by PRDM13 is critical for generating precision in neuronal identity. eLife. 2017;6, e25787.
  • 31. Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, et al. ASCL1 represses a SOX9+ neural crest stem-like state in small cell lung cancer. Genes Dev. 2021;35(11-12), 847-69.
  • 32. Vue TY, Kollipara RK, Borromeo MD, Smith T, Mashimo T, Burns DK, et al. ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia. 2020;68(12), 2613-30.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Neurosciences (Other)
Journal Section Review
Authors

Dilek Şaker 0000-0002-5055-4226

Sait Polat 0000-0003-1646-8831

Early Pub Date September 27, 2023
Publication Date September 30, 2023
Acceptance Date August 17, 2023
Published in Issue Year 2023 Volume: 32 Issue: 3

Cite

AMA Şaker D, Polat S. Dorsal Nöral Tüpte Nöronal Çeşitliliğin Transkripsiyonel Kontrolü. aktd. September 2023;32(3):169-173. doi:10.17827/aktd.1324499