Research Article
BibTex RIS Cite

Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination

Year 2017, Volume: 17 Issue: 1, 48 - 55, 24.04.2017

Abstract

Introduction: This study aimed to investigate capabities of MCNPX monte carlo code for calculations
of average absorbed dose in a breast phantom during mammography examination. Also, the effect of
tube voltage and breast thickness on absorbed dose was determined by using Monte carlo method.
Materials & Methods: In this study, the average absorbed dose values were investigated by using
MCNPX (version 2.4.0) Monte Carlo code. Validation of modeled simulation setup has been obtained
by calculating the HVL values of Al attenuator material for different tube voltage (26 to 32 kV ).
Obtained HVL values were found to be comparable with experimental results and available Monte
Carlo results. Thus, validated simulation setup has been used for investigation of average absorbed
dose in a %50-%50 grandular-adipose breast phantom. Results: Our calculated results was consistent
with the previous studies and our MC model was validated. The results showed that changing tube
voltage from 26 to 32 kV leads to about 4 times increase in breast dose. While increasing breast thick
ness from 2 to 5 cm results in 1.6 times higer dose to breast. Conclusion: It can concluded that the
breast recieved dose depends strongly beam quality and breast thickness. Our modeling using MCNPX
can be used future dosimteric studies concering breast dose investigations in mamograpgy
examinations.

References

  • [1] Sechopoulos I.,Suryanarayanan S., Vedantham S., D'Orsi C.J., Karellas A., 2008. Radiation dose to organs and tissues from mammography: Monte Carlo and phantom study. Radiology.246(2):434-43
  • [2] Sechopoulos I, Suryanarayanan S, Vedantham S, D'Orsi C, Karellas A., 2007. Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med Phys.34(1):221-32.
  • [3] Bor D., Tukel S., Olgar T., Aydin E., 2008. Variations in breast doses for an automatic mammography unit. Diagn. Interv. Radiol. 14:122-126.
  • [4] Olgar T, Kahn T., Gosch D., 2012. Average Glandular Dose in Digital Mammography and Breast Tomosynthesis. Fortschr . Röntgenstr. 184: 911–918 . DOI: 10.1055/s-0032-1312877.
  • [5] Dance D.R., 1990. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys. Med. Biol., Vol. 35,No 9, 1211-1219.
  • [6] Ishii R.,Yoshida A., Ishii M., Fujimoto S., Henmi N., 2011. Precision of half-value layer measurement on mammography. Nihon Hoshasen Gijutsu Gakkai Zasshi.
  • 67(12):1533-9. [7] Diffey J., Cartwright L., Crocker J., Heggie J., 2014. Direct half value layer measurements in mammography - is near enough good enough?.Combined Scientific Meeting. DOI:10.1594/ranzcr2014/R-0127
  • [8] Ramos M.A.P., Ferrer S., Verdu G., Padovani E., Campayo J.M., 2004. A mammographic phantom image reconstruction through Monte Carlo techniques. Nuclear Science Symposium Conference Record, IEEE, Volume: 5 DOI: 10.1109/NSSMIC.2004.1466322
  • [9] Aznar M. C., Medin J., Hemdal B., Thilander Klang A., Bøtter-Jensen L., Mattsson S., 2005. A MONTE CARLO STUDY OF THE ENERGY DEPENDENCE OF Al2O3:C CRYSTALS FOR REAL-TIME IN VIVO DOSIMETRY IN MAMMOGRAPHY. Radiation Protection Dosimetry. Vol. 114, Nos 1-3, pp. 444–449. doi:10.1093/rpd/nch560
  • [10] Koutalonis M., Delis H., Spyrou G., Costaridou L., Tzanakos G., Panayiotakis G., 2007. Contrast-to-noise ratio in magnification mammography: a Monte Carlo study. Phys. Med. Biol. 52. 3185–3199. doi:10.1088/0031-9155/52/11/017
  • [11] Douglas E. P., Kuruvilla V., 2000. Digital mammography image simulation using Monte Carlo. Medical Physics 27, 568. doi: 10.1118/1.598896
  • [12] Dance D. R., 1990. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,’’ Phys. Med. Biol. 35, 1211– 1219.
  • [13] Dance D. R., Skinner C. L., Young K. C., Beckett J. R. Kotre C. J., 2000. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys. Med. Biol. 45,3225–3240.
  • [14] Wu X., Gingold E. L., Barnes G. T., and Tucker D. M., 1994. Normalized average glandular dose in molybdenum target-rhodium filter and rhodium targetrhodium filter mammography. Radiology 193, 83–89.
  • [15] Paixao L., Oliviera B., Viloria C., 2015. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography. Radiol Bras. Nov/Dez;48(6):363–367. http://dx.doi.org/10.1590/0100-3984.2014.0108
  • [16] RSICC Computer Code Collection., 2002. MCNPX User’s manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications.
  • [17] Tekin H.O., 2016. MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data. Science and Technology of Nuclear Installations. Volume 2016, Article ID 6547318, 7 pages. http://dx.doi.org/10.1155/2016/6547318
  • [18] Akkurt I., Tekin H.O., Mesbahi A., 2015. Calculation of Detection Efficiency fort he Gamma Detector using MCNP-X. Acta Physica Polonica A, 128 (2-B): 332-334. doi:10.12693/APhysPolA.128.B-332
  • [19] Tekin H.O. and Kara U., 2016. Monte Carlo Simulation for Distance and Absorbed Dose Calculations in a PET-CT Facility by using MCNP-X. Journal of Communication and Computer, (13): 32-35 doi:10.17265/1548-7709/2016.01.005
  • [20] Tekin H.O., Manici T., Ekmekci C., 2016. Investigation of Backscattered Dose in a Computerized Tomography (CT) Facility during Abdominal CT Scan by Considering Clinical Measurements and Application of Monte Carlo Method. Journal of Health Science 4, 131-134. doi: 10.17265/2328-7136/2016.03.004
  • [21] Tekin H.O., Singh V.P., Manici T., 2017. Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Applied Radiation and Isotopes. Vol 121, pp. 122-125. doi:http://dx.doi.org/10.1016/j.apradiso.2016.12.040
  • [22] Verdú G., Leön A., Villaescusa J.I., Salas M.D., Cuevas M.D., Bueno F., 2000. Mammographic Dosimetry Using MCNP-4B, Journal of Nuclear Science and Technology, 37:1, 875-879, doi:10.1080/00223131.2000.10875015
  • [23] Hammerstein G.R., Miller D.W., White D.R., Masterson M.E., Woodard H.Q, Laughlin J.S., 1979. Absorbed radiation dose in mammography. Radiology, 130,pp 485-491.
Year 2017, Volume: 17 Issue: 1, 48 - 55, 24.04.2017

Abstract

References

  • [1] Sechopoulos I.,Suryanarayanan S., Vedantham S., D'Orsi C.J., Karellas A., 2008. Radiation dose to organs and tissues from mammography: Monte Carlo and phantom study. Radiology.246(2):434-43
  • [2] Sechopoulos I, Suryanarayanan S, Vedantham S, D'Orsi C, Karellas A., 2007. Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med Phys.34(1):221-32.
  • [3] Bor D., Tukel S., Olgar T., Aydin E., 2008. Variations in breast doses for an automatic mammography unit. Diagn. Interv. Radiol. 14:122-126.
  • [4] Olgar T, Kahn T., Gosch D., 2012. Average Glandular Dose in Digital Mammography and Breast Tomosynthesis. Fortschr . Röntgenstr. 184: 911–918 . DOI: 10.1055/s-0032-1312877.
  • [5] Dance D.R., 1990. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys. Med. Biol., Vol. 35,No 9, 1211-1219.
  • [6] Ishii R.,Yoshida A., Ishii M., Fujimoto S., Henmi N., 2011. Precision of half-value layer measurement on mammography. Nihon Hoshasen Gijutsu Gakkai Zasshi.
  • 67(12):1533-9. [7] Diffey J., Cartwright L., Crocker J., Heggie J., 2014. Direct half value layer measurements in mammography - is near enough good enough?.Combined Scientific Meeting. DOI:10.1594/ranzcr2014/R-0127
  • [8] Ramos M.A.P., Ferrer S., Verdu G., Padovani E., Campayo J.M., 2004. A mammographic phantom image reconstruction through Monte Carlo techniques. Nuclear Science Symposium Conference Record, IEEE, Volume: 5 DOI: 10.1109/NSSMIC.2004.1466322
  • [9] Aznar M. C., Medin J., Hemdal B., Thilander Klang A., Bøtter-Jensen L., Mattsson S., 2005. A MONTE CARLO STUDY OF THE ENERGY DEPENDENCE OF Al2O3:C CRYSTALS FOR REAL-TIME IN VIVO DOSIMETRY IN MAMMOGRAPHY. Radiation Protection Dosimetry. Vol. 114, Nos 1-3, pp. 444–449. doi:10.1093/rpd/nch560
  • [10] Koutalonis M., Delis H., Spyrou G., Costaridou L., Tzanakos G., Panayiotakis G., 2007. Contrast-to-noise ratio in magnification mammography: a Monte Carlo study. Phys. Med. Biol. 52. 3185–3199. doi:10.1088/0031-9155/52/11/017
  • [11] Douglas E. P., Kuruvilla V., 2000. Digital mammography image simulation using Monte Carlo. Medical Physics 27, 568. doi: 10.1118/1.598896
  • [12] Dance D. R., 1990. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,’’ Phys. Med. Biol. 35, 1211– 1219.
  • [13] Dance D. R., Skinner C. L., Young K. C., Beckett J. R. Kotre C. J., 2000. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys. Med. Biol. 45,3225–3240.
  • [14] Wu X., Gingold E. L., Barnes G. T., and Tucker D. M., 1994. Normalized average glandular dose in molybdenum target-rhodium filter and rhodium targetrhodium filter mammography. Radiology 193, 83–89.
  • [15] Paixao L., Oliviera B., Viloria C., 2015. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography. Radiol Bras. Nov/Dez;48(6):363–367. http://dx.doi.org/10.1590/0100-3984.2014.0108
  • [16] RSICC Computer Code Collection., 2002. MCNPX User’s manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications.
  • [17] Tekin H.O., 2016. MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data. Science and Technology of Nuclear Installations. Volume 2016, Article ID 6547318, 7 pages. http://dx.doi.org/10.1155/2016/6547318
  • [18] Akkurt I., Tekin H.O., Mesbahi A., 2015. Calculation of Detection Efficiency fort he Gamma Detector using MCNP-X. Acta Physica Polonica A, 128 (2-B): 332-334. doi:10.12693/APhysPolA.128.B-332
  • [19] Tekin H.O. and Kara U., 2016. Monte Carlo Simulation for Distance and Absorbed Dose Calculations in a PET-CT Facility by using MCNP-X. Journal of Communication and Computer, (13): 32-35 doi:10.17265/1548-7709/2016.01.005
  • [20] Tekin H.O., Manici T., Ekmekci C., 2016. Investigation of Backscattered Dose in a Computerized Tomography (CT) Facility during Abdominal CT Scan by Considering Clinical Measurements and Application of Monte Carlo Method. Journal of Health Science 4, 131-134. doi: 10.17265/2328-7136/2016.03.004
  • [21] Tekin H.O., Singh V.P., Manici T., 2017. Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Applied Radiation and Isotopes. Vol 121, pp. 122-125. doi:http://dx.doi.org/10.1016/j.apradiso.2016.12.040
  • [22] Verdú G., Leön A., Villaescusa J.I., Salas M.D., Cuevas M.D., Bueno F., 2000. Mammographic Dosimetry Using MCNP-4B, Journal of Nuclear Science and Technology, 37:1, 875-879, doi:10.1080/00223131.2000.10875015
  • [23] Hammerstein G.R., Miller D.W., White D.R., Masterson M.E., Woodard H.Q, Laughlin J.S., 1979. Absorbed radiation dose in mammography. Radiology, 130,pp 485-491.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Huseyin Ozan Tekin

Asghar Mesbahi This is me

Viswanath P. Singh This is me

Umit Kara This is me

Tugba Manici This is me

Elif Ebru Altunsoy This is me

Publication Date April 24, 2017
Submission Date December 12, 2016
Published in Issue Year 2017 Volume: 17 Issue: 1

Cite

APA Tekin, H. O., Mesbahi, A., Singh, V. P., Kara, U., et al. (2017). Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(1), 48-55.
AMA Tekin HO, Mesbahi A, Singh VP, Kara U, Manici T, Altunsoy EE. Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2017;17(1):48-55.
Chicago Tekin, Huseyin Ozan, Asghar Mesbahi, Viswanath P. Singh, Umit Kara, Tugba Manici, and Elif Ebru Altunsoy. “Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17, no. 1 (April 2017): 48-55.
EndNote Tekin HO, Mesbahi A, Singh VP, Kara U, Manici T, Altunsoy EE (April 1, 2017) Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17 1 48–55.
IEEE H. O. Tekin, A. Mesbahi, V. P. Singh, U. Kara, T. Manici, and E. E. Altunsoy, “Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 17, no. 1, pp. 48–55, 2017.
ISNAD Tekin, Huseyin Ozan et al. “Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17/1 (April 2017), 48-55.
JAMA Tekin HO, Mesbahi A, Singh VP, Kara U, Manici T, Altunsoy EE. Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17:48–55.
MLA Tekin, Huseyin Ozan et al. “Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 17, no. 1, 2017, pp. 48-55.
Vancouver Tekin HO, Mesbahi A, Singh VP, Kara U, Manici T, Altunsoy EE. Assessment of MCNPX Monte Carlo Code for Absorbed Dose Calculations in Mammogarphy Examination. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017;17(1):48-55.