Research Article
BibTex RIS Cite

Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes

Year 2018, Volume: 18 Issue: 1, 90 - 102, 30.04.2018

Abstract

In this study, the solvent effects on structural, spectroscopic, electronic and thermochemical properties of Theobromine (tbH) were theoretically investigated. The dichloromethane (DCM), dimethylsulfoxide (DMSO) and water (H2O) solvents have been chosen for investigations. Optimized molecular structures of tbH were obtained by using the DFT/B3LYP method with 6-311++G(d,p) basis set in vacuum and in solvent media. Calculated geometric structure parameters were compared with experimental data. In the experimental section, the mid-IR spectrum of tbH was recorded using ATR equipment and compared with calculated vibrational frequencies. tbH-H2O complexes were studied for various binding ratios. The total energies and hydrogen bond lengths of these complexes were discussed in detail. It is seen as the result of this study that N⋯H-O and O⋯H-O non-covalent bonded structures are more stable for all binding versions and hydrogen bond lengths for all tbH-H2O complexes range from 1.8-2.5 Å.

References

  • Bernal-Uruchurtu, M. I., Kerenskaya, G., Janda, K. C., 2009, International Reviews in Physical Chemistry, 28, 223-265.
  • Bilkan, M. T., 2017. Structural and spectroscopic studies on dimerization and solvent-ligand complexes of Theobromine. Journal of Molecular Liquids, 238, 523-532.
  • Brandl, M., Meyer, M., Sühnel, J. J., 2001. Quantum-Chemical Analysis of C-H…O and C-H…N Interactions in RNA Base Pairs—H-Bond Versus Anti-H-Bond Pattern. Journal of biomolecular Structure & Dynamics, 18, 4, 545-555.
  • Breda, S., Reva, I.D., Lapinski, L., Nowak, M.J., Fausto, R., 2006. Infrared spectra of pyrazine, pyrimidine andpyridazine in solid argon. Journal of Molecular Structures, 786, 193-206.
  • Calabrese, C., Gou, Q., Spada, L., Maris, A., Caminati, W., Melandri, S. 2016. Effects of Fluorine Substitution on the Microsolvation of Aromatic Azines: The Microwave Spectrum of 3-Fluoropyridine-Water. Journal of Physical Chemistry A, 120, 27, 5163-5168.
  • Cook, D., Regnier, Z. R., 1967. The infrared spectra of theobromine salts. Canadian Journal of Chemistry, 45, 2899-2902.
  • Dennington, R. D., Keith, T. A., Millam, J. M. GaussView 5, Gaussian, Inc, 2008.
  • Ford, K. A., Ebusuzaki, Y., Boyle, P. D., 1998. Methylxanthines. II. Anhydrous Theobromine. Acta Crystallographica, C54, 1980-1983.
  • Fornaro, T., Burini, D., Biczysko, M., Barone, V. 2015. Hydrogen-Bonding Effects on Infrared Spectra from Anharmonic Computations: Uracil–Water Complexes and Uracil Dimers. Journal of Physical Chemistry A, 119, 4224-4236.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., et al. 2003, Gaussian 03, revision D.01, Gaussian Inc., Wallingford, CT.
  • Jamróz, M.H., 2004, "Vibrational Energy Distribution Analysis" VEDA 4, Warsaw.
  • Kwak, K., Rosenfeld, D. E., Chung, J. K., Fayer, M. D, 2008. Solute−Solvent Complex Switching Dynamics of Chloroform between Acetone and Dimethylsulfoxide−Two-Dimensional IR Chemical Exchange Spectroscopy. Journal of Physical Chemistry B, 112, 13906-13915.
  • Miertuš, S., Scrocco, E., Tomasi, 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Journal of Chemical Physics, 55, 117-129.
  • Mikulski, C. M., Grossman, S., Lee, C. J., 2007. Hypoxanthine, xanthine and theobromine complexes with palladium(II) and platinum(IV) chlorides. Transition Metal Chemistry, 12, 21-25.
  • Mourik, T. V., Price, S. L., Clary, D. C., 1999. Ab Initio Calculations on Uracil−Water. Journal of Physical Chemistry A, 103, 1611-1618.
  • Oettl, K., Reibnegger, G., 1999. Pteridines as inhibitors of xanthine oxidase: structural requirements. Biochimica Biophysica Acta, 1430, 387.
  • Parr, R.G., Pearson, R.G., 1983. Absolute hardness: companion parameter to absolute electronegativity. Journal of American Chemical Society, 105, 7512-7516.
  • Parr, R.G., 1999. Electrophilicity Index. Journal of American Chemical Society, 121, 1922-1924.
  • Parthasarathi, R., Subramanian, V., Sathyamurthy, N., 2005. Hydrogen Bonding in Phenol, Water, and Phenol−Water Clusters. Journal of Physical Chemistry A, 109, 843-850.
  • Shahidha, R., Al-Saadi, A. A., Muthu, S., 2015. Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO–LUMO of midodrine by using density functional methods. Spectrochimica Acta Part A, 134, 127-142.
  • Tewari, B. B., Beaulieu-Houle, G., Larsen, A., Kengne-Momo, R., Auclair, K., Butler, I. S. 2012. An Overview of Molecular Spectroscopic Studies on Theobromine and Related Alkaloids. Applied Spectroscopy Review, 47, 163-179.
  • Ucun, F., Sağlam, A., Güçlü, V., 2007. Molecular structures and vibrational frequencies of xanthine and its methyl derivatives (caffeine and theobromine) by ab initio Hartree–Fock and density functional theory calculations. Spectrochimica Acta A, 67, 342-349.
  • Wang, Y., Liu, Q., Qui, L., Wang, T., Yuan, T., Lin, J., Luo, S., 2015. Molecular structure, IR spectra, and chemical reactivity of cisplatin and transplatin: DFT studies, basis set effect and solvent effect. Spectrochimica Acta A, 150, 902-908.
  • Yurdakul, Ş. Bilkan, M., T., 2015. Spectroscopic and structural properties of 2, 2′-dipyridylamine and its palladium and platinum complexes. Optics and Spectroscopy, 119, 4, 603-619.
Year 2018, Volume: 18 Issue: 1, 90 - 102, 30.04.2018

Abstract

References

  • Bernal-Uruchurtu, M. I., Kerenskaya, G., Janda, K. C., 2009, International Reviews in Physical Chemistry, 28, 223-265.
  • Bilkan, M. T., 2017. Structural and spectroscopic studies on dimerization and solvent-ligand complexes of Theobromine. Journal of Molecular Liquids, 238, 523-532.
  • Brandl, M., Meyer, M., Sühnel, J. J., 2001. Quantum-Chemical Analysis of C-H…O and C-H…N Interactions in RNA Base Pairs—H-Bond Versus Anti-H-Bond Pattern. Journal of biomolecular Structure & Dynamics, 18, 4, 545-555.
  • Breda, S., Reva, I.D., Lapinski, L., Nowak, M.J., Fausto, R., 2006. Infrared spectra of pyrazine, pyrimidine andpyridazine in solid argon. Journal of Molecular Structures, 786, 193-206.
  • Calabrese, C., Gou, Q., Spada, L., Maris, A., Caminati, W., Melandri, S. 2016. Effects of Fluorine Substitution on the Microsolvation of Aromatic Azines: The Microwave Spectrum of 3-Fluoropyridine-Water. Journal of Physical Chemistry A, 120, 27, 5163-5168.
  • Cook, D., Regnier, Z. R., 1967. The infrared spectra of theobromine salts. Canadian Journal of Chemistry, 45, 2899-2902.
  • Dennington, R. D., Keith, T. A., Millam, J. M. GaussView 5, Gaussian, Inc, 2008.
  • Ford, K. A., Ebusuzaki, Y., Boyle, P. D., 1998. Methylxanthines. II. Anhydrous Theobromine. Acta Crystallographica, C54, 1980-1983.
  • Fornaro, T., Burini, D., Biczysko, M., Barone, V. 2015. Hydrogen-Bonding Effects on Infrared Spectra from Anharmonic Computations: Uracil–Water Complexes and Uracil Dimers. Journal of Physical Chemistry A, 119, 4224-4236.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., et al. 2003, Gaussian 03, revision D.01, Gaussian Inc., Wallingford, CT.
  • Jamróz, M.H., 2004, "Vibrational Energy Distribution Analysis" VEDA 4, Warsaw.
  • Kwak, K., Rosenfeld, D. E., Chung, J. K., Fayer, M. D, 2008. Solute−Solvent Complex Switching Dynamics of Chloroform between Acetone and Dimethylsulfoxide−Two-Dimensional IR Chemical Exchange Spectroscopy. Journal of Physical Chemistry B, 112, 13906-13915.
  • Miertuš, S., Scrocco, E., Tomasi, 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Journal of Chemical Physics, 55, 117-129.
  • Mikulski, C. M., Grossman, S., Lee, C. J., 2007. Hypoxanthine, xanthine and theobromine complexes with palladium(II) and platinum(IV) chlorides. Transition Metal Chemistry, 12, 21-25.
  • Mourik, T. V., Price, S. L., Clary, D. C., 1999. Ab Initio Calculations on Uracil−Water. Journal of Physical Chemistry A, 103, 1611-1618.
  • Oettl, K., Reibnegger, G., 1999. Pteridines as inhibitors of xanthine oxidase: structural requirements. Biochimica Biophysica Acta, 1430, 387.
  • Parr, R.G., Pearson, R.G., 1983. Absolute hardness: companion parameter to absolute electronegativity. Journal of American Chemical Society, 105, 7512-7516.
  • Parr, R.G., 1999. Electrophilicity Index. Journal of American Chemical Society, 121, 1922-1924.
  • Parthasarathi, R., Subramanian, V., Sathyamurthy, N., 2005. Hydrogen Bonding in Phenol, Water, and Phenol−Water Clusters. Journal of Physical Chemistry A, 109, 843-850.
  • Shahidha, R., Al-Saadi, A. A., Muthu, S., 2015. Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO–LUMO of midodrine by using density functional methods. Spectrochimica Acta Part A, 134, 127-142.
  • Tewari, B. B., Beaulieu-Houle, G., Larsen, A., Kengne-Momo, R., Auclair, K., Butler, I. S. 2012. An Overview of Molecular Spectroscopic Studies on Theobromine and Related Alkaloids. Applied Spectroscopy Review, 47, 163-179.
  • Ucun, F., Sağlam, A., Güçlü, V., 2007. Molecular structures and vibrational frequencies of xanthine and its methyl derivatives (caffeine and theobromine) by ab initio Hartree–Fock and density functional theory calculations. Spectrochimica Acta A, 67, 342-349.
  • Wang, Y., Liu, Q., Qui, L., Wang, T., Yuan, T., Lin, J., Luo, S., 2015. Molecular structure, IR spectra, and chemical reactivity of cisplatin and transplatin: DFT studies, basis set effect and solvent effect. Spectrochimica Acta A, 150, 902-908.
  • Yurdakul, Ş. Bilkan, M., T., 2015. Spectroscopic and structural properties of 2, 2′-dipyridylamine and its palladium and platinum complexes. Optics and Spectroscopy, 119, 4, 603-619.
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa Tuğfan Bilkan

Publication Date April 30, 2018
Submission Date May 16, 2017
Published in Issue Year 2018 Volume: 18 Issue: 1

Cite

APA Bilkan, M. T. (2018). Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(1), 90-102.
AMA Bilkan MT. Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2018;18(1):90-102.
Chicago Bilkan, Mustafa Tuğfan. “Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18, no. 1 (April 2018): 90-102.
EndNote Bilkan MT (April 1, 2018) Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 1 90–102.
IEEE M. T. Bilkan, “Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 1, pp. 90–102, 2018.
ISNAD Bilkan, Mustafa Tuğfan. “Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18/1 (April 2018), 90-102.
JAMA Bilkan MT. Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18:90–102.
MLA Bilkan, Mustafa Tuğfan. “Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 18, no. 1, 2018, pp. 90-102.
Vancouver Bilkan MT. Experimental and Theoretical Studies on Theobromine and Theobromine-Water Complexes. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2018;18(1):90-102.